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Abstract. This paper introduces a moving average reliability growth model to describe the evolution of 
component-based software. In this model, the reliability of a system is a function of the reliabilities of its 
constituent components. The moving average provides a trend indicator to depict reliability growth move-
ment within the evolution of a series of component enhancements. The moving average can reduce the ef-
fects of bias or measurement error of certain components by rendering a smoothed trend of system reliabil-
ity growth. The input parameters are the components’ configurations and individual reliability growths. The 
output is a vector of moving averaged system reliability growths indicating increasing component en-
hancement. The application of this model can facilitate cost/performance evaluation and support decision 
making for future software maintenance. More importantly, without introducing excessive computation, the 
model can be combined with many existing component-based reliability models to compute overall reliabil-
ity growth.
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1. Introduction

Component-based software, consisting of a number of 
computational components, is known for easy adaptabil-
ity, scalability, and reusability. It is believed to be the 
future trend in software development, and to have the 
same merit as in the hardware domain, e.g., telecommu-
nications, electronics, and mechanics. It is characterized 
by exchanging system subsets of components, but not 
the whole, to increase efficiency and versatility. 

Component-based software promotes reuse, inter-
changeability, and reliability. Reuse achieves high pro-
ductivity. Interchangeability provides the flexibility of 
continuous updates, or upgrades, to software compo-
nents, and makes software more adaptable to new tech-
nologies and environments. Reliability is a quality met-
ric measuring the probability of error free operations of 
existing software systems.

Development technology exists for component-based 
software, including ActiveX, COM/DCOM, .NET, EJB, 
CORBA, OLE, OpenDoc, etc. Techniques have also 
been adopted and proposed to measure reliability. 
Cheung’s user-oriented software reliability model [3] 
could address homogenous module interactions. In [5], 
the module-based approach was promoted to the com-
ponent level. Krishnamurthy and Mathur [11] conducted 
an experiment to evaluate a CBRE method, estimating 

component execution path reliability for each test input 
and averaging the results. Gokhale et al [8] predicted 
architecture-based software reliability using measure-
ments obtained from the regression test suite, and cover-
age measurements. In [7], a simulation approach was 
proposed. A general model [14] and the fundamental 
theory [9] for reliability measurement of component-
based software were also available. In [20], we devel-
oped an architecture-based reliability model to address 
heterogeneous component interactions.

White-box is the common approach for these models 
due to its ability to address internal system structures, 
and to accommodate frequent component upgrades and 
updates. Although these models yield a reliability meas-
ure, they do not describe a trend of constant software 
improvement, and the noise introduced by improperly 
measured components may severely bias the result. 
Therefore, we develop a moving average (MA) reliabil-
ity growth model to deal with these problems. Our ap-
proach extends the reliability representation from a sin-
gle model to a model subspace. The MA, a useful and 
objective analysis tool, provides us with a trend. It is 
widely employed in a variety of domains, e.g., in busi-
ness the MA has been used to smooth out fluctuations 
and diminish the impact of incorrect stock predictions. 

The computation of MA reliability growth is a func-
tion of a series of discrete intervals. Each considers a 



specific number of component enhancements in the exe-
cution paths without concern for any particular compo-
nent. This is different from component sensitivity analy-
sis [3], computed as R/Ri, the partial derivative of the 
system reliability R over the component reliability Ri. In 
fact, our model takes components configuration and 
reliability improvements as input, and outputs a vector 
of moving averaged system reliabilities corresponding 
to the discrete intervals. The MA approach integrates 
well with existing component-based reliability models, 
allowing them to provide system reliability growth 
trends and prevent bias from individual components. 
The outcome can assist in cost/performance evaluations 
and offers directions of improvement.

One goal of this paradigm is to prevent excessive 
computation. This is significant when integrating with 
existing reliability models, since most are computation-
ally intensive and frequent component upgrades and 
updates often make re-computation of the entire model 
expensive and time-consuming. Therefore, in the MA 
approach, all component reliability improvements are 
entered simultaneously into a single matrix, and some 
entries, pertinent to a series of reliability improvements, 
are vectors rather than scalars. We utilize the fast Fou-
rier transform (FFT) [2, 4] to perform convolutions [1] 
during certain matrix computations with the final result 
being a vector of MA reliability growths. The FFT is 
computationally efficient in performing vector multipli-
cations, meaning that our approach provides solid per-
formance in deriving trend of reliability growths, by 
reducing the computational load.

The rest of the paper is organized as follows. In sec-
tion 2, we describe the convolution approach to comput-
ing the MA. In section 3 the FFT is adopted to improve 
performance. Section 4 introduces an algorithm incorpo-
rating the MA into the transition matrix. In section 5, we 
discuss integration with component-based software reli-
ability models. Section 6 presents two applications of 
the MA reliability growth trend, and section 7 provides 
some concluding remarks.

2. Moving Average and Convolution

A MA [10] is a list of mean values over a specific set of 
discrete intervals. The value corresponding to an inter-
val is the MA software reliability within that discrete 
interval. The next interval is designated for the reliabil-
ity of an up-by-one component improvement in the exe-
cution paths. In other words, the ith interval computes
the MA reliability, accounting for all execution paths, 
with each path having a number of i component en-
hancements, without regard for any specific components.

Figure 1 illustrates a system with two components cx

and cy running in sequence. The reliability of component 
cx, enhanced twice from a to b and then to c, is stored in 
a vector f = [a b c]. The reliability of cy from d to e is in 

vector g = [d e]. Apparently, the system reliability varies 
from the beginning as ad to ce. However, b should not 
be neglected, because it plays an important role on the 
intermediate progression of reliability growth. Therefore, 
our model takes into account all evolving component 
enhancements to exhibit the growth trend. From vectors 
f and g, the number of component enhancements can be 
zero, one, two, or three. The reliability ad is the result of 
no improvement, while ce is the result of three en-
hancements with two on cx and one on cy. The reliability 
with one component improvement from a to b on cx, and 
another from d to e on cy is equal to (bd+ae)/2. Similarly, 
the reliability with two component improvements (one 
from a to b and to c on cx, and the other from a to b on 
cx and d to e on cy) is (cd+be)/2. Consequently, the MA 
reliability growth shows the trend as [ad  (bd+ae)/2  
(cd+be)/2  ce] for an increasing number of component 
enhancements.

Figure 1: A sequential system with two components

In our model, the computation of a MA reliability 
growth trend takes advantage of convolution [1]. 
Convolution has been widely applied in a range of 
engineering applications, primarily to relate system 
inputs and outputs, and to perform correlation. It can 
also be used to compute the product of two polynomials. 
The convolution of two functions f and g is denoted by f
* g. We utilize the discrete version of convolution as 
shown here:
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The motivation of using convolution comes from its 
ability to compute the coefficients of the product of two 
polynomials. For example, given two vectors [a b c] and 
[d e] to represent polynomials ax2 + bx + c and dx + e, 
respectively, the convolution f * g in Eq. (1) yields [ad  
bd+ae  cd+be  ce]. In our approach, we store the 
reliability enhancements of software components in 
vectors and exploit convolution to determine reliability 
growth trends.

Convolution can relieve the computational burden, 
especially when encountering large vectors. Recall [ad  
bd+ae  cd+be  ce] is the convolution result of f = [a b c] 
and g = [d e]. However, it has not yet met the expected 
MA [ad  (bd+ae)/2  (cd+be)/2  ce], because the formula 
only sums up the values without performing an average. 
In other words, f * g also needs to be divided by the 
number of product terms in each discrete interval. Here, 
ae+bd is the sum of two product terms, which should be 
divided by 2. To compute the number of product terms 

in each interval two additional vectors are required f = 

cx cy

f = [a b c] g = [d e]



[1 1 1] and g = [1 1], having same lengths as f and g, 

respectively. The convolution f * g yields [1 2 2 1]. 

After performing a component-wise division of f * g by 

f * g , the outcome is the expected MA [ad  (bd+ae)/2  

(cd+be)/2  ce]. The following defines the MA reliability 
growth function R(x,y) for two consecutive components 
cx and cy as:

R(x,y)  = (f * g) ./ ( f * g ) (2)

where “./” represents component-wise vector division.

3. Convolution and Fast Fourier Transform

MA software reliability growth for two consecutive 
components can be accomplished with two convolutions 
and a component-wise division, as in Eq. (2). Convolu-
tion requires )( 2NO  operations on two N-length vectors. 

Based on [2, 4], the fast Fourier transform (FFT) only 
requires )log( 2 NNO  operations, turning convolutions 

into simple component-wise multiplications. This can 
significantly improve the computation efficiency for 
large-scale systems. The FFT is an efficient algorithm 
which is derived from the discrete Fourier transform 
(DFT). The DFT is a linear, invertible function [16, 17] 
of great importance to a wide variety of applications, 
such as processing signals, solving partial differential 
equations, and multiplying large integers, etc. The DFT 
transforms a vector of n complex numbers x0, …, xn-1

into a vector of n complex numbers f0, …, fn-1, presented 
as F{[x0  x1 … xn-1]} = [f0  f1 …  fn-1]. The expression for 
the DFT is in Eq. (3), where 1i .
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, m = 0, …, n-1 (3)

The inverse DFT is presented as F-1{[f0  f1 …  fn-1]} = 
[x0  x1 … xn-1] and is expressed by:
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An expression for the FFT is shown in Eq. (5). 
Based on a divide-and-conquer concept, a DFT of an 
even size n can be restated as the sum of two DFTs, 
each of size n/2 [2, 4]. One summation is from the even-
numbered indices, and the other is from the odd-
numbered indices. The procedure can be repeated recur-
sively and is equivalent to Eq. (3). The FFT does require 
that vector lengths be a power of 2, but zeros can be 
added to those which do not meet this criterion with no 
effect on the result. This is known as zero-padding.
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, where n̂ = n/2, m = 0, …, n-1 (5)

In the following, we adopt the same notations F and 
F-1 to represent the FFT and its inverse. By [1, 2]:

 }{*.}{* 1 gFfFFgf  (6)

, where “.*” represents component-wise vector multipli-
cation. From Eqs. (2) and (6), we derive Eq. (7) that 
utilizes FFT to compute the MA reliability growth 
R(x,y) for two consecutive components cx and cy as:

R(x,y)  = (f * g) ./ ( f * g ) 

= F-1{F{f} .* F{g}} ./ F-1{F{ f } .* F{ g }} (7)

Eq. (7) can be extended to address a number of compo-
nents 

1i
c , 

2i
c , …, 

ni
c  between cx and cy. In this case, 

R(x,y) is computed as in Eq. (8).

R(x,y)  = R(R(…R(R(x,i1), i2), …, in),y) (8)

The following demonstrates the use of the FFT to 
compute the MA reliability growth function of Figure 1. 

Vectors f, g, f , and g  do not have lengths of 2n, and 

are, therefore, zero-padded. Thus, we have f = [a b c 0], 

g = [d e 0 0], f  = [1 1 1 0], and g  = [1 1 0 0]. This 

enables the FFT to be employed to compute the 
component-wise multiplications and divisions. For 
illustrative purposes, we assign a, b, c, d, e the values of 
0.9, 0.92, 0.95, 0.96, 0.98, respectively.

By Eq. (5),
F{f} = [2.77  -0.05-0.92i  0.93  -0.05+0.92i]
F{g} = [1.94  0.96-0.98i  -0.02  0.96+0.98i]

F{ f } = [3  -1i  1  1i]

F{ g } = [2  1-1i  0  1+1i]

By Eq. (6), f * g = F-1{F{f} .* F{g}} = [0.864  

               1.7652  1.8136  0.931]

f * g = F-1{F{ f } .* F{ g }} = [1 2 2 1]

By Eq. (7),

R(x,y) = (f * g) ./ ( f * g ) = [0.864  1.7652

1.8136  0.931] ./ [1 2 2 1]
= [0.864  0.8826  0.9068  0.931]

The result from the FFT is identical to that of Eq. (2), 
which is verified by [ad  (bd+ae)/2  (cd+be)/2  ce] = 
[0.864  0.8826  0.9068  0.931]. Obviously, this has a 
greater impact on larger problems.

4. Moving Average Reliability Modeling for 
Multiple Execution Paths

The next step is to model the entire system, addressing 
the configurations of software components in multiple 
execution paths. In general, system structures can be 
classified as follows:



1. A system has components running in one 
execution path.

2. A system has components with diverging 
execution paths.
a. The number of component enhancements 

in each path is: identical or different.
b. The number of execution paths is: finite or 

infinite.
Section 3 described a simple structure with two 

components in one execution path, with Eq. (8) 
addressing problems with one execution path, consisting 
of multiple components. Nevertheless, a software 
system is likely to contain multiple execution paths, 
with each path having a different number of component 
reliability enhancements. Moreover, the number of 
execution paths may not always be finite if the 
transitions among components form a cyclic loop. 
Consequently, computation of the MA for different 
paths is likely to require distinct vector lengths, resulting 
in difficulty when computing the MA for the entire 
system. An infinite number of execution paths also 
emphasizes the challenge of modeling system MA 
reliability growth, because each discrete interval now 
has to consider an infinite number of paths for modeling 
increased component enhancement. 

In section 4.1, we discuss MA modeling for a system 
with a finite number of execution paths and introduce an 
algorithm to standardize vector lengths. In section 4.2, 
the foundation and algorithms for modeling an infinite 
number of execution paths through a transition matrix 
are introduced.

4.1. Moving Average Measurement with Different 
Vector Sizes

The number of component enhancements in each execu-
tion path can be distinctive, resulting in different vector
lengths, as illustrated in Figure 2. As shown, the first 
execution path is c1c2c4 with probability p and the 
second is c1c3c4 with probability 1–p. The first path 
has a single component enhancement in component c1

from a to b. The second path has two component en-
hancements, one is in component c1 from a to b, and the 
other in component c3 from d to e.

Figure 2: A system with two execution paths

From Eq. (8), the first path of R(1,4), enumerated as 
R(1,4)1, equals R(R(1,2),4) = [acf bcf]. The second path, 
R(1,4)2 = R(R(1,3),4) = [adf (ae+bd)f/2 bef]. This pre-

sents a problem. The result cannot be computed as p * 
R(1,4)1 + (1-p) * R(1,4)2, because the vector lengths 
derived from these two paths are not identical. Therefore, 
the computation of R(1,4), a combination of R(1,4)1 and 
R(1,4)2, requires adjustment of the short vector R(1,4)1

to be the same length as the longer vector R(1,4)2.
Padding of the shorter vector is necessary to match 

the length of R(1,4)2. This ensures size consistency, and 
maintains the reliability growth of the original short 
vector. We call this procedure an equalization process, 
which is conceptually similar to zero-padding men-
tioned above. For example, the short vector [acf bcf] of 
R(1,4)1 will be padded with the last vector element 
yielding [acf bcf bcf]. Padding does not affect the reli-
ability growth of the first path, which remains un-
changed as bcf. The following presents the algorithm
equalize which facilitates the equalization process. The 
algorithm requires two input vectors, with the shorter 
vector forced to be the same length as the longer one. 
Calling the function equalize(R(1,4)1, R(1,4)2) yields 
two vectors [acf bcf bcf] and [adf (ae+bd)f/2 bef] having 
the same length. Therefore, R(1,4) can be computed as p 
* [acf bcf bcf] + (1–p) * [adf  (ae+bd)f/2  bef]. 

// Equalize the size of A and B vectors
equalize(Vector A, Vector B) {
      if (Asize == Bsize)
            return;
      else if (Asize < Bsize) {
      // equalizing to the size of A to be the same as B
            for (i = Asize+1; i <= Bsize; i++) {
                  A(i) = A(i-1);
            }
      }
      else {
      // equalizing to the size of B to be the same as A
            for (i = Bsize+1; i <= Asize; i++) {
                  B(i) = B(i-1);
            }      
      }
}

As a consequence, the formula for R(x,y), with n
execution paths between components cx and cy, can be 
generalized as in Eq. (9), noting that equalize is always 
called beforehand.

R(x,y)  = 


n

k
kk yxRp

1

),(*
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4.2. Model Foundation for an Infinite Number of 
Execution Paths
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Here we discuss the foundation of our MA model, 
which will aid in its integration with component-based 
software reliability models that take into account an 
infinite number of execution paths. Eq. (9) can be 
applied to deal with a finite number of execution paths 
without cyclic loops, e.g., integration with our web-
based reliability model [19]. However, the transitions 
among components often form cyclic loops, forcing the 
number of execution paths to be infinite, thus requiring 
an alternate solution. 

For this situation a number of paradigms [3, 6, 12, 
15] have been proposed to construct a transition matrix 
and exploit Markov models for reliability computations. 
The transition matrix considers the reliabilities of, and 
the interrelationships among, software components. 
Construction of the transition matrix can follow existing 
component-based reliability models [3, 8, 18]. The 
major difference is that the entries of our matrix are not 
necessarilly scalar values. Some entries, corresponding 
to a sequence of component upgrades or updates, 
become hidden vectors representing individual 
components’ reliability enhancements. The elements in 
a vector need not be monotonic and may fluctuate 
because component upgrades and updates do not 
guarrantee an increasing reliability improvement, but 
may sometimes degrade the reliability by introducing 
additional faults. Once construction of the transition 
matrix is complete, we employ the reliability formulas 
of the component-based reliability models to compute 
MA software reliability. 

Nevertheless, reliability formulas cannot be directly 
used to manage the combination of scalars and vectors 
within the transition matrix. There are certain 
difficulties, including the handling of computations 
between scalars and vectors, and the resolution of vector 
length. This is a significant challenge because many 
reliability formulas need to compute the determinant of 
the transition matrix, but there is no method for 
computing a vector of MA determinants for such a 
matrix. Therefore, we introduce another algorithm 
which takes advantage of the equalization process to 
address differing vector lengths. Convolution of these 
vectors follows the aforesaid simple vector-to-vector 
component-wise multiplication via the FFT.

The following illustrates the computation of MA 
determinants. Given three transition matrices M2, M3

and Mn, where M2 is 2  2, M3 is a 3  3, and Mn is n  n. 
The elements can be scalars or vectors, and we denote 
aij to be the entry of a transition matrix in the ith row 
and jth column. 

M2 = 








2221

1211

aa

aa
, M3 = 

















333231

232221

131211

aaa

aaa

aaa

,

Mn = 



















nnnn

n

n

aaa

aaa

aaa









21

22221

11211

For our model, the MA determinant of M2, denoted 
as |M2|, is no longer computed as a11a22 – a12a21. Based 
on Eq. (7), the value of |M2| can now be a vector as 
shown in Eq. (10), after application of the equalization 
process equalize(R(a11, a22), R(a12, a21)).

|M2| = R(a11, a22) – R(a12, a21) (10)

Computation of |M3| is an extension to that of |M2|. 
Equalization is performed when encounting a vector 
computation such as “+”, “–”, “.*”, and “./”. For a scalar
matrix, |M3| was originally computed as:
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Evaluation of |M3| takes advantage of Eq. (10) and 
results in:

|M3| = R(a11, R(a22, a33) – R(a23, a32)) –
          R(a12, R(a21, a33) – R(a23, a31)) +
          R(a13, R(a21, a32) – R(a22, a31)) (11)

Figure 3: An example for computing |M3|

Figure 3 shows a system consisting of three 
components c1, c2, and c3 to demonstrate computation of 
|M3|. Each entry, M3(i,j), stores the transition probability 
that ci is fault free and transits to cj. Let c1 have two 
reliability enhancements stored as [0.9 0.95 1], c2 have 
one enhancement [0.92 0.96], and c3 have no 
enhancement represented by [1]. From the diagram, the 
transition probability from c1 to c2 is 0.2, and 0.8 to c3. 
The transition probability from c2 to c1 is 0.2,  0.5 to c2, 
and 0.3 to c3. c3 transits to c1 with a probability 1. As a 
result, M3 is constructed as follows:
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By Eq. (11), |M3| = 

R(0, R([.46 .48], 0) – R([.276 .288], 0)) –

R([.18 .19 .2], R([.184 .192], 0) – R([.276 .288], 1)) +

R([.72 .76 .8], R([.184 .192], 0) – R([.46 .48], 1))



And from Eq. (7), we have R(x, y) =

F-1{F(f} .* F{g}} ./ F-1{F{ f } .* F{ g }}.

Thus, 
R([.46 .48], 0) = [0 0] 
R([.276 .288], 0) = [0 0]
R([.184 .192], 0) = [0 0]
R([.276 .288], 1) = [.276 .288]
R([.46 .48], 1) = [.46 .48] 

Accordingly, |M3| becomes:

R(0, [0 0]) –

R([.18 .19 .2], [–.276 –.288]) +

R([.72 .76 .8], [–.46 –.48]) =

[0 0] – [–0.0497 –0.0521 –0.0550 –0.0576] +

[–0.3312 –0.3476 –0.3664 –0.3840] = 

[–0.2815 –0.2955 –0.3114 –0.3264]
Note, the equalization process is applied to the vector 
computations so that [0 0] is equalized to [0 0 0 0] 
before including the 4-element vectors. 

The result can be verified through standard matrix 
calculations. The first element requires no component 
enhancements. Thus, we have:
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The second element requires one component 
enhancement, which can be one occurance of c1 or c2 as 
shown below: 
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The third element needs two component enhancements, 
c1 twice, or both c1 and c2 once as follows:
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= -0.3114
The fourth element has three component enhancements 
with c1 twice and c2 once and is computed as: 















001
96.3.96.5.96.2.
18.12.0

 = -0.3264

It is clear that our MA approach significantly 
reduces the computational complexity in comparison to 
conventional methods. In the following, we introduce an 
algorithm, based on Eqs. (10) and (11), to generalize 
computation of |Mn|, the MA determinant of a n × n
matrix M, where 1n . When 1n  the algorithm 

returns a11, but when 2n it returns a result from Eq. 

(10). When 3n , it functions recursively to compute 

|Mn| as 
n

i 1
 R(ai1, cofactor(Mn, i, 1)). The cofactor(Mn, i, 

1) returns (–1)i+1× |Mn-1|, where Mn-1 is a submatrix by 
removing the ith row and the first column of Mn. The 
recursion does not stop until the size of the submatrix is 
reduced to 2 by 2.

// M is a square mixtured matrix 
Vector determinant(Matrix M)
{
      // axy is the entry value of M(x,y)
      if (Mrow == 1)
            return a11;
      else if (Mrow == 2) {
            equalize(R(a11, a22), R(a12, a21));
            return R(a11, a22) – R(a12, a21);      // |M2|
      }
      else {
             Vector vector = []; // to initialize

 for (i = 1; i <= Mrow; i++)
       if (ai1 != 0) {

                         equalize(vector, R(ai1, cofactor(i, 1));
                         vector += R(ai1, cofactor(M, i, 1)); 
                   }

 return  vector;
       }
}

Vector cofactor(Matrix M, int x, int y)
{
      // SM is a submatrix of M
      Matrix SM = new Matrix(Mrow–1, Mcolumn–
1);         
      for (i = k = 1; k <= Mrow; k++) {
            if (k != x) {
                  for (j = l = 1; l <= Mcolumn; l++) 
                        if (l != y) {
                              // akl is the entry value of M(k,l)
                              SM[i, j] = akl;
                               j++;
                        }
                   i++;
            }
       }
       return (–1)x+1 * (–1)y+1* determinant(SM);
}

5. An Example of Model Integration

This section illustrates an example of the integration of 
our MA model with Cheung’s user-oriented software 
reliability paradigm [3]. This example serves as a guide-
line for the integration of our MA approach with other 
component-based software reliability models. Cheung 
took into account branching and cyclic-loop structures, 



being able to address an infinite number of execution 
paths. A formula was developed for computing software 
reliability R as shown in Eq. (12). M is an n  n transi-
tion matrix and I is an n  n identity matrix. |I–M| is the 
determinant of matrix (I–M). |(I–M)n,1| is the determi-
nant of the submatrix, excluding the last row and first 
column of matrix (I–M).

R = (–1)n+1

MI

MI n



 1,)(
Rn (12)

Let aij be the entry value of M’s ith row and jth col-
umn. The entries are calculated based on Eq. (13). Ri is 
the reliability of component ci and Pij is the transition 
probability from ci to cj.

M(i,j) = 







otherwise,0

and0,

ij

ijijiij

a

jiPPRa
, for 1  i, j  n

(13)
Consider Figure 4, where Ri of ci and Pij between ci

and cj are shown in Table 1. The I–M matrix is con-
structed as shown in Figure 5. By Eq. (12), the reliabil-
ity R is calculated as 0.8355. If R1, R2, …, R13 are all 
equal to 1.0, the reliability R is equal to 1.0.

Let R1, R2, …, R13 be replaced with values in Table 2
that contain reliability growths for different components. 
We fill the matrix with these vectors and scalars, and 
utilize our previous determinant algorithm to compute 
|I–M| and |(I–M)13,1|. Accordingly, the MA reliability 
growth trend R is computed:
|I–M| = [0.73397 0.7343 0.72968 0.72814 0.72644 

0.72542 0.72468 0.72376 0.72273 0.72135 
0.72037 0.71895 0.71831 0.71681 0.71568 
0.71305 0.7074 0.7074 0.7074]

|(I–M)13,1| = [0.61323 0.61448 0.62323 0.63086 0.639 
0.64617 0.65269 0.65901 0.66481 
0.66999 0.67457 0.67815 0.6809 0.68357 
0.6866 0.69144 0.69489 0.70579 0.7074]

R = (–1)n+1

MI

MI n



 1,)(
Rn = (–1)14

MI

MI



 1,13)(
R13

   = [0.8355 0.83682 0.85411 0.86641 0.87964 0.89074 
0.90066 0.91054 0.91986 0.9288 0.93642 0.94324 
0.94792 0.95363 0.95937 0.96969 0.98231 
0.99773 1.0]

Figure 4: The state machine of a sample system with 
13 components

R1 = 0.98 R2 = 0.96 R3 = 0.956
R4 = 1.0 R5 = 0.98 R6 = 0.99
R7 = 0.94 R8 = 0.95 R9 = 1.0
R10 = 1.0 R11 = 0.96 R12 = 0.98
R13 = 1.0
P1,2 = 0.5 P1,3 = 0.2 P1,4 = 0.3
P2,5 = 1.0
P3,6 = 1.0
P4,6 = 1.0
P5,6 = 0.4 P5,8 = 0.3 P5,9 = 0.3
P6,7 = 0.3 P6,8 = 0.4 P6,9 = 0.3
P7,4 = 0.1 P7,11 = 0.4 P7,12 = 0.5
P8,10 = 1.0
P9,10 = 0.5 P9,11 = 0.5
P10,2 = 0.4 P10,11 = 0.6
P11,12 = 0.5 P11,13 = 0.5
P12,13 = 1.0

Table 1: The reliability and transition probabilities 
of Figure 4

R1 = [0.98 0.975 1.0], R2 = [0.96 0.957 1.0], R3 = [0.956 1.0]
R4 = 1.0, R5 = [0.98 0.9726 1.0], R6 = [0.99 0.98 1.0]
R7 = [0.94 0.96 1.0], R8 = [0.95 0.983 0.97 1.0], R9 = 1.0
R10 = 1.0, R11 = [0.96 1.0], R12 = [0.98 0.976 0.972 1.0]
R13 = 1.0

Table 2: Individual component reliability growths through upgrades or updates
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Figure 5: The I-M matrix for the system in Figure 4

Figure 6: Software Reliability Growth Trend

Figure 6 shows the trend from vector R. It is clear 
that the first and last elements are 0.8355 and 1.0 re-
spectively, and identical to the results of the previous 
pure scalar transition matrices. The intermediate discrete 
intervals concern only the number of enhancements, 
without considering a specific component; therefore, it 
is less biased. The vertical axis represents the average 
reliability estimate, and the horizontal axis lists the 
number of enhancements. In other words, k component 
enhancements means that each execution path has a MA 
reliability of exactly k upgrades or updates, and the sys-
tem reliability is the sum of the MA reliabilities of all 
execution paths multiplied by the probability of travers-
ing each path. Our algorithm in section 4 makes the 
computation of MA reliability growth trends feasible for 
models that can address an infinite number of execution 
paths. 

6. Two Applications of the Moving Average 
Model

We have demonstrated the integration of our MA tech-
nique with Cheung’s user-oriented software reliability 
model. The same modeling approach can be applied to 
other component-based software reliability models. For 
instance, integration with an architecture-based reliabil-
ity model [18] will depict the reliability growth trend for 
software with heterogeneous architectures. Our MA 
model can be applied in many areas, e.g., in the follow-
ing, we discuss two application domains, one for 
cost/performance evaluation and the other for software 
maintenance decision making.

6.1. Cost/Performance Evaluation

To remain competitive, a business may need to decide 
the cost, including man-hours and budget, to enhance 
the quality of software. Cost is always a factor regard-
less of whether the enhancement is to improve existing 
on-hand components or to purchase new COTS compo-
nents. The highest performance for the lowest cost is a 
typical objective. With this in mind, let cost be a func-
tion of the number of component enhancements. A steep 
rise of this function indicates a high cost to include extra 
enhancements and/or provide upgrades. If 
cost/performance can be evaluated, it will guide soft-
ware maintenance schedule. With our MA model, we 
define a cost/performance efficiency function to serve 
this purpose, as follows:

E(i,j) = 
)(*)(

)()(

ijRR

iCostjCost

ij 


, i < j (14)

E(i,j) computes an average cost per unit reliability 
improvement, in the interval between i and j component 
enhancements. Cost(i) and Cost(j) are two accumulative 
costs for a number of i and j component improvements, 
respectively. Ri and Rj are the MA reliabilities for i and j
component enhancements. Since Cost(j) > Cost(i), E(i,j) 
is positive when Ri < Rj; otherwise Ri > Rj. If Ri = Rj, 
E(i,j) is assigned 0 due to no reliability improvements. 



When E(i,j) is positive, the lower the value, the better 
the cost/performance ratio. A negative value of E(i,j), 
caused by declining reliability, states the opposite, i.e., 
greater negative values indicate poorer performance.

Here we show an example based on the MA results 
from Figure 6. Assume a company spent 500 man-hours 
to make 12 component improvements. For 600 man-
hours it observed 14 improvements. After the company 
invested 1100 man-hours, 18 component improvements 
were reported. We understand that the MA software 
reliabilities for 12, 14, and 18 component reliability 
improvements are 0.94792, 0.95937, and 1.0, 
respectively. Accordingly, E(12,14) and E(14,18) can be 
computed as follows:

E(12,14) = 
)1214)(94792.95937(.

500600




 = 4367

E(14,18) = 
)1418)(95937.1(

6001100




 = 3077

Since 0 < E(14,18) < E(12,14), the results indicate a 
better cost/performance in the interval between 14 and 
18 component enhancements. In this region, the average 
cost for each component enhancement is 125 man-hours, 
much higher than 50 as in the segment between 12 and 
14. Yet the region between 14 and 18 experiences a 
significant reliability improvement enhancement over 
that of 12 and 14, i.e., (1-0.95937)/4 = 0.0101575 versus 
(0.95937-0.94792)/2 = 0.005725 respectively. By taking 
both cost and reliability improvement into account, the 
cost/performance ratio has a more compelling result 
between the segment 14 and 18.

6.2. Decision Making

The MA reliability growth model can also support 
decision making. One important decision may be to 
determine whether or not to continue further reliability 
improvement. This requires consideration of certain 
attributes, such as deadline, budget, man-hours, and the 
effectiveness of the improvements. A significant 
improvement may make the investment much more 
attractive. One advantage of our MA reliability growth 
model is its ability to depict the trend of reliability 
growth. The trend is a key indicator for the system as a 
whole, not just a single component, because the 
approach smoothes out flunctuations and prevents 
potential bias from individual components. In other 
words, the model eliminates bias while providing a good 
confidence level for judging the effectiveness of future 
system reliability improvements.

Figure 7 compares two MA reliability growth trends 
to study which situation has better potential for future 
reliability improvement. Both trends start with reliability 
0.8355 and end at 0.9422. The upper trend shows an 
instant escalation then slows down, while the lower 
trend is nearly linear. It is clear that the upper trend 

starts to show a convergence to a horizontal assyptote. 
This suggests that an additional component 
enhancement to the lower system yields a more 
significant reliability improvement than the other. In 
summary, a trend that depicts a fairly linear growth is a 
stronger candidate for further improvement.

Figure 7: Two Software Reliability Growth Trends

There is also a possibility to observe a trend through 
the vectors of individual components, but the best way 
is to observe the entire trend. This is particularly the 
case when the vectors show a variety of unstable 
fluctuations, making individual observations difficult to 
interpret.

7. Conclusion

We have developed an MA software reliability growth 
model for component-based software. This model de-
picts a growth trend of software reliability instead of a 
single reliability measure. The trend is an averaged
function of an increasing number of component en-
hancements, regardless of the characteristics of any spe-
cific constituent components. The computation of MA is 
through convolutions, which smooth out sudden im-
pulses to reveal a trend. Consequently, the reliability is 
less biased by the incorrect measure of a single compo-
nent, or a small set of components. The computation of 
convolutions can be time consuming, so the fast Fourier 
transform is employed to improve performance allowing 
for the analysis of a large-scale software system. Our 
model addresses the number of component enhance-
ments in individual execution paths and integrates them 
to compute the MA. The enhancements for each compo-
nent are stored as a vector. By embedding all vectors 
into a transition matrix, our proposed algorithm for the 
model is capable of addressing a finite as well as an 
infinite number of execution paths, making it extremely 
versatile.



Our MA approach can be easily merged with exist-
ing white-box based software reliability models, permit-
ting engineers in their own fields to adopt and adapt the 
technique to meet specific needs. A complete example 
demonstrates the integration. Two applications of this 
model were discussed to facilitate cost/performance 
evaluations and support decision making. We define a 
cost/performance ratio metric to help evaluate the effec-
tiveness of reliability improvement, and discuss the 
trend patterns to continue or stop the improvement proc-
ess. This work is expected to be applicable to solve 
many other, more complex, problems.
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