
Achieving Quality of Service through SCalable Aggregate Reservations

Daniel Reid1
Michael Katchabaw2

The University of Western Ontario
Department of Computer Science

London, Ontario, Canada N6A 5B7
1dreid28@csd.uwo.ca
2katchab@csd.uwo.ca

Abstract — Previous attempts at providing widespread Quality of Service (QoS) for the Internet have met with

only limited success. Integrated Services and Differentiated Services, the two most popular architectures proposed,
suffer from scalability and flexibility concerns respectively. More recently, numerous other architectural proposals
have been introduced, but with limited success. This paper introduces a new approach which addresses several issues
others have failed to solve effectively. This approach, SCalable Aggregate Reservations (SCAR) is highly scalable,
offers additional functionality, and is quite flexible and robust in supporting QoS for networked applications.
Keywords: QoS, aggregate reservations, stateless networking

Received January 27, 2006 / Accepted August 03, 2006

1. Introduction

Originally designed as a best-effort service, the Internet
has grown significantly, and so have its needs. Today, many
applications require a service level better than best-effort can
offer. In effect, these applications require a high level of
Quality of Service (QoS), which is a term used to describe the
overall experience a user or application receives over a
network [20]. Over the Internet, this is typically measured in
terms of bandwidth, loss, delay, jitter, and availability.

Since the Internet does not intrinsically support any
preferential treatment of traffic, there can be significant
problems with new QoS sensitive applications, such as
teleconferencing and IP telephony. Currently, most networks
are simply pushing for greater network capacity to alleviate
congestion problems. While this option is currently cheaper
than deploying a widespread QoS infrastructure, it does not
allow prioritization of flows or guarantees of service. Simply
“throwing more bandwidth” at the problem is merely a short
term fix, and will not address any long term issues [17].

QoS models strive to take a best-effort network and
transform it into one which can provide bandwidth and delay
assurances to its applications. There have been several fields
of thought on providing QoS. By far, the two most popular
and accepted philosophies are the Integrated Services Model
(IntServ) [7] and Differentiated Services Model (DiffServ)
[6]. However, neither IntServ nor DiffServ have gained
widespread acceptance due to scalability and flexibility
concerns respectively. Several lightweight protocols have
emerged, however they lack the functionality and acceptance
for a truly integrated services network.

This paper presents a stateless QoS architecture for the
Internet that can provide end-to-end QoS guarantees to
multiple flows on demand. The architecture, called SCalable
Aggregate Reservations (SCAR), achieves scalability by
aggregating flows into predefined classes. It requires little

processing at intermediate nodes and can additionally enable
billing functions, security functions, and mechanisms to assist
the optimization of resource allocations [23]. SCAR belongs
to a variant of the IntServ philosophy; one that aims to
provide the same flexible service, but in a stateless network
environment. This stateless property is one that addresses
scalability concerns that have arisen with traditional IntServ.
SCAR combines the scalability of DiffServ and the
functionality of IntServ into one flexible package.

A new signaling protocol, the SCAR Signaling Protocol
(SCAR-SP), was developed to enable signaling within this
new architecture. Its reversible design allows either the
sender or receiver to make reservations. It presents many
additional advantages, including the ability for senders to
specify their unique traffic characteristics, and a soft-state
approach which can remove reservations if not properly
terminated. Experimentation has shown that nodes can
handle hundreds of thousands of flows simultaneously with
little impact on local node performance.

Over the past decade, the focus of Internet QoS has been
moving further and further away from complex stateful
solutions; this paper will reinforce this shift by introducing a
simple architecture and signaling protocol which provides the
most stringent QoS needs to sensitive applications. The
remainder of this paper is as follows. Section 2 provides a
discussion of related work in this area. Section 3 presents the
architectural design of the SCAR model, the signaling
protocol SCAR-SP, and scheduling in SCAR. Section 4
discusses experimental results and comparative analyses with
other approaches. Section 5 concludes this paper with a
summary and discussion of future work.

2. Related Work

As mentioned earlier, the two most widely recognized

models to Internet QoS are IntServ and DiffServ. The amount

of router state required for the IntServ model, particularly in
core routers, increases with the number of flows. Since router
performance is linked with its ability to maintain these flows,
and the Internet is still growing at a phenomenal rate, this
model has serious scalability and complexity concerns. Since
DiffServ treats packets in the same class identically, it is
difficult to provide quantitative service to individual flows.
The model is strong on simplicity, but weak on guarantees.
The drawbacks of both models have resulted in numerous
attempts to solve the issues plaguing this research area.

2.1. Architectures

The Scalable Resource Reservation Protocol (SRP) [2]
attempts to remove the need for both signaling protocols and
state from the routers. Sources mark data sent at an initial
rate, intermediate nodes remark the data based on an
acceptable rate that can be supported, and the destination
reports this rate back to the source. The source then throttles
back the rate, and only sends at the observed peak rate. While
fairly simple, this architecture relies on the cooperation and
trust of end hosts, and cannot provide delay bounds.

Stateless Core (SCORE) [24] was designed to move state
from the routers into the packets themselves using a
technique called Dynamic Packet State (DPS). It can support
both DiffServ and IntServ models, and unlike other proposals
can provide guarantees on delay. While one of the better
solutions proposed in recent years, it has yet to gain attention.

More recently, Simplified Guaranteed Service (SGS) [21]
has emerged. It requires no per-flow state to be maintained in
core routers, and defines a new signaling protocol called
Sender Oriented Signaling (SOS). It is based on aggregate
reservations, and can provide bounds on bandwidth. This
scheme has yet to be tested extensively, and uses burdensome
garbage collection.

Other approaches proposed in the literature include the
Flow Initiation and Reservation Tree Protocol (FIRST) [11],
IntServ over DiffServ [4], Edge Assisted Quality of Service
(EQOS) [5], Endpoint Admission Control (EAC) [9], and
Aggregate RSVP [3]. Unfortunately, these approaches have
various problems limiting their effectiveness, including
resource management and deployment issues, additional
complexity, or required mass participation and cooperation
that is simply not feasible in practice.

2.2. Signaling Protocols

A major component of most QoS architectures providing

integrated services is the signaling protocol. The Resource
Reservation Protocol (RSVP) [14] is currently the only IETF
standardized resource reservation signaling protocol. While
RSVP provides many useful functions, it comes at the cost of
complexity and scalability.

Several lightweight protocols have been suggested to
alleviate these concerns. These include Yet Another Sender
Session Internet Reservation Protocol (YESSIR) [22], which
runs only over RTP sessions, and the Boomerang Protocol
which can only signal using ICMP. The Ticket Signaling
Protocol (TSP) [13] also provides a connectionless approach

resulting in high scalability. Lightweight protocols are
typically intended and designed for specific purposes. They
do not however provide a general solution to the problems
facing QoS delivery today.

Other non-lightweight protocols such as the Dynamic
Reservation Protocol [25] can provide in-line reservations
which essentially integrates signaling into the data packets
themselves. DRP provides added functionality, but generally
speaking it has the same problems, such as overall scalability
concerns and unattractive unicast delivery as RSVP.

Since 2001, the Next Steps in Signaling Working Group
(NSIS) has been working on standardizing a next generation
multipurpose signaling protocol [18]. There have been
numerous requirements proposed so far, including increased
simplicity, the ability to allow flow and signaling
aggregation, and both unidirectional and bidirectional flows.
There has been no specific requirement for multicast due to
the enormous complexity needed for a complete solution. It
should also provide either sender or receiver initiations.

3. The SCAR Approach

In this section, we present our approach, SCAR. We

discuss its design and signaling protocol SCAR-SP, and
conclude with a discussion of scheduler integration.

3.1. Architectural Design

SCAR has been designed to meet the following goals:
Scalability – Traditionally, the amount of router state

increased proportionately to the number of individual flows
with the IntServ model, leading to serious scalability
concerns. SCAR aggregates individual flows into classes,
requiring no per-flow state in the intermediate nodes.
Additionally, techniques to insert state into the packets
themselves, as in SCORE, are not required.

Simplicity – To maintain simplicity and reduce overhead,
SCAR requires only minimal state in nodes to keep track of
aggregate classes only, and does not support multicasting, in
line with recent thoughts on the subject [10]. The need for
resource “garbage collection” as in SGS or synchronization,
as some other solutions require, is also unnecessary.

Robustness – Mechanisms are in place to account for
reservation failure, routing changes, and message loss. The
onus has been placed on the end-host to ensure messages and
reservations are timed properly to account for these failures.
Intermediate nodes are able to verify traffic specifications,
and police those who are not adhering to their contract.

Flexibility – Less state typically means less functionality
and flexibility. SCAR can provide bounds on both delay and
bandwidth and enable optimal resource allocation without the
need for per-flow state.

We consider in this paper a three class architecture
including the guaranteed service class which can provide the
most stringent of QoS guarantees, the controlled-delay class
for delay-insensitive applications, and the best-effort class.
Other predefined classes are quite possible to incorporate into
SCAR. To provide these classes within an existing best-
effort network, we conceptualize a logical partition. By

separating link speed between each class, and with proper
management, a guaranteed service network can be placed
atop the existing best-effort network. This abstraction can be
seen in Figure 1. To distinguish classes, data packets are
classified within the headers through marking.

 Figure 1. The logical separation of a network

In Figure 1, a logical separation can be seen between all

SCAR aware nodes and end-hosts. Operation of SCAR can
still take place transparently within non-aware areas of the
network, although QoS cannot be guaranteed in this case
when heavy congestion occurs at non-aware nodes. There are
several mechanisms which need to be in place in an SCAR
network. Traffic must be classified, shaped, and policed
before the egress link with non-conforming packets being
isolated to ensure fairness to other flows. This can
potentially be done through either re-marking or dropping.
Proper scheduling must additionally be in place to provide
accurate bandwidth and delay bounds. SCAR does not
specifically dictate the techniques used to provide guarantees
in nodes, as there are already numerous approaches to do so.
This will be discussed further later in this paper.

Using the additive properties of aggregation, bandwidth
guarantees can be made without the need for per-flow
maintenance. This is shown in Figure 2, where end-host A
creates a 50KB/s reservation in (a), followed by a 20KB/s
reservation by host B in (b). Aggregate state is then
maintained on all incoming and outgoing links. This
simplicity, coupled with proper policing, enables powerful
network services.

We now begin a detailed look at elements from the SCAR

architecture in Figure 3 in the remainder of this section,
except for the optional security and billing modules. Details
on these items can be found in [23].

 Figure 2. Additive property of aggregates

3.1.1. Marking Data Flows

End-hosts are responsible for shaping, marking, and

filtering their traffic. Filterspecs [7], to determine which
packets receive QoS, are created and enforced by the end
hosts through marking of their own packets, thus alleviating
intermediate network nodes from this burden.

A flowspec [7] describing the requested level of QoS is
still transmitted to intermediate nodes. This contains an
Rspec defining the desired QoS, and a Tspec describing the
data flow. SCAR does not dictate which particular Tspec
should be used. For example, the (σ, ρ) model [12] which
describes peak and burst rates is traditionally used in RSVP,
and conforms to leaky bucket parameters for policing and
shaping. End-hosts wishing to additionally specify long term
average rates can opt to use a dual leaky bucket traffic model
instead. Furthermore, added to the flowspec when specifying
a guaranteed service reservation are per-node delay values.
These simply specify the largest upper bound on delay the
end-host can tolerate at the node.

End-hosts are responsible for marking their own flows into
the classes they belong in such a way they do not exceed their
traffic specifications. The marking of flows is done by
overloading the Type of Service field in the IP header. An
end-host must mark two elements in this field; the Service
type and the Tspec type. As mentioned above, the service
type describes the level of QoS the packet will receive, while
the Tspec type describes the traffic specification the packet is
adhering to. While the only service types considered in this
paper are guaranteed services, controlled-delay, and best-

0

5050 50

0
50KB/s

(a)

A

20

7050 50

20
70KB/s

(b)

B B

A

GS/CL Traffic
BE Traffic

SCAR
Cloud

SCAR Aware Node

Non-Aware Node

SCAR
Cloud

SCAR Aware End-host

Non-Aware End-host

End-host Node

SCAR-SP
Daemon

ScheduleShape

Admission
Control

Policy
Control

Classify

Application

Mark

Resource
Control

Billing
Control

Security
Control

SCAR-SP
Daemon

Schedule Shape

Admission
Control

Policy
Control

Classify

Resource
Control

Billing
Control

Security
Control

Figure 3. SCAR architecture

effort, the controlled-load class is defined here as well, with
space reserved for future expansions.

Since intermediate nodes will most likely employ different
policing and shaping techniques for each traffic specification,
end-hosts must mark their packets with the particular traffic
specification their packets belong to. If a reservation is made
with one specification, and end-hosts mark their packets in
another, they will be policed appropriately at intermediate
nodes. Our current work supports Leaky Bucket, Dual Leaky
Bucket, and other models, as discussed further in [23].

3.1.2. Shaping and Policing Misbehaving Flows

Either unintentionally or maliciously, the possibility exists

that flows will not adhere to SCAR conventions. A
misbehaving flow within an aggregate can not be directly
policed, as no state is maintained to identify it. Instead,
misbehaving aggregates are policed by isolating them from
the network. Thus, the further the architectural edges are
pushed towards end hosts, the greater the isolation
granularity. In Figure 4, a network is shown in which the
gateway, depicted as node D, and end-hosts A and B are
SCAR aware. Node C located between the gateway and end-
hosts is not SCAR aware. In this particular case, hosts are
still able to make reservations transparently through node C,
and, as long as there is no congestion at this node, QoS
should not be compromised. In this case, both A and B have
50KB/s reservations to different destinations. A problem
exists, however, if host A or B decides to transmit at a higher
rate than reserved, or maliciously floods the network with
packets marked as reserved. As there is no state maintenance
at node D, it is therefore not aware who the perpetrator is,
except that it is coming from the direction of node C. It must
then police this aggregate, resulting in service degradation to
both hosts A and B. If C was SCAR aware, however, it
would only need to police the non-conforming transmitter,
leaving the other at its reserved rate.

Figure 4. A network with transparent operation

Policing entails that each node will simply prevent any
packets exceeding the reserved aggregate from obtaining
QoS, with the onus placed on end-hosts to never exceed their
reservation. Nodes may allow some tolerance to over-

utilization, remark packets into a best effort class, or strict
packet dropping to insure conformance. Misbehaving flows
would normally be policed at the first node, and thus policing
policies would typically be enforced within ones own
network, or immediate upstream provider. Shaping and
policing occurs on the ingress link at each node for proper
isolation. For example, flows adhering to a (σ, ρ) model
would be shaped and policed with a leaky token bucket.

3.1.3. Policy and Admission Control

Admission control is used to determine if enough resources

are available to admit a reservation, while policy control
determines if the end-host is permitted to do so. In an
aggregated architecture, admission control is rather simple;
only the current and maximum allowed aggregate reservation
need be known. The maintenance of this aggregate, however,
is far more difficult, and will be discussed further later in this
paper No particular policy control is presented in this paper,
as policies spanning networks are normally heterogeneous
being controlled by their respective network managers.

3.1.4. Resource Allocation

Optimization of resource allocation, which is concerned

with minimizing network costs when establishing QoS, has
been slow to gain footing in recent years. Even resource
reservation protocols such as RSVP rarely address allocation
policy. It has been shown in [19] that loosening local QoS
requirements at bottleneck nodes where resources are in short
supply and compensating by tightening the local
requirements at other nodes, in most cases, more optimized
end-to-end flows will result. Generally, most current
allocation policies assign equal QoS proportions at each
node. Therefore, when providing some end-to-end delay
guarantee d, each node would be assigned d/n delay, where n
is equal to the number of intermediate nodes. As each node’s
traffic load is determined by this delay value, so is the entire
path. When imbalances occur within a given network path,
equally distributing QoS will naturally create bottlenecks. It
has been shown that the QoS metric being served plays the
most significant role in determining performance. The
amount of resources, the number of hops, and position of
bottlenecks are also influencing factors. An allocation policy
is said to perform better than others when it can support
greater network load [19].

The two metrics by which SCAR measures its guaranteed
services are bandwidth and delay. SCAR aims at providing a
resource allocation scheme in which informed decisions can
be made at each node to provide service to the maximum
number of flows. Thus, our new signaling protocol, SCAR-
SP, has been designed to enable such a scheme. SCAR-SP
enables a discovery procedure similar to RSVP’s One Pass
With Advertising (OPWA) which carries path fingerprints
within the signaling messages that contain resource usage
information along the end-to-end path.

SCAR-SP enables end-hosts to request differing delay
values, but does not dictate how these decisions should be
made. For example, higher delay values could be set at those

50

50

50

50
50

50 50

SCAR Aware

C

SCAR Non-Aware

B

D

F

A

100

E
50

links with less bandwidth available, which has been shown in
[19] to yield improvements in traffic flow. However,
mechanisms must be in place to measure these gains. A
straight forward and uncomplicated implementation called
the Simple Allocation Scheme (SAS) is presented in the next
section, which takes a similar approach. Performance
measurement is conducted locally, with intermediate nodes
identifying themselves as bottlenecks. We leave the
investigation of more complex mechanisms for future work.

In most cases, applications are only concerned with their
end-to-end performance. Thus, in different scenarios the
same application will often require different performance
guarantees at each intermediate node. Neglecting
propagation delay, a teleconferencing application that can
tolerate up to 50ms per flow would require on average 10ms
of delay at each node over a short 5 hop path. This is in
contrast to a 10 hop path where 5ms would be needed.

In a situation where each node can only provide one local
delay guarantee, difficulties arise when multiple flows share a
node. A shared node would therefore need to provide the
lowest delay requirement, leading to an overall lower
utilization. (If utilization was allowed to be high, it would be
very difficult to maintain a lower delay.) In our architecture,
end-hosts can negotiate differing delay values. In this
scenario, shared core nodes would typically offer larger delay
bounds, providing better utilization. This would be naturally
be compensated by edge nodes where resources are more
readily available, and smaller delay bounds could be offered.
Further details are discussed later in this paper.

3.2. The SCAR-SP Signaling Protocol

SCAR-SP has been designed to provide efficient call

mechanisms when creating, refreshing, or removing
reservations. Unlike most signaling protocols, which are
restricted to either a sender or receiver-oriented design,
SCAR-SP enables both approaches. Either the receiver or
sender can be given the responsibility to provide the flow
specifications for the reservation. In many cases, receiver
control is favoured over sender controlled, as senders are
often not aware of what resources are available to the
receiver, including bandwidth or even computational power.
On the other hand, receiver control can also be a hindrance,
especially in the case where senders are billed for QoS, or the
sender wants more control over policy.

Another advantage of SCAR-SP’s design is that senders
are first responsible for characterizing the traffic it will be
transmitting. By knowing the traffic model, receivers
establishing a reservation can make more informed decisions.
For example, if a receiver is not aware that the sender will be
transmitting at a variable rate, it may unknowingly make a
constant rate reservation, in effect causing underutilization.
Additionally, if the sender can characterize its traffic in more
than one way, the receiver can then be given the option of
which specification it wishes to receive.

SCAR-SP messages require state typically not associated
with signaling messages to be inserted within them. This
state is minimal, and cannot be avoided in soft-state
architectures. It should be reiterated that this type of state is

significantly different from the state associated with IntServ
scalability concerns, and is shown later in this paper to cause
no significant impact on performance. The largest advantage
to keeping this state in the signaling protocol is the fact that
no lookup is required on behalf of intermediate nodes.
SCAR’s architectural specification still holds, and imposes
that in its simplest form, no per-flow state shall be inserted
into intermediate nodes or the data packets themselves.

SCAR-SP is a soft-state protocol which provides better
dynamic adaptability and robustness than a hard-state
protocol, and allows adaptation of routing changes to take
place fairly seamlessly with end-host cooperation. Unlike
RSVP where refresh messages are generated by intermediate
nodes hop-by-hop, SCAR-SP shifts this responsibility to the
end-hosts in an end-to-end fashion. They are then required to
initiate periodical refreshes so that their soft-state
reservations are kept active. This further reduces processing
overhead at intermediate nodes.

If a reservation expires, resources are automatically de-
allocated. To maintain simplicity, SCAR-SP is simplex and
can only offer unidirectional reservations. To establish a
bidirectional flow, two separate reservations must be made.
Its design can also handle lost messages, and requires
minimal processing power at the nodes.

The operation of SCAR-SP is similar to most other
signaling protocols. The SCAR-SP daemon, shown earlier in
Figure 3 facilitates the creation and removal of reservations
in conjunction with policy and admission control modules.
Admission control determines if enough resources are
available to admit a reservation, while policy control
determines if the end-host is permitted to do so. The
classifier determines which class the traffic belongs to.
Policing and shaping of the guaranteed service class ensures
traffic is behaving properly, sending at proper peak and
average rates. The scheduler can then guarantee the reserved
bandwidth and delay to this traffic.

In an aggregated architecture, admission control is rather
simple; only the current and maximum allowed aggregate
reservation need be known. The maintenance of this
aggregate, however, is far more difficult as signaling loss and
partial reservations are introduced. Part of the difficulty
arises due to the fact that admission control is based on an
end-to-end transaction. That is, if all intermediate nodes
along the end-to-end path do not accept the reservation, then
all nodes which have since accepted it locally must roll-back
to a previous state. Likewise, lost signaling messages can
create confusion as partial reservations occur. Normally this
would imply that nodes must maintain internal state.
However, SCAR-SP can deal with these problems
effectively. In the sections we below, we provide a brief
overview of SCAR-SP operations and behaviour. Further
details on SCAR-SP, including its message formats and
handling of failures, route changes, lost messages, and other
conditions can be found in [23].

3.2.1. SCAR-SP Operation

SCAR-SP defines four phases of operation; discovery,
reserving, refreshing, and tearing down. The discovery phase

entails determining the current status of the end-to-end
reservation path. The reservation phase involves the merging
of flows in to a service class aggregate, while the refresh
phase keeps these reservations active. In the teardown phase,
a reservation is explicitly de-allocated. Three messages are
defined; discover (DISC), reserve (RESV), and refresh
(REFR). DISC messages are used in the discovery phase,
while RESV messages are used during the reserving phase.
REFR messages are used during the refreshing and teardown
phase. For the remainder of this section, it is assumed that
traffic is characterized by a simple dual leaky bucket scheme.
As mentioned previously, either senders or receivers can
make the reservation. As each of these methods vary slightly,
the next two sections will detail each separately.

3.2.1.1. Receiver Oriented Reservations

To establish a guaranteed service receiver-oriented

reservation, a DISC message is first sent from the sender to
the receiver. This message is passive and is intended solely
to determine the current status of all nodes participating on
the reservation path. It is additionally used as a container for
other information which must be reported to the receiver. As
the message is traveling from the sender to receiver, each
intermediate node updates the following information: the
maximum end-to-end refresh interval, the maximum average
rate, the maximum peak rate, the maximum peak rate
duration, and the maximum burst. These are end-to-end
variables which are only updated if the nodes variables are
less than the current value. The receiver is therefore provided
with the maximum refresh interval and flow descriptor that
each intermediate node on the end-to-end path can currently
provide. Intermediate nodes must also append the following
per-node information: the minimum queuing delay available
and the current queuing delay being served.

Thus, these values represent a variable length field in the
discover message. Path state is inserted into the message as
well to ensure return messages follow the same path. Policy
control is also checked at each node during the discovery
phase, to individualize the results for the sender-receiver pair
if the policy dictates. Depending on nodal policy, some
networks or hosts may be given preferential treatment in their
flows in the form of greater bandwidth, or possibly be denied
resources all together.

By collecting this information, the receiver can then make
a well informed reservation request. Quite often, protocols
not providing some form of reporting function can
consequently produce many unsuccessful reservation
requests, essentially flooding the network with hosts seeking
reservations that cannot be made. As long as resources do
not change dramatically after the discovery information has
been received, and before a reservation attempt has been
made, very few unsuccessful reservation requests will result.

After receiving a discover message, a RESV message is
then sent back containing a flow descriptor detailing the QoS
level being sought, and the path information obtained from
the DISC message. The flow descriptor in this case contains
all metrics described during the discovery phase; a requested
refresh interval, the average rate, peak rate, peak rate

duration, and burstiness of the flow. Also included is a
variable sized list of sequentially ordered delay values; one
for each node in the path. These delay values are chosen by
the receiver such that the sum of all delay values requested is
equal to or less than its end-to-end delay requirement. RESV
messages require that each delay value must be greater than
or equal to the corresponding minimum delay value at each
node, and represent the largest delay value in which it is
willing to accept. In most cases, the delay currently being
provided at any given node will be less than that requested,
meaning flows will often see better than expected QoS.
Additionally, a node is guaranteed to never raise its delay
value if it would compromise any current reservations. It
should be noted that these delay values represent queuing
delay at the local node, and do not include propagation delay.

Using the path state, the RESV message traverses back
through the same reservation path. As it does so, admission
and policy control is conducted at each node. If both are a
success, the resources are allocated by updating appropriate
local node aggregate variables. When a successful RESV
message is received by the sender, it may begin transmitting
its data at the reserved rate conforming to the traffic
specifications contained in the RESV message.

Since nodes need not have their clocks synched, individual
expiration identifiers must be appended to the RESV message
at each node. This information is independent at each node,
and will typically refer to the local time in which the
reservation expires. These values are then used in subsequent
merge messages used to refresh the resource reservation.

To preserve the reservation, REFR messages must
occasionally be sent. Without such messages, a reservation
will timeout and resources at each intermediate node will be
de-allocated. The sender initiates this reservation refresh by
sending a DISC message to the receiver. Attached to this
message, and not examined by nodes, is the list of expiration
identifiers obtained from the last REFR or RESV message.
This list is then subsequently used by the receiver during the
actual refresh. The DISC message once again appends node
information and path state, and acts as a reporting feature to
the receiver. A receiver can use this information if it wishes
to change its resource reservation. The new REFR message
issued by the receiver can contain the same flow descriptor
used previously to maintain the same level or QoS, or can
attempt to raise or lower reserved resources by issuing a new
flow descriptor. All new REFR messages are once again
subject to admission control; however it is guaranteed to pass
if the descriptor has been left unchanged or lowered.

There is no explicit teardown message, as end-hosts can
indirectly de-allocate their resources immediately by sending
a REFR message with a refresh interval of zero. This will
cause a reservation to timeout instantly.

3.2.1.2 Sender Oriented Reservations

A sender oriented reservation requires one extra message

when establishing a reservation and that each message during
the session is marked with an orientation flag indicating a
sender oriented reservation. The sender first transmits a
DISC that is used to collect path state and inform the receiver

of one or more traffic patterns it is willing to send. Upon
receipt of this message, the receiver can choose which traffic
pattern it wishes to accept, and generates a fresh DISC
message. This message follows the reverse direction using
the path state received, and contains blank traffic pattern
information for intermediate nodes to append or update.

The sender, after obtaining the network information, can
send its RESV message. Path state is now recorded in RESV
and REFR messages, and is subsequently used in DISC
messages. Similarly, expiration information is appended to
RESV and REFR messages, and reported back. When
collecting path information and when making reservations,
the orientation flag must be checked as it indicates the
incoming and outgoing links for the reservation.

3.2.2. Expiration Identifiers

When a reservation is established, a timing mechanism

must be in place to de-allocate a flow’s resources if a refresh
is not received. Complications arise when there is no per-
flow state kept in the intermediate nodes. The way in which
a node wishes to implement this soft-state is not tied to one
method. We present a potential mechanism in this section, by
first examining how to de-allocate per-flow resources.

To maintain a scalable solution, a node should not need to
maintain per-flow expiration information. Thus, we
introduce a framing strategy and calendar queue that can
collect this information as an aggregate. Shown in Figure 5,
three reservation requests arrive on a node at local times 0.6,
2.2, and 2.8. The first requests a 6 second refresh interval,
while the others only request 2 seconds. Assuming the
resource requests were successful, the resources reserved in
the first request are set to de-allocate in expiration slot g.
Both the second and third requests will de-allocate resources
in slot e. Using the additive properties of an aggregate, we
can combine both de-allocations into one value. A ceiling
function is used when de-allocating resources in each
expiration slot. Thus, at local time 5.0, all resources within
expiration slot e expire, even though resources were reserved
at different times and used the same refresh interval.

Figure 5. The use of expiration slots to de-allocate resources

End-hosts should not assume, however, any extra leniency

when refreshing their resources since it is unknown to what
extent intermediate nodes will potentially extend a
reservation. The simplicity of such a scheme allows fine
granularity in selecting the width and number of expiration
slots. In networks with any form of latency, end-hosts will
not even likely be aware.

The framing strategy introduced above allows resources to
timeout and de-allocate effectively and efficiently. However,
a second complication arises; how do we prevent such a de-
allocation when a refresh is encountered and no state is
maintained at the node? As previously mentioned, expiration
identifiers (EIDs) are contained within the signaling
messages for reference. Since node clocks are not synched,
individual EIDs are needed. It should be noted that resources
are allocated immediately when requesting resources, but are
subject to time-framing when being refreshed.

As an example, suppose that a RESV attempt of 10KB/s is
made with a refresh interval of two seconds. Aggregate
resources are allocated to 10KB/s and an aggregate of
-10KB/s is set at expiration. The expiration slot value is then
returned as the EID for later reference. To refresh, a REFR is
sent containing the same rate, same requested interval, and
the EID received. In this case, a new expiration timeout is
scheduled in the same manner as above. The refresh rate is
then added to the expiration slot pointed to by the EID. This
will prevent any pending de-allocation for this flow. By not
preventing this de-allocation through adding the same refresh
rate as originally specified, end-hosts can raise or lower
reservation requirements when refreshing reservations.

3.2.3. Simple Optimization of Resource Allocations

As mentioned previously, SCAR-SP enables optimization

of resource allocations through its discovery process. While
more elaborate schemes are possible, and are the focus of
continuing research, a simple scheme is presented here.

The Simple Allocation Scheme (SAS) is designed from
two perspectives; the intermediate nodes, and the end-hosts.
Intermediate nodes are responsible for bottleneck prevention;
that is, raising or lowering local resource allocations to
maximize the end-to-end flows participating on it. Since
bottlenecks form when a node has exhausted its allocated
resources for an aggregated class, detection is trivial. The
node can then increase resources allocated by giving a greater
link share, by offering larger delay bounds, or both.
Appropriate upper and lower thresholds must be placed on
delay and bandwidth respectively to keep new flows from
obtaining undesirable QoS. Resource management control is
done independently at each node, with domains controlling
their allocation policies. Conversely, when there is a drop in
demand, nodes can lower delay bounds or link share.

On the other side of the coin, participation of end-hosts is
needed to shift resource reservations when bottlenecks form.
Since intermediate nodes can not change resource allocation
if it threatens any flows within the current aggregate,
cooperation is needed. When adjusting delay requirements
within nodes, the minimum delay field is raised or lowered
appropriately. New flows are now restricted to this delay
bound during admission control; however, the current delay
the node is servicing cannot change until all current
reservations re-adjust. To do so, nodes must wait for a period
equal to its maximum refresh interval, examining refresh
messages. If reservations are no longer reserving at the
current delay value, it can then be adjusted appropriately to
the new minimum delay value. Now, when end-hosts

1

a

Arrival Time

2 3 4 5 6 7 8
Local Node Time

0

Expiration Slotsb c d e f g h

examine network fingerprint information and notice that the
QoS levels they are requesting are higher than currently being
accepted from new flows, they must shift resource usage if
possible. Resource usage from bottleneck nodes can be given
up, and obtained at other non-bottleneck nodes.

3.3. Scheduling

By controlling link bandwidth and their corresponding
buffers at each node, packet loss, delay, and throughput can
be managed. This can be accomplished through admissions
procedures allowing access to the resources, and scheduling
disciplines to limit the competition of flows.

To provide node-local QoS guarantees to a flow, a packet
scheduling discipline is used to guarantee bandwidth and
place an upper bound on delay. The discipline may
additionally provide bounds on jitter or loss. This is done by
choosing which packet to transmit when its respective
outgoing link becomes idle. While mechanisms within a
node must be in place to address local QoS guarantees, there
must also be mechanisms to ensure the end-to-end QoS is
met. Due to the uncertainness of packet switching networks
in a multiplexing environment, traffic patterns can become
distorted through differing areas of load on the network.
These distortions can result in bursts of traffic at differing
points, regardless of how the traffic had entered the network,
and can compromise QoS. Consequently, appropriate
mechanisms must be employed to handle these situations.

The SCAR approach, as discussed earlier, is flexible and
can support a wide variety of scheduling disciplines and
algorithms that provide guarantees on bandwidth and delay.
Since extensive work has already been dedicated to the
development of approaches to scheduling network resources,
this allows implementations of SCAR to leverage this
existing work, and make use of an appropriate approach.

4. Experimental Results and Analysis of SCAR

In this section, we will analyze SCAR and its signaling

protocol, SCAR-SP. Where possible, we also compare our
approach to current RSVP implementations, and other
signaling protocols and architectures discussed in Section 2,
including Boomerang, SGS, and YESSIR. With no
implementation available for other systems such as SCORE,
we were unable to assess and compare with their
performance. For brevity, we report on highlights of the most
important and interesting experimental results; for complete
results, the reader is urged to consult [23] for details.

4.1. Experiment Design and Setup

Unfortunately, there is a lack of consistency in proof of
concept and implementation of work in this area. RSVP has
multiple competing implementations available, while other
approaches have implementations for only specific
configurations of Linux or BSD Unix. Some of the newer
approaches have been implemented for simulation packages
like the Network Simulator ns-2 [15]. As a result, analyses of
SCAR involved a mixture of live network tests and

simulations, with baseline testing to ensure that results were
reasonably consistent and comparable.

For primary testing, a 400MHz Celeron workstation with
256MB of RAM was used, as this most closely matched the
configurations of test machines in related work (again to ease
comparisons). As an operating system, we used the Knoppix
Linux Live CD 3.6 distribution with kernel 2.4.27. By doing
so, there was no need for swap space or additional overhead
as the lightweight kernel is loaded directly into RAM. When
traffic generation was required, a collection of Athlon XP
1800 machines with 512MB of RAM were used, with the
same Linux operating system, connected by 100MB Ethernet.

 For simulations, we used version 2.27 of ns-2. While
there are some limitations when measuring nodal
performance metrics, ns-2 is quite useful in generating very
large topological simulations for study. Nodal performance
was measured through software instrumentation, as ns-2 is
event driven, and runs independent from processing power.
The Celeron was also our primary simulation system.

SCAR and SCAR-SP were implemented and tested in this
simulation environment. To implement these in ns-2, sender
and receiver agents were first created to generate and handle
reservation requests and responses. The sender agent was
additionally responsible for generating and marking flows,
and initiating periodic refreshes by sending DISC messages.

Intermediate nodes and end-hosts had a SCAR-SP daemon
inserted which provided the logic required to handle
incoming SCAR-SP signaling messages. Further modules
were defined for policy, resource, and admission control. As
our architecture does not dictate which policies to use, for
simplicity we use a generic ADMIT_ALL policy which
allows any end-host to reserve any arbitrary amount of the
available resources. For scheduling purposes, we
implemented rate-controlled servers at each node. This
involved placing per-input shapers at each link. In ns-2, this
was done by overloading the recv() function, and shaping the
data packets before any internal switching. For simplicity,
tests were restricted to leaky bucket regulated traffic.

4.2. Validation of SCAR and SCAR-SP

Before conducting performance and scalability testing, we

first carried out a series of simulations to validate SCAR and
SCAR-SP and ensure that they were functioning correctly.
This involved the creation, maintenance, and teardown of
flows, the proper scheduling of flows, and tests of flow
protection, admission control, and the policing of
misbehaving flows. In all cases, SCAR and SCAR-SP
performed as they should and were deemed to be delivering
their respective functionality correctly.

4.3. Performance and Scalability Experimentation

Many signaling protocols and architectural designs have

been slow to gain footing due to scalability concerns, which
is defined as the capacity for the network to expand the
amount of flows, nodes, and traffic. These concerns are a
direct result of the overhead required when signaling tens, if
not hundreds, of thousands of flows simultaneously within

core nodes. To measure scalability, there are numerous types
of overhead which are analyzed when studying signaling
protocols and their respective frameworks; these include
processing, memory, and network requirements.

4.3.1. Processing Overhead

Generally, the total processing overhead generated at an

intermediate node can be divided into two parts; the signaling
load, and session load. Signaling load is determined by the
number of signaling messages arrive at the node in some time
frame. Session load, on the other hand, deals with the
management of existing reservations and their state.

Overhead was calculated as the percentage of time spent
by the test system in processing messages and maintaining
and scheduling flows. This data was collected using tools
such as top and tcpdump when live tests were possible, and
through instrumentation when simulations were required.

For test purposes, the reservation refresh interval was set to
30 seconds in all cases as suggested in [8], and all flows are
set to live for 62.5 seconds before being regenerated, a value
selected for comparison purposes with previous work in this
area. While flows in the real world will most likely live for
longer periods, we choose a shorter interval to address
scalability concerns during periods with many short-lived
reservations. In most cases, a reservation session within this
interval would include a setup, two refreshes, and a teardown.

Figure 6. Processing Overhead

We summarize the overhead results in Figure 6. As can be

seen, implementations of RSVP (KOM-RSVP, and the more
optimized T-KOM-RSVP) had the most overhead, while
SCAR and SGS producing excellent results, with SCAR just
edging out SGS. Both SCAR and SGS could handle 100,000
simultaneous flows with less than a 50% processing load
(with SCAR at 47.0% and SGS at 48.7%) in our test system.
Boomerang performed reasonably well, but we could not
observe YESSIR in this case due to issues in generating
compatible traffic and flows.

4.3.2. Memory Overhead

Memory overhead at intermediate nodes is largely a

function of the number of flows reserved and maintained at
the node. Approaches that require more memory run the risk
of exhausting resources on nodes, particularly as the number

of flows increases. This ultimately places a limitation on the
number of flows that can be effectively supported.

Memory requirement measurements were obtained from
monitoring the /proc virtual file system in testing live
implementations, through instrumentation of simulations, and
also through the examination and analysis of source code.

Memory overhead requirements for various approaches are
shown in Figure 7. RSVP implementations had the highest
memory overhead; the ISI RSVP implementation was found
to be quite limited in the number of flows that could be
supported. SCAR and SGS both had low memory needs,
while Boomerang and YESSIR had moderate needs.
(YESSIR results were derived from code analysis without the
generation of flows.) SCAR is quite scalable from this
perspective, as the memory it requires is independent of the
number of flows due its stateless aggregate philosophy.

Figure 7. Memory Overhead

4.3.3. Network Overhead

Network overhead refers to the amount of additional

network traffic introduced to support the creation,
maintenance, and teardown of flows. Since SCAR requires
state in signaling messages, it incurs a higher overhead than
other approaches as shown in Figure 8.

Figure 8. Network Overhead

Network overhead was computed based on an analysis of

the protocol messages required to manage the number of
flows required, assuming 30 seconds between refreshes and
20 hops end-to-end, shown in [1] to be an accurate average

for the Internet. It is important to note that since YESSIR is
an in-band protocol, it adds little network overhead itself; the
overhead reported is primarily RTCP used to carry it.

The higher network overhead for SCAR does not cause a
significant concern. As shown earlier, this network overhead
does not impose a significant processing or memory burden
on intermediate nodes. Furthermore, the signaling overhead
for SCAR is minimal in comparison to the network
requirements of the flows themselves. For example, typical
rates on Sprint backbones are 2488Mbps (OC-48) with the
number of flows for any given minute in the area of several
hundred thousand [16]. Signaling overhead for SCAR-SP on
such a link serving a generous 100,000 reserved flows
requires only 0.3% of its link capacity. In fact, network
overhead remains a linear function, and it is generally not
thought of as a problem when scaling to large numbers of
flows in a call admission organization. When one considers
that processing and memory considerations would prevent
many approaches, including RSVP, to be completely unable
to handle this number of flows in the first place, SCAR is
performing reasonably well.

5. Conclusions and Future Work

This paper presented SCAR, a stateless QoS architecture

for the Internet that can provide end-to-end guarantees to
multiple flows on demand. It is highly scalable in its memory
requirements, network requirements, and most importantly,
processing requirements. It provides a greater set of
functionality than previous lightweight protocols, and
mechanisms to assist in optimizing resource allocations. It is
not dependant on any particular scheduling algorithm, and
can handle multiple traffic classifications.

A new soft-state signaling protocol, SCAR-SP, was
presented to enable signaling within this new architecture. Its
design allows either the sender or receiver to make
reservations, and allows senders to specify their unique traffic
characteristics to the network. It can additionally operate
through non-aware intermediate nodes in a transparent
operation. Experimentation has shown that nodes can handle
hundreds of thousands of flows simultaneously with little
impact on local node performance.

In the future, we plan to continue experimentation and port
our ns-2 implementation for use in live testing. We are also
currently investigating a variety of competing techniques to
reduce the network overhead in signaling in SCAR-SP. As
mentioned earlier, more work needs to be done in developing
billing and security modules for SCAR, continuing the work
in [23]. Additionally, optimization of resource allocations,
which has rarely been addressed in the past, needs to be
researched and tested more thoroughly.

References

[1] Albert R. et al. Diameter of the World Wide Web.
Nature, 401, 9. Sept. 1999.
[2] Almesberger W. et al. SRP: A Scalable Resource
Reservation Protocol for the Internet. Computer
Communications, Vol 21, Number 14. Nov. 1998.

[3] Baker F. et al. Aggregation of RSVP for IPv4 and IPv6
Reservations. RFC 3175, Sept. 2001.
[4] Bernet Y. et al. A Framework for Integrated Services
Operation over DiffServ Networks. RFC 2998, Nov. 2000.
[5] Bhatnagar S., Vickers B., Providing Quality of Service
Guarantees Using Only Edge Routers. In the Proceedings of
IEEE Globecom, San Antonio, Texas, Nov. 2001.
[6] Blake S. et al. An Architecture for Differentiated
Services. RFC 2475, Dec. 1998.
[7] Braden R. et al. Integrated Services in the Internet
Architecture: an Overview. RFC 1633, Jun. 1994.
[8] Braden R. et al. Resource ReSerVation Protocol (RSVP)
-- Version 1 Functional Specification. RFC 2205, Sept. 1997.
[9] Breslau L. et al. Endpoint Admission Control:
Architectural Issues and Performance. In the Proceedings of
ACM SIGCOMM 2000, Stockholm, Sweden, Sept. 2000.
[10] Brown I. et al. Internet Multicast Tomorrow. The
Internet Protocol Journal, Volume 5, December 2002.
[11] Chung T. et al. Flow Initiation and ReServation Tree
(FIRST): A New Internet Resource Reservation Protocol. In
Proc. IEEE 1999 Pacific Rim Conf. on Communications,
Computers and Signal Processing, Victoria, Canada, 1999.
[12] Cruz R. A Calculus for Network Delay, Part I: Network
Elements in Isolation. IEEE Transactions on Information
Theory, Jan. 1991.
 [13] Eriksson A., Gehrmann C. Robust and Secure
Lightweight Resource Reservation for Unicast IP Traffic. In
the Proc. of International Workshop on QoS. May 1998.
 [14] Estrin D. et al, RSVP: A New Resource ReSerVation
Protocol. In IEEE Network. Sept. 1993.
[15] Fall K., Varadhan K.. The ns Manual. Reference
documentation. Mar. 2005.
[16] Fraleigh C. et al. Packet-Level Traffic Measurements
from a Tier-1 IP Backbone. Sprint ATL Technical Report
TR01-ATL-110101. Nov. 2001.
[17] Fabbi M. Bandwidth Throwing—Yesterday's LAN
Design Method. Gartner Group Research Note. Dec. 1997.
[18] Hancock R. et al. Next Steps in Signaling: Framework.
Internet Draft, October 2003.
[19] Nagarajan R. et al. Local Allocation of End-to-end
Quality of Service in High Speed Networks. in Proceedings
of the IFIP Workshop on Performance Analysis of ATM
Systems, Jan. 1993.
[20] Nortel Networks. Introduction to Quality of Service.
Nortel Networks White Paper 56058.25_022403. Mar. 2003.
[21] Ossipov E., Karlsson G.. Sender Oriented Signaling for a
Simplified Guaranteed Service. Proc. of Third International
Workshop on Quality of Future Internet Services, 2002.
[22] Pan P., Schulzrinne H. YESSIR: A Simple Reservation
Mechanism for the Internet. Proc. International NOSSDAV
Workshop. Cambridge, United Kingdom, July 1998.
[23] Reid D. SCAR: A Stateless Architecture for Achieving
Scalable QoS. Masters Thesis. Department of Computer
Science, The University of Western Ontario. May 2005.
[24] Stoica I. Stateless Core: A Scalable Approach for
Quality of Service in the Internet. PhD Thesis, CMU, 2000.
[25] White P., Crowcroft J. A Dynamic Sender-Initiated
Reservation Protocol for the Internet. 8th IFIP Conference on
High Performance Networking, Vienna, September 1998.

