
A Moving Average Modeling Approach for Computing Component-Based
Software Reliability Growth Trends

Wen-Li Wang1, Thomas L. Hemminger2, Mei-Huei Tang3

School of Engineering
1, 2Penn State University, Behrend College, Erie, PA 16563

wxw18@psu.edu1, tlh5@psu.edu2

3Computer and Information Science Department
Gannon University, Erie,PA 16541

tang002@gannon.edu

Abstract. This paper introduces a moving average reliability growth model to describe the evolution of
component-based software. In this model, the reliability of a system is a function of the reliabilities of its
constituent components. The moving average provides a trend indicator to depict reliability growth move-
ment within the evolution of a series of component enhancements. The moving average can reduce the ef-
fects of bias or measurement error of certain components by rendering a smoothed trend of system reliabil-
ity growth. The input parameters are the components’ configurations and individual reliability growths. The
output is a vector of moving averaged system reliability growths indicating increasing component en-
hancement. The application of this model can facilitate cost/performance evaluation and support decision
making for future software maintenance. More importantly, without introducing excessive computation, the
model can be combined with many existing component-based reliability models to compute overall reliabil-
ity growth.

Keywords: component-based software, moving average, convolution, fast Fourier transform, Markov
model

(Received January 27, 2006 / Accepted May 19, 2006)

1. Introduction

Component-based software, consisting of a number of
computational components, is known for easy adaptabil-
ity, scalability, and reusability. It is believed to be the
future trend in software development, and to have the
same merit as in the hardware domain, e.g., telecommu-
nications, electronics, and mechanics. It is characterized
by exchanging system subsets of components, but not
the whole, to increase efficiency and versatility.

Component-based software promotes reuse, inter-
changeability, and reliability. Reuse achieves high pro-
ductivity. Interchangeability provides the flexibility of
continuous updates, or upgrades, to software compo-
nents, and makes software more adaptable to new tech-
nologies and environments. Reliability is a quality met-
ric measuring the probability of error free operations of
existing software systems.

Development technology exists for component-based
software, including ActiveX, COM/DCOM, .NET, EJB,
CORBA, OLE, OpenDoc, etc. Techniques have also
been adopted and proposed to measure reliability.
Cheung’s user-oriented software reliability model [3]
could address homogenous module interactions. In [5],
the module-based approach was promoted to the com-
ponent level. Krishnamurthy and Mathur [11] conducted
an experiment to evaluate a CBRE method, estimating

component execution path reliability for each test input
and averaging the results. Gokhale et al [8] predicted
architecture-based software reliability using measure-
ments obtained from the regression test suite, and cover-
age measurements. In [7], a simulation approach was
proposed. A general model [14] and the fundamental
theory [9] for reliability measurement of component-
based software were also available. In [20], we devel-
oped an architecture-based reliability model to address
heterogeneous component interactions.

White-box is the common approach for these models
due to its ability to address internal system structures,
and to accommodate frequent component upgrades and
updates. Although these models yield a reliability meas-
ure, they do not describe a trend of constant software
improvement, and the noise introduced by improperly
measured components may severely bias the result.
Therefore, we develop a moving average (MA) reliabil-
ity growth model to deal with these problems. Our ap-
proach extends the reliability representation from a sin-
gle model to a model subspace. The MA, a useful and
objective analysis tool, provides us with a trend. It is
widely employed in a variety of domains, e.g., in busi-
ness the MA has been used to smooth out fluctuations
and diminish the impact of incorrect stock predictions.

The computation of MA reliability growth is a func-
tion of a series of discrete intervals. Each considers a

specific number of component enhancements in the exe-
cution paths without concern for any particular compo-
nent. This is different from component sensitivity analy-
sis [3], computed as R/Ri, the partial derivative of the
system reliability R over the component reliability Ri. In
fact, our model takes components configuration and
reliability improvements as input, and outputs a vector
of moving averaged system reliabilities corresponding
to the discrete intervals. The MA approach integrates
well with existing component-based reliability models,
allowing them to provide system reliability growth
trends and prevent bias from individual components.
The outcome can assist in cost/performance evaluations
and offers directions of improvement.

One goal of this paradigm is to prevent excessive
computation. This is significant when integrating with
existing reliability models, since most are computation-
ally intensive and frequent component upgrades and
updates often make re-computation of the entire model
expensive and time-consuming. Therefore, in the MA
approach, all component reliability improvements are
entered simultaneously into a single matrix, and some
entries, pertinent to a series of reliability improvements,
are vectors rather than scalars. We utilize the fast Fou-
rier transform (FFT) [2, 4] to perform convolutions [1]
during certain matrix computations with the final result
being a vector of MA reliability growths. The FFT is
computationally efficient in performing vector multipli-
cations, meaning that our approach provides solid per-
formance in deriving trend of reliability growths, by
reducing the computational load.

The rest of the paper is organized as follows. In sec-
tion 2, we describe the convolution approach to comput-
ing the MA. In section 3 the FFT is adopted to improve
performance. Section 4 introduces an algorithm incorpo-
rating the MA into the transition matrix. In section 5, we
discuss integration with component-based software reli-
ability models. Section 6 presents two applications of
the MA reliability growth trend, and section 7 provides
some concluding remarks.

2. Moving Average and Convolution

A MA [10] is a list of mean values over a specific set of
discrete intervals. The value corresponding to an inter-
val is the MA software reliability within that discrete
interval. The next interval is designated for the reliabil-
ity of an up-by-one component improvement in the exe-
cution paths. In other words, the ith interval computes
the MA reliability, accounting for all execution paths,
with each path having a number of i component en-
hancements, without regard for any specific components.

Figure 1 illustrates a system with two components cx

and cy running in sequence. The reliability of component
cx, enhanced twice from a to b and then to c, is stored in
a vector f = [a b c]. The reliability of cy from d to e is in

vector g = [d e]. Apparently, the system reliability varies
from the beginning as ad to ce. However, b should not
be neglected, because it plays an important role on the
intermediate progression of reliability growth. Therefore,
our model takes into account all evolving component
enhancements to exhibit the growth trend. From vectors
f and g, the number of component enhancements can be
zero, one, two, or three. The reliability ad is the result of
no improvement, while ce is the result of three en-
hancements with two on cx and one on cy. The reliability
with one component improvement from a to b on cx, and
another from d to e on cy is equal to (bd+ae)/2. Similarly,
the reliability with two component improvements (one
from a to b and to c on cx, and the other from a to b on
cx and d to e on cy) is (cd+be)/2. Consequently, the MA
reliability growth shows the trend as [ad (bd+ae)/2
(cd+be)/2 ce] for an increasing number of component
enhancements.

Figure 1: A sequential system with two components

In our model, the computation of a MA reliability
growth trend takes advantage of convolution [1].
Convolution has been widely applied in a range of
engineering applications, primarily to relate system
inputs and outputs, and to perform correlation. It can
also be used to compute the product of two polynomials.
The convolution of two functions f and g is denoted by f
* g. We utilize the discrete version of convolution as
shown here:







k
knknnn gfgfy * (1)

The motivation of using convolution comes from its
ability to compute the coefficients of the product of two
polynomials. For example, given two vectors [a b c] and
[d e] to represent polynomials ax2 + bx + c and dx + e,
respectively, the convolution f * g in Eq. (1) yields [ad
bd+ae cd+be ce]. In our approach, we store the
reliability enhancements of software components in
vectors and exploit convolution to determine reliability
growth trends.

Convolution can relieve the computational burden,
especially when encountering large vectors. Recall [ad
bd+ae cd+be ce] is the convolution result of f = [a b c]
and g = [d e]. However, it has not yet met the expected
MA [ad (bd+ae)/2 (cd+be)/2 ce], because the formula
only sums up the values without performing an average.
In other words, f * g also needs to be divided by the
number of product terms in each discrete interval. Here,
ae+bd is the sum of two product terms, which should be
divided by 2. To compute the number of product terms

in each interval two additional vectors are required f =

cx cy

f = [a b c] g = [d e]

[1 1 1] and g = [1 1], having same lengths as f and g,

respectively. The convolution f * g yields [1 2 2 1].

After performing a component-wise division of f * g by

f * g , the outcome is the expected MA [ad (bd+ae)/2

(cd+be)/2 ce]. The following defines the MA reliability
growth function R(x,y) for two consecutive components
cx and cy as:

R(x,y) = (f * g) ./ (f * g) (2)

where “./” represents component-wise vector division.

3. Convolution and Fast Fourier Transform

MA software reliability growth for two consecutive
components can be accomplished with two convolutions
and a component-wise division, as in Eq. (2). Convolu-
tion requires)(2NO operations on two N-length vectors.

Based on [2, 4], the fast Fourier transform (FFT) only
requires)log(2 NNO operations, turning convolutions

into simple component-wise multiplications. This can
significantly improve the computation efficiency for
large-scale systems. The FFT is an efficient algorithm
which is derived from the discrete Fourier transform
(DFT). The DFT is a linear, invertible function [16, 17]
of great importance to a wide variety of applications,
such as processing signals, solving partial differential
equations, and multiplying large integers, etc. The DFT
transforms a vector of n complex numbers x0, …, xn-1

into a vector of n complex numbers f0, …, fn-1, presented
as F{[x0 x1 … xn-1]} = [f0 f1 … fn-1]. The expression for
the DFT is in Eq. (3), where 1i .









1

0

2n

k

km
n

i

km exf


, m = 0, …, n-1 (3)

The inverse DFT is presented as F-1{[f0 f1 … fn-1]} =
[x0 x1 … xn-1] and is expressed by:







1

0

2n

m

km
n

i

mk efx


, k = 0, …, n-1 (4)

An expression for the FFT is shown in Eq. (5).
Based on a divide-and-conquer concept, a DFT of an
even size n can be restated as the sum of two DFTs,
each of size n/2 [2, 4]. One summation is from the even-
numbered indices, and the other is from the odd-
numbered indices. The procedure can be repeated recur-
sively and is equivalent to Eq. (3). The FFT does require
that vector lengths be a power of 2, but zeros can be
added to those which do not meet this criterion with no
effect on the result. This is known as zero-padding.

















1ˆ

0

ˆ
2

12

1ˆ

0

ˆ
2

2

n

k

mk
n

i

k

n

k

km
n

i

km exexf


, where n̂ = n/2, m = 0, …, n-1 (5)

In the following, we adopt the same notations F and
F-1 to represent the FFT and its inverse. By [1, 2]:

 }{*.}{* 1 gFfFFgf  (6)

, where “.*” represents component-wise vector multipli-
cation. From Eqs. (2) and (6), we derive Eq. (7) that
utilizes FFT to compute the MA reliability growth
R(x,y) for two consecutive components cx and cy as:

R(x,y) = (f * g) ./ (f * g)

= F-1{F{f} .* F{g}} ./ F-1{F{ f } .* F{ g }} (7)

Eq. (7) can be extended to address a number of compo-
nents

1i
c ,

2i
c , …,

ni
c between cx and cy. In this case,

R(x,y) is computed as in Eq. (8).

R(x,y) = R(R(…R(R(x,i1), i2), …, in),y) (8)

The following demonstrates the use of the FFT to
compute the MA reliability growth function of Figure 1.

Vectors f, g, f , and g do not have lengths of 2n, and

are, therefore, zero-padded. Thus, we have f = [a b c 0],

g = [d e 0 0], f = [1 1 1 0], and g = [1 1 0 0]. This

enables the FFT to be employed to compute the
component-wise multiplications and divisions. For
illustrative purposes, we assign a, b, c, d, e the values of
0.9, 0.92, 0.95, 0.96, 0.98, respectively.

By Eq. (5),
F{f} = [2.77 -0.05-0.92i 0.93 -0.05+0.92i]
F{g} = [1.94 0.96-0.98i -0.02 0.96+0.98i]

F{ f } = [3 -1i 1 1i]

F{ g } = [2 1-1i 0 1+1i]

By Eq. (6), f * g = F-1{F{f} .* F{g}} = [0.864

 1.7652 1.8136 0.931]

f * g = F-1{F{ f } .* F{ g }} = [1 2 2 1]

By Eq. (7),

R(x,y) = (f * g) ./ (f * g) = [0.864 1.7652

1.8136 0.931] ./ [1 2 2 1]
= [0.864 0.8826 0.9068 0.931]

The result from the FFT is identical to that of Eq. (2),
which is verified by [ad (bd+ae)/2 (cd+be)/2 ce] =
[0.864 0.8826 0.9068 0.931]. Obviously, this has a
greater impact on larger problems.

4. Moving Average Reliability Modeling for
Multiple Execution Paths

The next step is to model the entire system, addressing
the configurations of software components in multiple
execution paths. In general, system structures can be
classified as follows:

1. A system has components running in one
execution path.

2. A system has components with diverging
execution paths.
a. The number of component enhancements

in each path is: identical or different.
b. The number of execution paths is: finite or

infinite.
Section 3 described a simple structure with two

components in one execution path, with Eq. (8)
addressing problems with one execution path, consisting
of multiple components. Nevertheless, a software
system is likely to contain multiple execution paths,
with each path having a different number of component
reliability enhancements. Moreover, the number of
execution paths may not always be finite if the
transitions among components form a cyclic loop.
Consequently, computation of the MA for different
paths is likely to require distinct vector lengths, resulting
in difficulty when computing the MA for the entire
system. An infinite number of execution paths also
emphasizes the challenge of modeling system MA
reliability growth, because each discrete interval now
has to consider an infinite number of paths for modeling
increased component enhancement.

In section 4.1, we discuss MA modeling for a system
with a finite number of execution paths and introduce an
algorithm to standardize vector lengths. In section 4.2,
the foundation and algorithms for modeling an infinite
number of execution paths through a transition matrix
are introduced.

4.1. Moving Average Measurement with Different
Vector Sizes

The number of component enhancements in each execu-
tion path can be distinctive, resulting in different vector
lengths, as illustrated in Figure 2. As shown, the first
execution path is c1c2c4 with probability p and the
second is c1c3c4 with probability 1–p. The first path
has a single component enhancement in component c1

from a to b. The second path has two component en-
hancements, one is in component c1 from a to b, and the
other in component c3 from d to e.

Figure 2: A system with two execution paths

From Eq. (8), the first path of R(1,4), enumerated as
R(1,4)1, equals R(R(1,2),4) = [acf bcf]. The second path,
R(1,4)2 = R(R(1,3),4) = [adf (ae+bd)f/2 bef]. This pre-

sents a problem. The result cannot be computed as p *
R(1,4)1 + (1-p) * R(1,4)2, because the vector lengths
derived from these two paths are not identical. Therefore,
the computation of R(1,4), a combination of R(1,4)1 and
R(1,4)2, requires adjustment of the short vector R(1,4)1

to be the same length as the longer vector R(1,4)2.
Padding of the shorter vector is necessary to match

the length of R(1,4)2. This ensures size consistency, and
maintains the reliability growth of the original short
vector. We call this procedure an equalization process,
which is conceptually similar to zero-padding men-
tioned above. For example, the short vector [acf bcf] of
R(1,4)1 will be padded with the last vector element
yielding [acf bcf bcf]. Padding does not affect the reli-
ability growth of the first path, which remains un-
changed as bcf. The following presents the algorithm
equalize which facilitates the equalization process. The
algorithm requires two input vectors, with the shorter
vector forced to be the same length as the longer one.
Calling the function equalize(R(1,4)1, R(1,4)2) yields
two vectors [acf bcf bcf] and [adf (ae+bd)f/2 bef] having
the same length. Therefore, R(1,4) can be computed as p
* [acf bcf bcf] + (1–p) * [adf (ae+bd)f/2 bef].

// Equalize the size of A and B vectors
equalize(Vector A, Vector B) {
 if (Asize == Bsize)
 return;
 else if (Asize < Bsize) {
 // equalizing to the size of A to be the same as B
 for (i = Asize+1; i <= Bsize; i++) {
 A(i) = A(i-1);
 }
 }
 else {
 // equalizing to the size of B to be the same as A
 for (i = Bsize+1; i <= Asize; i++) {
 B(i) = B(i-1);
 }
 }
}

As a consequence, the formula for R(x,y), with n
execution paths between components cx and cy, can be
generalized as in Eq. (9), noting that equalize is always
called beforehand.

R(x,y) = 


n

k
kk yxRp

1

),(*

, where n > 1, 0< pk 1, and 


n

k
kp

1

 = 1 (9)

4.2. Model Foundation for an Infinite Number of
Execution Paths

c1

c2[a b]

[c]

c3

c4

[d e]

[f]p

1–p

Here we discuss the foundation of our MA model,
which will aid in its integration with component-based
software reliability models that take into account an
infinite number of execution paths. Eq. (9) can be
applied to deal with a finite number of execution paths
without cyclic loops, e.g., integration with our web-
based reliability model [19]. However, the transitions
among components often form cyclic loops, forcing the
number of execution paths to be infinite, thus requiring
an alternate solution.

For this situation a number of paradigms [3, 6, 12,
15] have been proposed to construct a transition matrix
and exploit Markov models for reliability computations.
The transition matrix considers the reliabilities of, and
the interrelationships among, software components.
Construction of the transition matrix can follow existing
component-based reliability models [3, 8, 18]. The
major difference is that the entries of our matrix are not
necessarilly scalar values. Some entries, corresponding
to a sequence of component upgrades or updates,
become hidden vectors representing individual
components’ reliability enhancements. The elements in
a vector need not be monotonic and may fluctuate
because component upgrades and updates do not
guarrantee an increasing reliability improvement, but
may sometimes degrade the reliability by introducing
additional faults. Once construction of the transition
matrix is complete, we employ the reliability formulas
of the component-based reliability models to compute
MA software reliability.

Nevertheless, reliability formulas cannot be directly
used to manage the combination of scalars and vectors
within the transition matrix. There are certain
difficulties, including the handling of computations
between scalars and vectors, and the resolution of vector
length. This is a significant challenge because many
reliability formulas need to compute the determinant of
the transition matrix, but there is no method for
computing a vector of MA determinants for such a
matrix. Therefore, we introduce another algorithm
which takes advantage of the equalization process to
address differing vector lengths. Convolution of these
vectors follows the aforesaid simple vector-to-vector
component-wise multiplication via the FFT.

The following illustrates the computation of MA
determinants. Given three transition matrices M2, M3

and Mn, where M2 is 2  2, M3 is a 3  3, and Mn is n  n.
The elements can be scalars or vectors, and we denote
aij to be the entry of a transition matrix in the ith row
and jth column.

M2 = 








2221

1211

aa

aa
, M3 =

















333231

232221

131211

aaa

aaa

aaa

,

Mn =



















nnnn

n

n

aaa

aaa

aaa









21

22221

11211

For our model, the MA determinant of M2, denoted
as |M2|, is no longer computed as a11a22 – a12a21. Based
on Eq. (7), the value of |M2| can now be a vector as
shown in Eq. (10), after application of the equalization
process equalize(R(a11, a22), R(a12, a21)).

|M2| = R(a11, a22) – R(a12, a21) (10)

Computation of |M3| is an extension to that of |M2|.
Equalization is performed when encounting a vector
computation such as “+”, “–”, “.*”, and “./”. For a scalar
matrix, |M3| was originally computed as:

a11 








3332

2322

aa

aa
– a12 









3331

2321

aa

aa
+ a13 









3231

2221

aa

aa

Evaluation of |M3| takes advantage of Eq. (10) and
results in:

|M3| = R(a11, R(a22, a33) – R(a23, a32)) –
 R(a12, R(a21, a33) – R(a23, a31)) +
 R(a13, R(a21, a32) – R(a22, a31)) (11)

Figure 3: An example for computing |M3|

Figure 3 shows a system consisting of three
components c1, c2, and c3 to demonstrate computation of
|M3|. Each entry, M3(i,j), stores the transition probability
that ci is fault free and transits to cj. Let c1 have two
reliability enhancements stored as [0.9 0.95 1], c2 have
one enhancement [0.92 0.96], and c3 have no
enhancement represented by [1]. From the diagram, the
transition probability from c1 to c2 is 0.2, and 0.8 to c3.
The transition probability from c2 to c1 is 0.2, 0.5 to c2,
and 0.3 to c3. c3 transits to c1 with a probability 1. As a
result, M3 is constructed as follows:





















00]1[1

].9692[.3.].9692[.5..96]92[.2.

]1 .959[.8.]1 95.9[.2.0

By Eq. (11), |M3| =

R(0, R([.46 .48], 0) – R([.276 .288], 0)) –

R([.18 .19 .2], R([.184 .192], 0) – R([.276 .288], 1)) +

R([.72 .76 .8], R([.184 .192], 0) – R([.46 .48], 1))

And from Eq. (7), we have R(x, y) =

F-1{F(f} .* F{g}} ./ F-1{F{ f } .* F{ g }}.

Thus,
R([.46 .48], 0) = [0 0]
R([.276 .288], 0) = [0 0]
R([.184 .192], 0) = [0 0]
R([.276 .288], 1) = [.276 .288]
R([.46 .48], 1) = [.46 .48]

Accordingly, |M3| becomes:

R(0, [0 0]) –

R([.18 .19 .2], [–.276 –.288]) +

R([.72 .76 .8], [–.46 –.48]) =

[0 0] – [–0.0497 –0.0521 –0.0550 –0.0576] +

[–0.3312 –0.3476 –0.3664 –0.3840] =

[–0.2815 –0.2955 –0.3114 –0.3264]
Note, the equalization process is applied to the vector
computations so that [0 0] is equalized to [0 0 0 0]
before including the 4-element vectors.

The result can be verified through standard matrix
calculations. The first element requires no component
enhancements. Thus, we have:



















001

92.3.92.5.92.2.

9.8.9.2.0

 = -0.2815

The second element requires one component
enhancement, which can be one occurance of c1 or c2 as
shown below:






















































001

92.3.92.5.92.2.

9.8.9.2.0

001

92.3.92.5.92.2.

9.8.9.2.0
 / 2

= -0.2955
The third element needs two component enhancements,
c1 twice, or both c1 and c2 once as follows:






















































001

96.3.96.5.96.2.

95.8.95.2.0

001

92.3.92.5.92.2.

18.12.0
 / 2

= -0.3114
The fourth element has three component enhancements
with c1 twice and c2 once and is computed as:















001
96.3.96.5.96.2.
18.12.0

 = -0.3264

It is clear that our MA approach significantly
reduces the computational complexity in comparison to
conventional methods. In the following, we introduce an
algorithm, based on Eqs. (10) and (11), to generalize
computation of |Mn|, the MA determinant of a n × n
matrix M, where 1n . When 1n the algorithm

returns a11, but when 2n it returns a result from Eq.

(10). When 3n , it functions recursively to compute

|Mn| as
n

i 1
 R(ai1, cofactor(Mn, i, 1)). The cofactor(Mn, i,

1) returns (–1)i+1× |Mn-1|, where Mn-1 is a submatrix by
removing the ith row and the first column of Mn. The
recursion does not stop until the size of the submatrix is
reduced to 2 by 2.

// M is a square mixtured matrix
Vector determinant(Matrix M)
{
 // axy is the entry value of M(x,y)
 if (Mrow == 1)
 return a11;
 else if (Mrow == 2) {
 equalize(R(a11, a22), R(a12, a21));
 return R(a11, a22) – R(a12, a21); // |M2|
 }
 else {
 Vector vector = []; // to initialize

 for (i = 1; i <= Mrow; i++)
 if (ai1 != 0) {

 equalize(vector, R(ai1, cofactor(i, 1));
 vector += R(ai1, cofactor(M, i, 1));
 }

 return vector;
 }
}

Vector cofactor(Matrix M, int x, int y)
{
 // SM is a submatrix of M
 Matrix SM = new Matrix(Mrow–1, Mcolumn–
1);
 for (i = k = 1; k <= Mrow; k++) {
 if (k != x) {
 for (j = l = 1; l <= Mcolumn; l++)
 if (l != y) {
 // akl is the entry value of M(k,l)
 SM[i, j] = akl;
 j++;
 }
 i++;
 }
 }
 return (–1)x+1 * (–1)y+1* determinant(SM);
}

5. An Example of Model Integration

This section illustrates an example of the integration of
our MA model with Cheung’s user-oriented software
reliability paradigm [3]. This example serves as a guide-
line for the integration of our MA approach with other
component-based software reliability models. Cheung
took into account branching and cyclic-loop structures,

being able to address an infinite number of execution
paths. A formula was developed for computing software
reliability R as shown in Eq. (12). M is an n  n transi-
tion matrix and I is an n  n identity matrix. |I–M| is the
determinant of matrix (I–M). |(I–M)n,1| is the determi-
nant of the submatrix, excluding the last row and first
column of matrix (I–M).

R = (–1)n+1

MI

MI n



 1,)(
Rn (12)

Let aij be the entry value of M’s ith row and jth col-
umn. The entries are calculated based on Eq. (13). Ri is
the reliability of component ci and Pij is the transition
probability from ci to cj.

M(i,j) =







otherwise,0

and0,

ij

ijijiij

a

jiPPRa
, for 1  i, j  n

(13)
Consider Figure 4, where Ri of ci and Pij between ci

and cj are shown in Table 1. The I–M matrix is con-
structed as shown in Figure 5. By Eq. (12), the reliabil-
ity R is calculated as 0.8355. If R1, R2, …, R13 are all
equal to 1.0, the reliability R is equal to 1.0.

Let R1, R2, …, R13 be replaced with values in Table 2
that contain reliability growths for different components.
We fill the matrix with these vectors and scalars, and
utilize our previous determinant algorithm to compute
|I–M| and |(I–M)13,1|. Accordingly, the MA reliability
growth trend R is computed:
|I–M| = [0.73397 0.7343 0.72968 0.72814 0.72644

0.72542 0.72468 0.72376 0.72273 0.72135
0.72037 0.71895 0.71831 0.71681 0.71568
0.71305 0.7074 0.7074 0.7074]

|(I–M)13,1| = [0.61323 0.61448 0.62323 0.63086 0.639
0.64617 0.65269 0.65901 0.66481
0.66999 0.67457 0.67815 0.6809 0.68357
0.6866 0.69144 0.69489 0.70579 0.7074]

R = (–1)n+1

MI

MI n



 1,)(
Rn = (–1)14

MI

MI



 1,13)(
R13

 = [0.8355 0.83682 0.85411 0.86641 0.87964 0.89074
0.90066 0.91054 0.91986 0.9288 0.93642 0.94324
0.94792 0.95363 0.95937 0.96969 0.98231
0.99773 1.0]

Figure 4: The state machine of a sample system with
13 components

R1 = 0.98 R2 = 0.96 R3 = 0.956
R4 = 1.0 R5 = 0.98 R6 = 0.99
R7 = 0.94 R8 = 0.95 R9 = 1.0
R10 = 1.0 R11 = 0.96 R12 = 0.98
R13 = 1.0
P1,2 = 0.5 P1,3 = 0.2 P1,4 = 0.3
P2,5 = 1.0
P3,6 = 1.0
P4,6 = 1.0
P5,6 = 0.4 P5,8 = 0.3 P5,9 = 0.3
P6,7 = 0.3 P6,8 = 0.4 P6,9 = 0.3
P7,4 = 0.1 P7,11 = 0.4 P7,12 = 0.5
P8,10 = 1.0
P9,10 = 0.5 P9,11 = 0.5
P10,2 = 0.4 P10,11 = 0.6
P11,12 = 0.5 P11,13 = 0.5
P12,13 = 1.0

Table 1: The reliability and transition probabilities
of Figure 4

R1 = [0.98 0.975 1.0], R2 = [0.96 0.957 1.0], R3 = [0.956 1.0]
R4 = 1.0, R5 = [0.98 0.9726 1.0], R6 = [0.99 0.98 1.0]
R7 = [0.94 0.96 1.0], R8 = [0.95 0.983 0.97 1.0], R9 = 1.0
R10 = 1.0, R11 = [0.96 1.0], R12 = [0.98 0.976 0.972 1.0]
R13 = 1.0

Table 2: Individual component reliability growths through upgrades or updates

c1

c2 c3 c4

c5 c6 c7

c8 c9

c10 c11
c12

c13

I–M =



































































1000000000000

100000000000

5.5.10000000000

006.100000004.0

005.5.100000000

000010000000

05.4.0001001.000

00003.4.3.100000

00003.3.04.10000

000000001000

000000000100

000000000010

0000000003.2.5.1

12

1111

1010

99

8

777

666

555

4

3

2

111

R

RR

RR

RR

R

RRR

RRR

RRR

R

R

R

RRR

Figure 5: The I-M matrix for the system in Figure 4

Figure 6: Software Reliability Growth Trend

Figure 6 shows the trend from vector R. It is clear
that the first and last elements are 0.8355 and 1.0 re-
spectively, and identical to the results of the previous
pure scalar transition matrices. The intermediate discrete
intervals concern only the number of enhancements,
without considering a specific component; therefore, it
is less biased. The vertical axis represents the average
reliability estimate, and the horizontal axis lists the
number of enhancements. In other words, k component
enhancements means that each execution path has a MA
reliability of exactly k upgrades or updates, and the sys-
tem reliability is the sum of the MA reliabilities of all
execution paths multiplied by the probability of travers-
ing each path. Our algorithm in section 4 makes the
computation of MA reliability growth trends feasible for
models that can address an infinite number of execution
paths.

6. Two Applications of the Moving Average
Model

We have demonstrated the integration of our MA tech-
nique with Cheung’s user-oriented software reliability
model. The same modeling approach can be applied to
other component-based software reliability models. For
instance, integration with an architecture-based reliabil-
ity model [18] will depict the reliability growth trend for
software with heterogeneous architectures. Our MA
model can be applied in many areas, e.g., in the follow-
ing, we discuss two application domains, one for
cost/performance evaluation and the other for software
maintenance decision making.

6.1. Cost/Performance Evaluation

To remain competitive, a business may need to decide
the cost, including man-hours and budget, to enhance
the quality of software. Cost is always a factor regard-
less of whether the enhancement is to improve existing
on-hand components or to purchase new COTS compo-
nents. The highest performance for the lowest cost is a
typical objective. With this in mind, let cost be a func-
tion of the number of component enhancements. A steep
rise of this function indicates a high cost to include extra
enhancements and/or provide upgrades. If
cost/performance can be evaluated, it will guide soft-
ware maintenance schedule. With our MA model, we
define a cost/performance efficiency function to serve
this purpose, as follows:

E(i,j) =
)(*)(

)()(

ijRR

iCostjCost

ij 


, i < j (14)

E(i,j) computes an average cost per unit reliability
improvement, in the interval between i and j component
enhancements. Cost(i) and Cost(j) are two accumulative
costs for a number of i and j component improvements,
respectively. Ri and Rj are the MA reliabilities for i and j
component enhancements. Since Cost(j) > Cost(i), E(i,j)
is positive when Ri < Rj; otherwise Ri > Rj. If Ri = Rj,
E(i,j) is assigned 0 due to no reliability improvements.

When E(i,j) is positive, the lower the value, the better
the cost/performance ratio. A negative value of E(i,j),
caused by declining reliability, states the opposite, i.e.,
greater negative values indicate poorer performance.

Here we show an example based on the MA results
from Figure 6. Assume a company spent 500 man-hours
to make 12 component improvements. For 600 man-
hours it observed 14 improvements. After the company
invested 1100 man-hours, 18 component improvements
were reported. We understand that the MA software
reliabilities for 12, 14, and 18 component reliability
improvements are 0.94792, 0.95937, and 1.0,
respectively. Accordingly, E(12,14) and E(14,18) can be
computed as follows:

E(12,14) =
)1214)(94792.95937(.

500600




 = 4367

E(14,18) =
)1418)(95937.1(

6001100




 = 3077

Since 0 < E(14,18) < E(12,14), the results indicate a
better cost/performance in the interval between 14 and
18 component enhancements. In this region, the average
cost for each component enhancement is 125 man-hours,
much higher than 50 as in the segment between 12 and
14. Yet the region between 14 and 18 experiences a
significant reliability improvement enhancement over
that of 12 and 14, i.e., (1-0.95937)/4 = 0.0101575 versus
(0.95937-0.94792)/2 = 0.005725 respectively. By taking
both cost and reliability improvement into account, the
cost/performance ratio has a more compelling result
between the segment 14 and 18.

6.2. Decision Making

The MA reliability growth model can also support
decision making. One important decision may be to
determine whether or not to continue further reliability
improvement. This requires consideration of certain
attributes, such as deadline, budget, man-hours, and the
effectiveness of the improvements. A significant
improvement may make the investment much more
attractive. One advantage of our MA reliability growth
model is its ability to depict the trend of reliability
growth. The trend is a key indicator for the system as a
whole, not just a single component, because the
approach smoothes out flunctuations and prevents
potential bias from individual components. In other
words, the model eliminates bias while providing a good
confidence level for judging the effectiveness of future
system reliability improvements.

Figure 7 compares two MA reliability growth trends
to study which situation has better potential for future
reliability improvement. Both trends start with reliability
0.8355 and end at 0.9422. The upper trend shows an
instant escalation then slows down, while the lower
trend is nearly linear. It is clear that the upper trend

starts to show a convergence to a horizontal assyptote.
This suggests that an additional component
enhancement to the lower system yields a more
significant reliability improvement than the other. In
summary, a trend that depicts a fairly linear growth is a
stronger candidate for further improvement.

Figure 7: Two Software Reliability Growth Trends

There is also a possibility to observe a trend through
the vectors of individual components, but the best way
is to observe the entire trend. This is particularly the
case when the vectors show a variety of unstable
fluctuations, making individual observations difficult to
interpret.

7. Conclusion

We have developed an MA software reliability growth
model for component-based software. This model de-
picts a growth trend of software reliability instead of a
single reliability measure. The trend is an averaged
function of an increasing number of component en-
hancements, regardless of the characteristics of any spe-
cific constituent components. The computation of MA is
through convolutions, which smooth out sudden im-
pulses to reveal a trend. Consequently, the reliability is
less biased by the incorrect measure of a single compo-
nent, or a small set of components. The computation of
convolutions can be time consuming, so the fast Fourier
transform is employed to improve performance allowing
for the analysis of a large-scale software system. Our
model addresses the number of component enhance-
ments in individual execution paths and integrates them
to compute the MA. The enhancements for each compo-
nent are stored as a vector. By embedding all vectors
into a transition matrix, our proposed algorithm for the
model is capable of addressing a finite as well as an
infinite number of execution paths, making it extremely
versatile.

Our MA approach can be easily merged with exist-
ing white-box based software reliability models, permit-
ting engineers in their own fields to adopt and adapt the
technique to meet specific needs. A complete example
demonstrates the integration. Two applications of this
model were discussed to facilitate cost/performance
evaluations and support decision making. We define a
cost/performance ratio metric to help evaluate the effec-
tiveness of reliability improvement, and discuss the
trend patterns to continue or stop the improvement proc-
ess. This work is expected to be applicable to solve
many other, more complex, problems.

References

[1] Arfken, G., "Convolution Theorem." in Mathe-
matical Methods for Physicists, 3rd ed., pp. 810-
814, Orlando, FL: Academic Press, USA, 1985.

[2] Brigham, E. O., The Fast Fourier Transform and
Its Applications, Prentice-Hall, Englewood Cliffs,
NJ, USA, 1988.

[3] Cheung, R. C., “A User-Oriented Software Reli-
ability Model”, In IEEE Transactions on Software
Engineering, 6(2):118, pp.118-125, March, 1980.

[4] Cooley, J. W. and Tukey, J. W., "An Algorithm
for the Machine Calculation of Complex Fourier
Series," In Mathematics of Computation, 19(90),
pp.297–301, 1965.

[5] Dolbec, J. and Shepard, T., “A Component Based
Software Reliability Model”, In Proceedings of the
Conference of the Centre for Advanced Studies on
Collaborative Research, pp. 19-28, Toronto, On-
tario, Canada, 7-9 November, 1995.

[6] Goel, A. L. and Okumoto, K., “A Markovian
Model for Reliability and Other Performance
Measures of Software Systems”, In Proceedings of
National Computer Conference, pp.769-775, New
York, NY, USA, June, 1979.

[7] Gokhale S. S., Lyu M. R., and Trivedi K. S., “Re-
liability Simulation of Component-Based Software
Systems”, In Proceedings of 9th International
Symposium on Software Reliability Engineering
(ISSRE), pp192-201, Paderborn, Germany, 4-7
November, 1998.

[8] Gokhale, S. S., Wong, W. E., Trivedi, K. S., and
Horgan, J. R., “An Analytical Approach to Archi-
tecture-Based Software Reliability Prediction”, In
Proceedings of IEEE International Computer Per-
formance and Dependability Symposium (IPDS),
pp.13-22, Durham, NC, USA, 7-9 September,
1998.

[9] Hamlet D., Mason D., and Woit D., “Theory of
Software Reliability Based on Components”, In
Proceedings of 23rd International Conference on
Software Engineering (ICSE), pp361-370, To-
ronto, Ontario, Canada, May 12-19, 2001.

[10] Kenney, J. F. and Keeping, E. S., “Moving Aver-
ages”, Mathematics of Statistics, Pt. 1, 3rd ed., pp.
221-223, Van Nostrand, Princeton, NJ, USA,
1962.

[11] Krishnamurthy, S. and Mathur, A. P., “On the Es-
timation of Reliability of a Software System Using
Reliabilities of its Components”, In Proceedings of
8th International Symposium on Software Reliabil-
ity Engineering (ISSRE), pp.146-155, Albuquer-
que, NM, USA, 2-5 November, 1997.

[12] Littlewood, B., “A Reliability Model for Systems
with Markov Structure”, Applied Statistics, 24(2),
pp.172-177, February, 1975.

[13] Lo, J-H, Huang, C-Y., Kuo, S-Y. and Lyu, M.R.,
“Sensitivity Analysis of Software Reliability for
Component-Based Software Applications”, In
Proceedings of 27th International Computer Soft-
ware and Applications Conference, pp. 500-505,
Dallas, Texas, USA, 3-6 November, 2003.

[14] Mao, X. and Deng, Y., “A General Model for
Component-Based Software Reliability”, In Pro-
ceedings of 29th Euromicro Conference, pp. 395-
398, Antalya, Turkey, 1-6 September, 2003.

[15] Musa, J., Iannino, A., and Okumoto, K., Software
Reliability: Measurement, Prediction, Application,
McGraw-Hill, NY, USA, 1987.

[16] Oppenheim, A. V., Schafer, R. W., and Buck, J.
R., Discrete-Time Signal Processing, Prentice-
Hall, 1999.

[17] Smith, S. W., The Scientist and Engineer's Guide
to Digital Signal Processing, 2nd ed., California
Technical Publishing, San Diego, CA, USA, 1999.

[18] Wang, W. L., Pan, D. and Chen, M. H., "Architec-
ture-Based Software Reliability Modeling", Jour-
nal of Systems and Software, 79(1), pp 132-146,
January, 2006.

[19] Wang, W. L. and Tang, M., “User-Oriented Reli-
ability Modeling for a Web System”. In Proceed-
ings of 14th International Symposium on Software
Reliability Engineering (ISSRE), pp. 293-304,
Denver, Colorado, 17-20 November, 2003.

[20] Wang, W. L., Wu, Y. and Chen, M. H., “An Ar-
chitecture-Based Software Reliability Model”, In
Proceedings of Pacific Rim International Sympo-
sium on Dependable Computing (PRDC), pp.143-
150, Hong Kong, China, 16-17 December, 1999.

