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Abstract. Recently, biologically-inspired algorithms have been presented as an alternative for designing
many aspects of wireless ad-hoc and sensor networks. In thispaper, we propose the adaptation of a bio-
inspired algorithm called the "infection algorithm" for the energy-efficient dissemination of data from a
sensor field to the sink node. Furthermore, we present a series of experiments with real data, gathered
through the use of an agricultural monitoring application,and also simulations that validate the efficiency
of our proposal.
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1 Introduction

Many differences have been observed between wireless
sensor networks (WSN) and more traditional data com-
munication networks; consequently, the algorithms, pro-
tocols and techniques used in traditional networks are
not adequate for WSNs. Perhaps the most important
factor in these differences is the scarcity of resources in
WSN nodes; this includes limitations in resources such
as processing power, storage capacity, communication
range and power availability.

We observe some interesting features in wireless sen-
sor networks that suggest some similarities with net-
works composed of biological organisms:

• Small and simple nodes. The nodes on sensor net-
works are very simple devices that are commonly
integrated by a processing unit, a sensing unit, a
communication unit (usually using RF), and the
energy source.

• Limited communications and processing capabili-
ties. Given the fact that the nodes are very simple

devices, these cannot handle complex algorithms
nor have embedded sophisticated communications
protocols. The typical operation of a sensor node
is basically to read (sense) data from the environ-
ment, process this data in a simple manner and
communicate its results to a neighbor node.

• Localized behavior. Considering the fact that sen-
sor nodes only receive data from their neighbors,
they only act based on local information. Further-
more, they cannot perform distributed actions such
as the ones performed by more sophisticated data
networks, e.g., remote procedure calls (RPC).

• Optimized use of resources. Given the fact that
the available resources for these networks are very
limited, the nodes in the network must use these
resources in a very efficient way. Of particular
importance is power management, due to the fact
that sensor nodes do not have an unlimited power
source; these sensors usually operate on the power
supplied by small batteries, such as the ones com-
monly used in personal consumer electronics.



The previous sensor network features suggest some
intriguing similarities between WSNs and biological net-
works such as the ones integrated by cells, ants, bees,
and other insects communities. In these biological net-
works, the individuals can be seen as relatively simple
entities whose actions are only based on local informa-
tion, i.e. communicating with their neighbors, trying to
be efficient in their work, etc. These similarities have
been noted by researchers in the data networks field,
and some ideas are starting to appear on recent publica-
tions showing proposals and even preliminary results.

This paper is structured as follows: section II gives
an overview on the application of bio-inspired approaches
for the design and modelling of several aspects of wire-
less sensor networks. In section III we introduce the
infection algorithm, which is inspired on natural epi-
demics and was originally applied to the problem of
stereographic images correspondence; then, section IV
outlines how data dissemination in WSNs has been man-
aged, and how we use the infection algorithm for this
purpose. In section V we present results obtained from
a series of experiments and simulations showing that
the proposed algorithm estimates fairly accurate values
that could be used on certain sensor networks applica-
tions while reducing power consumption. We conclude
this paper with some final remarks and some general
ideas of future work.

2 Bio-inspired approaches for WSNs

Given the stringent resource limitations in WSNs, it
is not feasible to implement traditional algorithms and
techniques on them, because these techniques do not
make efficient use of available resources. Thus, new ap-
proaches have been explored, among them bio-inspired
approaches [3].

An empirical study conducted by Ganesan et al. [7]
introduces the concept of epidemic algorithms to de-
scribe the behavior of network protocols that allow fast
data dissemination through the use of local interactions.
In this work, a sensor network is built consisting of 169
nodes (13 x 13 grid), and many experiments were per-
formed using a simple epidemic algorithm for data dis-
semination (using a gossiping technique). The interest-
ing part of this work was the fact that such a simple al-
gorithm would exhibit such a complex behavior, as the
authors show in the results section of their report.

Biological automatons have been proposed to define
the behavior and the interactions between nodes in a

sensor network [3]. This was done through the design
and implementation of a kOS (kilobit Operating Sys-
tem), which is a light version of an operating system
that is executed by the nodes of a sensor network. The
authors also present the results obtained in the SEA-
COAS project [13], on which buoys containing sensor
nodes with RF units (for data communications) were
deployed to monitor sea bed movement.

Also, feedback loops have been introduced for the
autoconfiguration of sensor nodes [6]. In this work, the
behavior of the human blood pressure auto-regulation
process is used to model network auto-configuration,
which the authors posit that has the structure of a closed
feedback loop. This type of behavior is used to au-
tomatically configure robot assisted mobile sensor net-
works such as the ROSES (Robot Assisted Sensor Net-
works) platform which is described briefly in the paper
[6].

In the work presented in [15], the authors use the
spontaneous synchronization process of fireflies and pro-
pose theReachback Firefly Algorithm(RFA) which is
used to implement time synchronization in sensor net-
works. Furthermore, this algorithm takes into account
real world radio effects such as packet loss and network
latency.

As evidence suggests, the use of algorithms based
on biological systems has generated very interesting re-
sults so far. We believe that these type of algorithms
constitute a tool that presents a great opportunity for re-
search in the design of sensor network technology.

3 The Infection Algorithm

The "infection algorithm", presented by Olague et al.
[12], is based on the concept of natural epidemics and
was applied for searching correspondingpoints in stereo
images, while reducing the number of processing op-
erations required to do so compared to the traditional
exhaustive search method.

Transition rules were used for correspondence search-
ing, similarly to cellular automata. The rules entries
depended on the current state of surrounding neighbors
(pixels). The neighborhood considered in this work was
25 neighbors (9 close neighbors and 16 external), these
25 neighbors where contained in a 7x7 window that was
centered on the point of interest.



The infection process in this case evolved over the
image according to the previously mentioned set of rules
that changed the current state of the pixel depending on
the state of its surrounding neighbors. Four states were
defined for this algorithm:

• Healthy individuals (Not-exposed). Nothing has
been decided yet for that pixel.

• Sick individuals (Exposed). The pixel has been
computed using constraints of dense stereo match-
ing.

• Infected individuals (Proposed). The value of the
pixel is guessed based on the state of its neighbors.
Some conflicting information from various neigh-
bors prevent to fix its status at this time.

• Immune individuals (Automatically allocated). All
the information from the neighbor is coherent and
the guess value has been set.

Summarizing, the algorithm was defined as follows:

1. All pixels in the image were initialized to thenot-
exposedstate.

2. The maximum interest pixels were extracted. And
their state was set asexposed.

3. The transition rules were applied to every pixel in
the image, except to those whose state wasauto-
matically allocatedor exposed.

4. While there are still pixels that are not in theauto-
matically allocatednor exposedstates, go to step
3.

The main goal of this algorithm is to find the max-
imum number of correspondences according to the de-
fined rules. The authors mentioned [12] that these rules
were defined on a case by case basis, but the criteria for
setting these rules was not specifically mentioned.

An interesting aspect of this proposal is the fact that,
compared with the use of exhaustive search, the pro-
posed algorithm can deliver savings of up to 50 percent
in the number of operations (in some cases of up to 99
percent). We think that some of the general ideas of
this algorithm could be very useful for wireless sensor
networks. For instance, the algorithm acts in its en-
tirety based on local information, estimating values in

the neighborhood of one pixel; this can be translated to
important savings in processing, which in WSNs would
result in energy savings as well. In WSN applications
where there are heavily populated networks with nodes
that sense some environmental parameter such as tem-
perature or humidity, it is highly probable that the sensed
data of a node is very similar to the sensed data of a
neighbor node. Therefore, it is very appealing to use
the infection algorithm to read only a small number of
nodes and estimate the values of their neighbors, result-
ing in significant amounts of energy savings.

4 Efficient Data Dissemination in Wireless Sen-
sor Networks

One of the main problems in the application layer in
the wireless sensor networks protocol stack is the effi-
cient dissemination of data, typically from the sensor
field to the sink(s) [1]. There is some work related with
that problem such as Cougar [5][16][17] and TinyDB
[10][9][11], these papers present the use of an SQL-
like declarative language to query data from sensor net-
works. However, in these papers the authors do not go
into details on how the queries are processed by the sen-
sor networks.

There has been also some work related to data ag-
gregation in wireless sensor networks and the use of es-
timation techniques for reducing power consumption.
Particularly, in [2] the authors present a distributed al-
gorithm that uses correlation functions to estimate an
aggregated value and reducing power consumption in
relation to the snapshot aggregation approach, but in
this case the authors only seem to consider scalar aggre-
gated functions such asmax, minand cannot be applied
to functions such asaveragenorcount.

In this paper we propose an alternative method in-
spired by the infection algorithm mentioned in the pre-
vious section; this method represents an interesting al-
ternative to data dissemination guided by the savings in
power consumption, which is the main design factor for
protocols in the different layers of the wireless sensor
networks protocol stack [1].

The original approach of the infection algorithm [12]
was to reduce the number of processing operations re-
quired. However, in the case of sensor networks, the
main priority is the efficiency in power consumption;
for this reason the main objective of our proposal is
to reduce the amount of the operations involving the



Figure 1: A hierarchical wireless sensor network.

RF unit and not necessarily to reduce the amount of
processing operations. This, mainly because we have
observed the technological trend to increase processing
power in sensor networks platforms in the near future
[8].

One way of reducing the amount of communications
operations is, at the time of making a data request to a
cluster of nodes in a wireless sensor network, not to
pass the query to all of the nodes that belong to such
a cluster. Thus, in brief, our proposal consists on se-
lecting a subset of nodes that belong to a hierarchical
WSN as shown in Fig. 1, where each one of the nodes
has a direct link to a cluster leader (also called cluster
head). In the selected subset of nodes, an on-demand
read would be made through which an estimation of the
remaining nodes would be possible using the infection
process.

The entity responsible for performing the selection
process must be the cluster head, this cluster head typ-
ically must have more power and processing resources
than the rest of the nodes. It is important to note that the
selection criteria is very flexible and it can comply with
the specific need of a particular sensor network. Some
typical criteria for the selection can be, for instance, the
nodes with the higher power level in the cluster, the
nodes that are located in a strategic position to infect
a greater number of nodes in a smaller number of itera-
tions, or even a random selection of nodes.

Undoubtedly, the most critical part of the proposed
infection algorithm for WSNs is how the infection process
takes place; this process is based on the information

belonging to the neighboring sensor nodes. To esti-
mate the value of an unknown node we use the correla-
tion with its neighbors, this correlation is calculated and
stored in the cluster head node from previous readings.
Specifically, in our proposal we calculate a correlation
matrix for each one of the eight neighbor nodes sur-
rounding the one in particular (we could consider more
than eight neighbors for a better estimation in exchange
for a higher computational cost and more storage space
required). This correlation matrixes must be stored in
the cluster head node, and this node must also calcu-
late its initial values at startup by performing a initial
reading on all of the nodes that belong to the cluster,
and down the line, this cluster head node must also be
able to update the stored matrixes using the values of fu-
ture readings belonging to contiguous nodes in the same
cluster of the WSN.

The correlation matrixesN , S, E, W , A, B, C, D

correspond to the neighbors to the north, south, east,
west, northwest, northeast, southwest and southeast di-
rections respectively of a sensor grid ofm rows andn
columns. Every single one of the nodes that belong
to this grid must have a direct link to a special node
called cluster head as has been noted above. Addition-
ally, r(i,j) represents the data read at the node located
in row i and in columnj.

In equation 1 we have matrixN , note that in the first
row of matrixN we have basically a vector or zeroes,
this is because the sensor nodes corresponding to the
first row of the grid do not have any neighbors to the
north:
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similarly, in equation 2 we have matrixS, on which
the last row of the sensor grid do not have southern
neighbors, therefore the correlation matrix has all ze-
roes on the last row:
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in equation 3 we show the correlation matrix for the
eastern neighbors:
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in equation 4 we show the correlation matrix for the
western neighbors:

W =













0
r(1,2)

r(1,1)

r(1,3)

r(1,2)
· · ·

r(1,n)

r(1,n−1)

0
r(2,2)

r(2,1)

r(2,3)

r(2,2)
· · ·

r(2,n)

r(2,n−1)

...
...

...
. . .

...
0

r(m,2)

r(m,1)

r(m,3)

r(m,2)
· · ·

r(m,n)

r(m,n−1)













(4)

the equation 5 shows the correlation matrixA for
the northwestern neighbors:
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the equation 6 shows the correlation matrixB for
the northeastern neighbors:
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in equation 7 we show the correlation matrixC for
the southwestern neighbors:
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and finally, in equation 8 we show the correlation
matrixD for the southwestern neighbors:
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Additionally, if σM(i,,j) is the correlation of the node
located at rowi and at columnj corresponding to ma-
trix M . We could estimate the value of a noder̂(i,j)

as an average of previous readings and/or estimations
from their neighbors. Thus for every node(i, j) the es-
timated value is given by equation 9:

r̂(i,j) =

σA(i,j)r(i−1,j−1) + σN(i,j)r(i−1,j)+
σB(i,j)r(i−1,j+1) + σW (i,j)r(i,j−1)+
σE(i,j)r(i,j+1) + σC(i,j)r(i+1,j−1)+
σS(i,j)r(i+1,j) + σD(i,j)r(i+1,j+1)

L
(9)

whereL is the number of neighbors on which a
reading and/or previously estimated data exist, and ad-
ditionally r(i,j) = 0 for values ofi, j that do not belong
to the intervals1 ≤ i ≤ m and1 ≤ j ≤ n.

Evidently, to estimate the value of a node we need to
know the value of one of its eight contiguous neighbors
in the specific case of our previously described topol-
ogy. However, if we know in advance the values of a
greater number of neighbors we could anticipate that
the resulting estimation would be more accurate. On
the contrary, if we don’t have a reading or estimation of
any of the surrounding neighbors of the node, the esti-
mation of its reading would not be possible under this
scheme.

An important factor for the outcome of the infection
algorithm for WSN is the infection threshold valueλ,
which is defined as the minimum number of neighbors
required (i.e. the neighbors’ data must be known either
by a previous estimation or by a physical reading) to
perform the estimation of a given node. This parame-
ter can be set arbitrarily, however, its value would dic-
tate how fast the infection process evolves in the sensor
network. This is because we can establish intuitively
that with a small value, the infection propagates faster
and therefore the number of required operations for our
algorithm would be smaller, but if this value is small
we are also sacrificing accuracy in our estimations. In
contrast, if we setλ to a larger value, we would need
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Node with known data

Node infected on first iteration

Node infected on second iteration
Node infected on third iteration

Healthy node (Non-infected)

Figure 2: Example of the infection process in a WSN.

a greater number of iterations for the infection process
to propagate throughout the entire network, but conse-
quently, we would obtain more accurate estimations of
the nodes. For obvious reasons, the possible values for
λ must be between one and the maximum number of
neighbors (eight in our case).

In Fig. 2 we present an example that shows how the
infection process propagates in a sensor network con-
sisting of a grid of 10x10 sensor nodes, in this exam-
ple the value ofλ is set to 2, indicating that we require
to know at least two of the values of the surrounding
neighbors nodes in order to perform the estimation of
the current node. Note that in this particular case we
only require three iterations of the infection algorithm
in order to infect all of the nodes in the network.

In the example presented in Fig. 2, as we can see
clearly in Fig. 2d, the entire sensor network was in-
fected, which implies that all of its nodes’ values are
either known or estimated. However, this is not always
the case, because depending on the value assigned to
λ and the position of the nodes read initially, we could
have a network where at the end of the execution of
the algorithm we would still have some healthy nodes,
calledimmune nodes. For this reason, we would need to
find a suitable value forλ and a proper selection crite-
ria that minimizes the number of immunes nodes. The
value selection criteria for this parameter and the selec-
tion criteria for the initially read nodes are beyond the

scope of this paper and could pose an interesting topic
of research in the area.

5 Experiments and simulations

We now present the results obtained through a series of
experiments and simulations to evaluate the proposed
data dissemination algorithm for WSN. Through them,
we measure the accuracy of the predicted data, as com-
pared with the actual data gathered with our monitoring
application; we also estimate the power savings that re-
sults from reduced radio communications.

5.1 Experiments

The site on which the experiments took place was a
greenhouse where tomato plants were being cultivated.
The dimensions of the greenhouse are 22 meters wide,
8 meters long and 4 meters tall. Nine sensor nodes
were deployed in the greenhouse (Berkeley motes class
MICAz model MPR2400 with a sensor board model
MTS310). Ideally, we would have liked to perform the
experiments with a more densely populated sensor net-
work, but unfortunately due to a lack of resources it was
not possible. However, in the simulations section we
will present the results obtained on higher density sen-
sor networks.

Temperature readings were captured in the green-
house during a period of approximately two hours with
a sampling frequency of one reading every eight sec-
onds. Several experiments were conducted while chang-
ing the number of sensor nodes physically being read;
the selection criterion that we applied was to select first
the nodes that reported the higher level of remaining
power in their batteries. The algorithm was executed
using aλ value of 2 for 2 nodes, then for 3 nodes and
so on up to 9 nodes (obviously with 9 we have no error
because we query the entire sensor field explicitly).

In Fig. 3 we present a graph containing the average
of the RMSE (Root Minimum Square Error) obtained
from each experiment of our algorithm and the result-
ing power saved (as a percentage) for each case. The
error comes from comparing the actual data read in the
field, with the data that our algorithm predicts. The per-
centage of power savings represents how many nodes
were actually used for processing and communicating
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Figure 3: Plot of the percentage of power saved by the algorithm vs.
average RMSE of the resulting estimations.

data, i.e., 90% savings would mean that only 10% of
the nodes were actually used for reading, calculating,
and communicating values, and the rest were sleeping.
Note that as we would have intuitively expected, with
a larger number of selected nodes we would minimize
the average RMSE of our estimations but the power
saved would be also minimum as opposed to selecting
a smaller number of nodes.

Another important fact observed in the experiments
is that for a larger number of selected nodes (greater
than four in this particular scenario) we required a smaller
number of iterations (only one in our case) as opposed
to selecting just a few nodes (less than five) on which
case we needed two iterations of the infection algo-
rithm.

5.2 Simulations

The simulations were conducted considering 100 sen-
sor nodes in a 10x10 grid. The temperature values used
in the simulations were generated through a pseudo-
random function; values ranged from 26.018 to 36.569
degrees Celsius (according to those observed in our green-
house experiments).

The proposed algorithm was programmed in Matlab
and the initial reading values were assigned arbitrar-
ily from the pool of values obtained with the pseudo-
random function. The main tasks performed in the sim-
ulation were:

Selected node

a) b)

Figure 4: Pattern of selected nodes for the simulations.

• First, the program calculates the correlation ma-
trixes of the generated temperature values.

• Next, a subset of nodes is selected. In this case we
made an arbitrary selection of nodes, however, in
a real setting some selection criteria (e.g., power
level) could be used.

• Finally, we estimated the values of the remaining
nodes in the sensor grid.

Analogously to the experiments, for determining the
accuracy of predicted values we compared with the pool
of randomly generated temperature data. We ran the al-
gorithm with different values ofλ and selecting differ-
ent numbers of nodes to simulate physical readings.

In our first simulation we selected a subset of 20
nodes that follow a pattern consisting of two diagonal
lines across the grid (refer to Fig. 4a) and executed our
algorithm withλ values of 2, 3 and 4.

Fig. 5 shows that with a smallerλ value we need
fewer iterations of the algorithm in order to compute
the entirety of the estimations. However, intuitively, we
can state that with a larger value ofλ we can obtain
more accurate estimations because we are using more
neighborhood data in order to estimate each value. One
drawback of using a large value ofλ is the fact that
there is a certain upper bound of that value on which
we cannot estimate the entire grid field. In our case, the
upper bound value is 4, because with the pattern that we
used for node selection there are no nodes in the grid
that have 4 neighbors with known values. therefore, in
this case we cannot estimate any values.

In our second simulation, we selected the same num-
ber of nodes (20), but we selected more strategically
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Figure 5: Plot of percentage of estimated values for the first simula-
tion.
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Figure 6: Plot of percentage of estimated values for the second sim-
ulation.

located nodes (shown in Fig. 5b) and executed the al-
gorithm using the sameλ values as in the previous sim-
ulation. In Fig. 6 we show that, in contrast to our pre-
vious simulation, with aλ value of 4 we can estimate
the entire sensor grid, the drawback of this scenario is
that the algorithm estimates the values slower (i.e. re-
quires more iterations), but in return, intuitively, we can
say that we have more accurate estimations. Note that
the plots ofλ = 2 andλ = 3 are superposed (i.e. the
algorithm estimates the values with the same number of
iterations), so in this particular scenario there is no ad-
ditional computational cost of raising theλ value from
2 to 3, therefore, in practice, it would be more cost-
effective to use the higher value (3 in this case).

Finally, after observing the results of the experiments

and simulations, we can conclude that selecting the in-
put parameters of our algorithm (selected subset of nodes
and λ value) is a complex optimization problem that
involves accuracy, computational cost and required en-
ergy for querying the sensor grid. This problem is not
addressed in this paper, but will be the subject of future
work.

6 Final Remarks and Future Work

We have proposed the use of a biologically-inspired al-
gorithm for the energy-efficient data dissemination in
wireless sensor networks. The results, obtained through
empirical tests and simulations, show that important power
savings can be made and that the accuracy of predicted
data is adequate. Therefore, we consider that this ap-
proach holds great promise for the design and develop-
ment of low-power and processing-efficient protocols.
Regarding the applicability of our proposed algorithm,
it should be noted that data should be uniform and not
show "holes", discontinuities or great local variations.
For instance, typical monitoring applications (tempera-
ture, humidity, etc.) are good candidates for using our
algorithm; on the contrary, fire detection for instance is
not a good application.

After these encouraging results, we are now work-
ing on some outstanding aspects, such as refining the
criteria for determining the convergence of data phys-
ically read by the sensor nodes; this will then be used
to initiate the phase where only some selected nodes
will actually read the data. More accurate power sav-
ings estimations are needed as well. We are also trying
to deploy a larger scale platform in an open agricultural
field to run long duration experiments and gain further
insight regarding the applicability and possible limita-
tions of our proposal.
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