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Abstract — Previous attempts at providing widespread Quality of Service (QoS) for the Internet have met with 

only limited success. Integrated Services and Differentiated Services, the two most popular architectures proposed, 
suffer from scalability and flexibility concerns respectively. More recently, numerous other architectural proposals 
have been introduced, but with limited success. This paper introduces a new approach which addresses several issues 
others have failed to solve effectively. This approach, SCalable Aggregate Reservations (SCAR) is highly scalable, 
offers additional functionality, and is quite flexible and robust in supporting QoS for networked applications. 
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1.  Introduction 
 

Originally designed as a best-effort service, the Internet 
has grown significantly, and so have its needs.  Today, many 
applications require a service level better than best-effort can 
offer.  In effect, these applications require a high level of 
Quality of Service (QoS), which is a term used to describe the 
overall experience a user or application receives over a 
network [20].  Over the Internet, this is typically measured in 
terms of bandwidth, loss, delay, jitter, and availability. 

Since the Internet does not intrinsically support any 
preferential treatment of traffic, there can be significant 
problems with new QoS sensitive applications, such as 
teleconferencing and IP telephony. Currently, most networks 
are simply pushing for greater network capacity to alleviate 
congestion problems.  While this option is currently cheaper 
than deploying a widespread QoS infrastructure, it does not 
allow prioritization of flows or guarantees of service.  Simply 
“throwing more bandwidth” at the problem is merely a short 
term fix, and will not address any long term issues [17].   

QoS models strive to take a best-effort network and 
transform it into one which can provide bandwidth and delay 
assurances to its applications.  There have been several fields 
of thought on providing QoS.  By far, the two most popular 
and accepted philosophies are the Integrated Services Model 
(IntServ) [7] and Differentiated Services Model (DiffServ) 
[6].  However, neither IntServ nor DiffServ have gained 
widespread acceptance due to scalability and flexibility 
concerns respectively.  Several lightweight protocols have 
emerged, however they lack the functionality and acceptance 
for a truly integrated services network.     

This paper presents a stateless QoS architecture for the 
Internet that can provide end-to-end QoS guarantees to 
multiple flows on demand.  The architecture, called SCalable 
Aggregate Reservations (SCAR), achieves scalability by 
aggregating flows into predefined classes.  It requires little 

processing at intermediate nodes and can additionally enable 
billing functions, security functions, and mechanisms to assist 
the optimization of resource allocations [23].  SCAR belongs 
to a variant of the IntServ philosophy; one that aims to 
provide the same flexible service, but in a stateless network 
environment.  This stateless property is one that addresses 
scalability concerns that have arisen with traditional IntServ.  
SCAR combines the scalability of DiffServ and the 
functionality of IntServ into one flexible package. 

A new signaling protocol, the SCAR Signaling Protocol 
(SCAR-SP), was developed to enable signaling within this 
new architecture.  Its reversible design allows either the 
sender or receiver to make reservations.  It presents many 
additional advantages, including the ability for senders to 
specify their unique traffic characteristics, and a soft-state 
approach which can remove reservations if not properly 
terminated.  Experimentation has shown that nodes can 
handle hundreds of thousands of flows simultaneously with 
little impact on local node performance. 

Over the past decade, the focus of Internet QoS has been 
moving further and further away from complex stateful 
solutions; this paper will reinforce this shift by introducing a 
simple architecture and signaling protocol which provides the 
most stringent QoS needs to sensitive applications. The 
remainder of this paper is as follows. Section 2 provides a 
discussion of related work in this area.  Section 3 presents the 
architectural design of the SCAR model, the signaling 
protocol SCAR-SP, and scheduling in SCAR.  Section 4 
discusses experimental results and comparative analyses with 
other approaches.  Section 5 concludes this paper with a 
summary and discussion of future work. 
 
2.  Related Work 

 
As mentioned earlier, the two most widely recognized 

models to Internet QoS are IntServ and DiffServ. The amount 



of router state required for the IntServ model, particularly in 
core routers, increases with the number of flows. Since router 
performance is linked with its ability to maintain these flows, 
and the Internet is still growing at a phenomenal rate, this 
model has serious scalability and complexity concerns.  Since 
DiffServ treats packets in the same class identically, it is 
difficult to provide quantitative service to individual flows. 
The model is strong on simplicity, but weak on guarantees. 
The drawbacks of both models have resulted in numerous 
attempts to solve the issues plaguing this research area. 

 
2.1. Architectures 
 

The Scalable Resource Reservation Protocol (SRP) [2] 
attempts to remove the need for both signaling protocols and 
state from the routers. Sources mark data sent at an initial 
rate, intermediate nodes remark the data based on an 
acceptable rate that can be supported, and the destination 
reports this rate back to the source. The source then throttles 
back the rate, and only sends at the observed peak rate. While 
fairly simple, this architecture relies on the cooperation and 
trust of end hosts, and cannot provide delay bounds.  

Stateless Core (SCORE) [24] was designed to move state 
from the routers into the packets themselves using a 
technique called Dynamic Packet State (DPS). It can support 
both DiffServ and IntServ models, and unlike other proposals 
can provide guarantees on delay. While one of the better 
solutions proposed in recent years, it has yet to gain attention.  

More recently, Simplified Guaranteed Service (SGS) [21] 
has emerged. It requires no per-flow state to be maintained in 
core routers, and defines a new signaling protocol called 
Sender Oriented Signaling (SOS). It is based on aggregate 
reservations, and can provide bounds on bandwidth. This 
scheme has yet to be tested extensively, and uses burdensome 
garbage collection. 

Other approaches proposed in the literature include the 
Flow Initiation and Reservation Tree Protocol (FIRST) [11], 
IntServ over DiffServ [4], Edge Assisted Quality of Service 
(EQOS) [5], Endpoint Admission Control (EAC) [9], and 
Aggregate RSVP [3]. Unfortunately, these approaches have 
various problems limiting their effectiveness, including 
resource management and deployment issues, additional 
complexity, or required mass participation and cooperation 
that is simply not feasible in practice. 

 
2.2. Signaling Protocols 

 
A major component of most QoS architectures providing 

integrated services is the signaling protocol. The Resource 
Reservation Protocol (RSVP) [14] is currently the only IETF 
standardized resource reservation signaling protocol.  While 
RSVP provides many useful functions, it comes at the cost of 
complexity and scalability.  

Several lightweight protocols have been suggested to 
alleviate these concerns. These include Yet Another Sender 
Session Internet Reservation Protocol (YESSIR) [22], which 
runs only over RTP sessions, and the Boomerang Protocol 
which can only signal using ICMP. The Ticket Signaling 
Protocol (TSP) [13] also provides a connectionless approach 

resulting in high scalability. Lightweight protocols are 
typically intended and designed for specific purposes. They 
do not however provide a general solution to the problems 
facing QoS delivery today. 

Other non-lightweight protocols such as the Dynamic 
Reservation Protocol [25] can provide in-line reservations 
which essentially integrates signaling into the data packets 
themselves. DRP provides added functionality, but generally 
speaking it has the same problems, such as overall scalability 
concerns and unattractive unicast delivery as RSVP. 

Since 2001, the Next Steps in Signaling Working Group 
(NSIS) has been working on standardizing a next generation 
multipurpose signaling protocol [18]. There have been 
numerous requirements proposed so far, including increased 
simplicity, the ability to allow flow and signaling 
aggregation, and both unidirectional and bidirectional flows. 
There has been no specific requirement for multicast due to 
the enormous complexity needed for a complete solution. It 
should also provide either sender or receiver initiations. 
 
3.  The SCAR Approach 

 
In this section, we present our approach, SCAR.  We 

discuss its design and signaling protocol SCAR-SP, and 
conclude with a discussion of scheduler integration. 

 
3.1. Architectural Design 

 
SCAR has been designed to meet the following goals: 
Scalability – Traditionally, the amount of router state 

increased proportionately to the number of individual flows 
with the IntServ model, leading to serious scalability 
concerns.  SCAR aggregates individual flows into classes, 
requiring no per-flow state in the intermediate nodes.  
Additionally, techniques to insert state into the packets 
themselves, as in SCORE, are not required.   

Simplicity – To maintain simplicity and reduce overhead, 
SCAR requires only minimal state in nodes to keep track of 
aggregate classes only, and does not support multicasting, in 
line with recent thoughts on the subject [10].  The need for 
resource “garbage collection” as in SGS or synchronization, 
as some other solutions require, is also unnecessary.   

Robustness – Mechanisms are in place to account for 
reservation failure, routing changes, and message loss.  The 
onus has been placed on the end-host to ensure messages and 
reservations are timed properly to account for these failures.  
Intermediate nodes are able to verify traffic specifications, 
and police those who are not adhering to their contract. 

Flexibility – Less state typically means less functionality 
and flexibility.  SCAR can provide bounds on both delay and 
bandwidth and enable optimal resource allocation without the 
need for per-flow state.  

We consider in this paper a three class architecture 
including the guaranteed service class which can provide the 
most stringent of QoS guarantees, the controlled-delay class 
for delay-insensitive applications, and the best-effort class.  
Other predefined classes are quite possible to incorporate into 
SCAR.  To provide these classes within an existing best-
effort network, we conceptualize a logical partition.  By 



separating link speed between each class, and with proper 
management, a guaranteed service network can be placed 
atop the existing best-effort network.  This abstraction can be 
seen in Figure 1.  To distinguish classes, data packets are 
classified within the headers through marking. 

 

 
 
 Figure 1. The logical separation of a network 

 
In Figure 1, a logical separation can be seen between all 

SCAR aware nodes and end-hosts.  Operation of SCAR can 
still take place transparently within non-aware areas of the 
network, although QoS cannot be guaranteed in this case 
when heavy congestion occurs at non-aware nodes.  There are 
several mechanisms which need to be in place in an SCAR 
network.  Traffic must be classified, shaped, and policed 
before the egress link with non-conforming packets being 
isolated to ensure fairness to other flows.  This can 
potentially be done through either re-marking or dropping.  
Proper scheduling must additionally be in place to provide 
accurate bandwidth and delay bounds.  SCAR does not 
specifically dictate the techniques used to provide guarantees 
in nodes, as there are already numerous approaches to do so.  
This will be discussed further later in this paper. 

Using the additive properties of aggregation, bandwidth 
guarantees can be made without the need for per-flow 
maintenance.  This is shown in Figure 2, where end-host A 
creates a 50KB/s reservation in (a), followed by a 20KB/s 
reservation by host B in (b).  Aggregate state is then 
maintained on all incoming and outgoing links.  This 
simplicity, coupled with proper policing, enables powerful 
network services.   

We now begin a detailed look at elements from the SCAR 

architecture in Figure 3 in the remainder of this section, 
except for the optional security and billing modules.  Details 
on these items can be found in [23]. 

 

 
 Figure 2.  Additive property of aggregates 
 
3.1.1. Marking Data Flows 

 
End-hosts are responsible for shaping, marking, and 

filtering their traffic.  Filterspecs [7], to determine which 
packets receive QoS, are created and enforced by the end 
hosts through marking of their own packets, thus alleviating 
intermediate network nodes from this burden. 

A flowspec [7] describing the requested level of QoS is 
still transmitted to intermediate nodes.  This contains an 
Rspec defining the desired QoS, and a Tspec describing the 
data flow.  SCAR does not dictate which particular Tspec 
should be used.  For example, the (σ, ρ) model [12] which 
describes peak and burst rates is traditionally used in RSVP, 
and conforms to leaky bucket parameters for policing and 
shaping.  End-hosts wishing to additionally specify long term 
average rates can opt to use a dual leaky bucket traffic model 
instead.  Furthermore, added to the flowspec when specifying 
a guaranteed service reservation are per-node delay values.  
These simply specify the largest upper bound on delay the 
end-host can tolerate at the node. 

End-hosts are responsible for marking their own flows into 
the classes they belong in such a way they do not exceed their 
traffic specifications.  The marking of flows is done by 
overloading the Type of Service field in the IP header. An 
end-host must mark two elements in this field; the Service 
type and the Tspec type.  As mentioned above, the service 
type describes the level of QoS the packet will receive, while 
the Tspec type describes the traffic specification the packet is 
adhering to.  While the only service types considered in this 
paper are guaranteed services, controlled-delay, and best-
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effort, the controlled-load class is defined here as well, with 
space reserved for future expansions. 

Since intermediate nodes will most likely employ different 
policing and shaping techniques for each traffic specification, 
end-hosts must mark their packets with the particular traffic 
specification their packets belong to.  If a reservation is made 
with one specification, and end-hosts mark their packets in 
another, they will be policed appropriately at intermediate 
nodes.  Our current work supports Leaky Bucket, Dual Leaky 
Bucket, and other models, as discussed further in [23]. 

 
3.1.2. Shaping and Policing Misbehaving Flows 

 
Either unintentionally or maliciously, the possibility exists 

that flows will not adhere to SCAR conventions.  A 
misbehaving flow within an aggregate can not be directly 
policed, as no state is maintained to identify it.  Instead, 
misbehaving aggregates are policed by isolating them from 
the network.  Thus, the further the architectural edges are 
pushed towards end hosts, the greater the isolation 
granularity.  In Figure 4, a network is shown in which the 
gateway, depicted as node D, and end-hosts A and B are 
SCAR aware.  Node C located between the gateway and end-
hosts is not SCAR aware.  In this particular case, hosts are 
still able to make reservations transparently through node C, 
and, as long as there is no congestion at this node, QoS 
should not be compromised.  In this case, both A and B have 
50KB/s reservations to different destinations. A problem 
exists, however, if host A or B decides to transmit at a higher 
rate than reserved, or maliciously floods the network with 
packets marked as reserved.  As there is no state maintenance 
at node D, it is therefore not aware who the perpetrator is, 
except that it is coming from the direction of node C.  It must 
then police this aggregate, resulting in service degradation to 
both hosts A and B.  If C was SCAR aware, however, it 
would only need to police the non-conforming transmitter, 
leaving the other at its reserved rate. 

 

 
 

Figure 4. A network with transparent operation 
 

Policing entails that each node will simply prevent any 
packets exceeding the reserved aggregate from obtaining 
QoS, with the onus placed on end-hosts to never exceed their 
reservation.  Nodes may allow some tolerance to over-

utilization, remark packets into a best effort class, or strict 
packet dropping to insure conformance.  Misbehaving flows 
would normally be policed at the first node, and thus policing 
policies would typically be enforced within ones own 
network, or immediate upstream provider.  Shaping and 
policing occurs on the ingress link at each node for proper 
isolation.  For example, flows adhering to a (σ, ρ) model 
would be shaped and policed with a leaky token bucket.  

 
3.1.3. Policy and Admission Control 

 
Admission control is used to determine if enough resources 

are available to admit a reservation, while policy control 
determines if the end-host is permitted to do so.  In an 
aggregated architecture, admission control is rather simple; 
only the current and maximum allowed aggregate reservation 
need be known.  The maintenance of this aggregate, however, 
is far more difficult, and will be discussed further later in this 
paper  No particular policy control is presented in this paper, 
as policies spanning networks are normally heterogeneous 
being controlled by their respective network managers.   

 
3.1.4. Resource Allocation 

 
Optimization of resource allocation, which is concerned 

with minimizing network costs when establishing QoS, has 
been slow to gain footing in recent years.  Even resource 
reservation protocols such as RSVP rarely address allocation 
policy.  It has been shown in [19] that loosening local QoS 
requirements at bottleneck nodes where resources are in short 
supply and compensating by tightening the local 
requirements at other nodes, in most cases, more optimized 
end-to-end flows will result.  Generally, most current 
allocation policies assign equal QoS proportions at each 
node.  Therefore, when providing some end-to-end delay 
guarantee d, each node would be assigned d/n delay, where n 
is equal to the number of intermediate nodes.  As each node’s 
traffic load is determined by this delay value, so is the entire 
path.  When imbalances occur within a given network path, 
equally distributing QoS will naturally create bottlenecks.  It 
has been shown that the QoS metric being served plays the 
most significant role in determining performance.  The 
amount of resources, the number of hops, and position of 
bottlenecks are also influencing factors.  An allocation policy 
is said to perform better than others when it can support 
greater network load [19]. 

The two metrics by which SCAR measures its guaranteed 
services are bandwidth and delay.  SCAR aims at providing a 
resource allocation scheme in which informed decisions can 
be made at each node to provide service to the maximum 
number of flows.  Thus, our new signaling protocol, SCAR-
SP, has been designed to enable such a scheme.  SCAR-SP 
enables a discovery procedure similar to RSVP’s One Pass 
With Advertising (OPWA) which carries path fingerprints 
within the signaling messages that contain resource usage 
information along the end-to-end path. 

SCAR-SP enables end-hosts to request differing delay 
values, but does not dictate how these decisions should be 
made.  For example, higher delay values could be set at those 
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links with less bandwidth available, which has been shown in 
[19] to yield improvements in traffic flow.  However, 
mechanisms must be in place to measure these gains.  A 
straight forward and uncomplicated implementation called 
the Simple Allocation Scheme (SAS) is presented in the next 
section, which takes a similar approach.  Performance 
measurement is conducted locally, with intermediate nodes 
identifying themselves as bottlenecks.  We leave the 
investigation of more complex mechanisms for future work. 

In most cases, applications are only concerned with their 
end-to-end performance.  Thus, in different scenarios the 
same application will often require different performance 
guarantees at each intermediate node.  Neglecting 
propagation delay, a teleconferencing application that can 
tolerate up to 50ms per flow would require on average 10ms 
of delay at each node over a short 5 hop path.  This is in 
contrast to a 10 hop path where 5ms would be needed. 

In a situation where each node can only provide one local 
delay guarantee, difficulties arise when multiple flows share a 
node.  A shared node would therefore need to provide the 
lowest delay requirement, leading to an overall lower 
utilization.  (If utilization was allowed to be high, it would be 
very difficult to maintain a lower delay.)  In our architecture, 
end-hosts can negotiate differing delay values.  In this 
scenario, shared core nodes would typically offer larger delay 
bounds, providing better utilization.  This would be naturally 
be compensated by edge nodes where resources are more 
readily available, and smaller delay bounds could be offered.  
Further details are discussed later in this paper. 

 
3.2. The SCAR-SP Signaling Protocol 

 
SCAR-SP has been designed to provide efficient call 

mechanisms when creating, refreshing, or removing 
reservations.  Unlike most signaling protocols, which are 
restricted to either a sender or receiver-oriented design, 
SCAR-SP enables both approaches.  Either the receiver or 
sender can be given the responsibility to provide the flow 
specifications for the reservation.  In many cases, receiver 
control is favoured over sender controlled, as senders are 
often not aware of what resources are available to the 
receiver, including bandwidth or even computational power.  
On the other hand, receiver control can also be a hindrance, 
especially in the case where senders are billed for QoS, or the 
sender wants more control over policy. 

Another advantage of SCAR-SP’s design is that senders 
are first responsible for characterizing the traffic it will be 
transmitting.  By knowing the traffic model, receivers 
establishing a reservation can make more informed decisions.  
For example, if a receiver is not aware that the sender will be 
transmitting at a variable rate, it may unknowingly make a 
constant rate reservation, in effect causing underutilization.  
Additionally, if the sender can characterize its traffic in more 
than one way, the receiver can then be given the option of 
which specification it wishes to receive. 

SCAR-SP messages require state typically not associated 
with signaling messages to be inserted within them.  This 
state is minimal, and cannot be avoided in soft-state 
architectures.  It should be reiterated that this type of state is 

significantly different from the state associated with IntServ 
scalability concerns, and is shown later in this paper to cause 
no significant impact on performance.  The largest advantage 
to keeping this state in the signaling protocol is the fact that 
no lookup is required on behalf of intermediate nodes.    
SCAR’s architectural specification still holds, and imposes 
that in its simplest form, no per-flow state shall be inserted 
into intermediate nodes or the data packets themselves.   

SCAR-SP is a soft-state protocol which provides better 
dynamic adaptability and robustness than a hard-state 
protocol, and allows adaptation of routing changes to take 
place fairly seamlessly with end-host cooperation.  Unlike 
RSVP where refresh messages are generated by intermediate 
nodes hop-by-hop, SCAR-SP shifts this responsibility to the 
end-hosts in an end-to-end fashion.  They are then required to 
initiate periodical refreshes so that their soft-state 
reservations are kept active.  This further reduces processing 
overhead at intermediate nodes. 

If a reservation expires, resources are automatically de-
allocated.  To maintain simplicity, SCAR-SP is simplex and 
can only offer unidirectional reservations.  To establish a 
bidirectional flow, two separate reservations must be made.  
Its design can also handle lost messages, and requires 
minimal processing power at the nodes.   

The operation of SCAR-SP is similar to most other 
signaling protocols.  The SCAR-SP daemon, shown earlier in 
Figure 3 facilitates the creation and removal of reservations 
in conjunction with policy and admission control modules.  
Admission control determines if enough resources are 
available to admit a reservation, while policy control 
determines if the end-host is permitted to do so.  The 
classifier determines which class the traffic belongs to.  
Policing and shaping of the guaranteed service class ensures 
traffic is behaving properly, sending at proper peak and 
average rates.  The scheduler can then guarantee the reserved 
bandwidth and delay to this traffic. 

In an aggregated architecture, admission control is rather 
simple; only the current and maximum allowed aggregate 
reservation need be known.  The maintenance of this 
aggregate, however, is far more difficult as signaling loss and 
partial reservations are introduced.  Part of the difficulty 
arises due to the fact that admission control is based on an 
end-to-end transaction.  That is, if all intermediate nodes 
along the end-to-end path do not accept the reservation, then 
all nodes which have since accepted it locally must roll-back 
to a previous state.  Likewise, lost signaling messages can 
create confusion as partial reservations occur.  Normally this 
would imply that nodes must maintain internal state.  
However, SCAR-SP can deal with these problems 
effectively.  In the sections we below, we provide a brief 
overview of SCAR-SP operations and behaviour.  Further 
details on SCAR-SP, including its message formats and 
handling of failures, route changes, lost messages, and other 
conditions can be found in [23]. 
 
3.2.1. SCAR-SP Operation 
 

SCAR-SP defines four phases of operation; discovery, 
reserving, refreshing, and tearing down.  The discovery phase 



entails determining the current status of the end-to-end 
reservation path.  The reservation phase involves the merging 
of flows in to a service class aggregate, while the refresh 
phase keeps these reservations active.  In the teardown phase, 
a reservation is explicitly de-allocated.  Three messages are 
defined; discover (DISC), reserve (RESV), and refresh 
(REFR).  DISC messages are used in the discovery phase, 
while RESV messages are used during the reserving phase.  
REFR messages are used during the refreshing and teardown 
phase.  For the remainder of this section, it is assumed that 
traffic is characterized by a simple dual leaky bucket scheme.  
As mentioned previously, either senders or receivers can 
make the reservation.  As each of these methods vary slightly, 
the next two sections will detail each separately. 

 
3.2.1.1. Receiver Oriented Reservations 

 
To establish a guaranteed service receiver-oriented 

reservation, a DISC message is first sent from the sender to 
the receiver.  This message is passive and is intended solely 
to determine the current status of all nodes participating on 
the reservation path.  It is additionally used as a container for 
other information which must be reported to the receiver.  As 
the message is traveling from the sender to receiver, each 
intermediate node updates the following information: the 
maximum end-to-end refresh interval, the maximum average 
rate, the maximum peak rate, the maximum peak rate 
duration, and the maximum burst. These are end-to-end 
variables which are only updated if the nodes variables are 
less than the current value.  The receiver is therefore provided 
with the maximum refresh interval and flow descriptor that 
each intermediate node on the end-to-end path can currently 
provide.  Intermediate nodes must also append the following 
per-node information: the minimum queuing delay available 
and the current queuing delay being served. 

Thus, these values represent a variable length field in the 
discover message.  Path state is inserted into the message as 
well to ensure return messages follow the same path.  Policy 
control is also checked at each node during the discovery 
phase, to individualize the results for the sender-receiver pair 
if the policy dictates.  Depending on nodal policy, some 
networks or hosts may be given preferential treatment in their 
flows in the form of greater bandwidth, or possibly be denied 
resources all together. 

By collecting this information, the receiver can then make 
a well informed reservation request.  Quite often, protocols 
not providing some form of reporting function can 
consequently produce many unsuccessful reservation 
requests, essentially flooding the network with hosts seeking 
reservations that cannot be made.  As long as resources do 
not change dramatically after the discovery information has 
been received, and before a reservation attempt has been 
made, very few unsuccessful reservation requests will result. 

After receiving a discover message, a RESV message is 
then sent back containing a flow descriptor detailing the QoS 
level being sought, and the path information obtained from 
the DISC message.  The flow descriptor in this case contains 
all metrics described during the discovery phase; a requested 
refresh interval, the average rate, peak rate, peak rate 

duration, and burstiness of the flow.  Also included is a 
variable sized list of sequentially ordered delay values; one 
for each node in the path.  These delay values are chosen by 
the receiver such that the sum of all delay values requested is 
equal to or less than its end-to-end delay requirement.  RESV 
messages require that each delay value must be greater than 
or equal to the corresponding minimum delay value at each 
node, and represent the largest delay value in which it is 
willing to accept.  In most cases, the delay currently being 
provided at any given node will be less than that requested, 
meaning flows will often see better than expected QoS.  
Additionally, a node is guaranteed to never raise its delay 
value if it would compromise any current reservations.  It 
should be noted that these delay values represent queuing 
delay at the local node, and do not include propagation delay. 

Using the path state, the RESV message traverses back 
through the same reservation path.  As it does so, admission 
and policy control is conducted at each node.  If both are a 
success, the resources are allocated by updating appropriate 
local node aggregate variables.  When a successful RESV 
message is received by the sender, it may begin transmitting 
its data at the reserved rate conforming to the traffic 
specifications contained in the RESV message.   

Since nodes need not have their clocks synched, individual 
expiration identifiers must be appended to the RESV message 
at each node.  This information is independent at each node, 
and will typically refer to the local time in which the 
reservation expires.  These values are then used in subsequent 
merge messages used to refresh the resource reservation. 

To preserve the reservation, REFR messages must 
occasionally be sent.  Without such messages, a reservation 
will timeout and resources at each intermediate node will be 
de-allocated.  The sender initiates this reservation refresh by 
sending a DISC message to the receiver.  Attached to this 
message, and not examined by nodes, is the list of expiration 
identifiers obtained from the last REFR or RESV message.  
This list is then subsequently used by the receiver during the 
actual refresh.  The DISC message once again appends node 
information and path state, and acts as a reporting feature to 
the receiver.  A receiver can use this information if it wishes 
to change its resource reservation.  The new REFR message 
issued by the receiver can contain the same flow descriptor 
used previously to maintain the same level or QoS, or can 
attempt to raise or lower reserved resources by issuing a new 
flow descriptor.   All new REFR messages are once again 
subject to admission control; however it is guaranteed to pass 
if the descriptor has been left unchanged or lowered. 

There is no explicit teardown message, as end-hosts can 
indirectly de-allocate their resources immediately by sending 
a REFR message with a refresh interval of zero.  This will 
cause a reservation to timeout instantly. 

 
3.2.1.2 Sender Oriented Reservations 

 
A sender oriented reservation requires one extra message 

when establishing a reservation and that each message during 
the session is marked with an orientation flag indicating a 
sender oriented reservation.  The sender first transmits a 
DISC that is used to collect path state and inform the receiver 



of one or more traffic patterns it is willing to send.  Upon 
receipt of this message, the receiver can choose which traffic 
pattern it wishes to accept, and generates a fresh DISC 
message.  This message follows the reverse direction using 
the path state received, and contains blank traffic pattern 
information for intermediate nodes to append or update. 

The sender, after obtaining the network information, can 
send its RESV message.  Path state is now recorded in RESV 
and REFR messages, and is subsequently used in DISC 
messages.  Similarly, expiration information is appended to 
RESV and REFR messages, and reported back.  When 
collecting path information and when making reservations, 
the orientation flag must be checked as it indicates the 
incoming and outgoing links for the reservation. 

 
3.2.2. Expiration Identifiers 

 
When a reservation is established, a timing mechanism 

must be in place to de-allocate a flow’s resources if a refresh 
is not received.  Complications arise when there is no per-
flow state kept in the intermediate nodes.  The way in which 
a node wishes to implement this soft-state is not tied to one 
method.  We present a potential mechanism in this section, by 
first examining how to de-allocate per-flow resources. 

To maintain a scalable solution, a node should not need to 
maintain per-flow expiration information.  Thus, we 
introduce a framing strategy and calendar queue that can 
collect this information as an aggregate.  Shown in Figure 5, 
three reservation requests arrive on a node at local times 0.6, 
2.2, and 2.8.  The first requests a 6 second refresh interval, 
while the others only request 2 seconds.  Assuming the 
resource requests were successful, the resources reserved in 
the first request are set to de-allocate in expiration slot g.  
Both the second and third requests will de-allocate resources 
in slot e.  Using the additive properties of an aggregate, we 
can combine both de-allocations into one value.  A ceiling 
function is used when de-allocating resources in each 
expiration slot.  Thus, at local time 5.0, all resources within 
expiration slot e expire, even though resources were reserved 
at different times and used the same refresh interval. 

 
Figure 5.  The use of expiration slots to de-allocate resources 

 
End-hosts should not assume, however, any extra leniency 

when refreshing their resources since it is unknown to what 
extent intermediate nodes will potentially extend a 
reservation.  The simplicity of such a scheme allows fine 
granularity in selecting the width and number of expiration 
slots.  In networks with any form of latency, end-hosts will 
not even likely be aware. 

The framing strategy introduced above allows resources to 
timeout and de-allocate effectively and efficiently.  However, 
a second complication arises; how do we prevent such a de-
allocation when a refresh is encountered and no state is 
maintained at the node?  As previously mentioned, expiration 
identifiers (EIDs) are contained within the signaling 
messages for reference.  Since node clocks are not synched, 
individual EIDs are needed.  It should be noted that resources 
are allocated immediately when requesting resources, but are 
subject to time-framing when being refreshed. 

As an example, suppose that a RESV attempt of 10KB/s is 
made with a refresh interval of two seconds.  Aggregate 
resources are allocated to 10KB/s and an aggregate of  
-10KB/s is set at expiration.  The expiration slot value is then 
returned as the EID for later reference.  To refresh, a REFR is 
sent containing the same rate, same requested interval, and 
the EID received.  In this case, a new expiration timeout is 
scheduled in the same manner as above.  The refresh rate is 
then added to the expiration slot pointed to by the EID.  This 
will prevent any pending de-allocation for this flow.  By not 
preventing this de-allocation through adding the same refresh 
rate as originally specified, end-hosts can raise or lower 
reservation requirements when refreshing reservations. 
 
3.2.3. Simple Optimization of Resource Allocations 

 
As mentioned previously, SCAR-SP enables optimization 

of resource allocations through its discovery process.  While 
more elaborate schemes are possible, and are the focus of 
continuing research, a simple scheme is presented here. 

The Simple Allocation Scheme (SAS) is designed from 
two perspectives; the intermediate nodes, and the end-hosts.  
Intermediate nodes are responsible for bottleneck prevention; 
that is, raising or lowering local resource allocations to 
maximize the end-to-end flows participating on it.  Since 
bottlenecks form when a node has exhausted its allocated 
resources for an aggregated class, detection is trivial.  The 
node can then increase resources allocated by giving a greater 
link share, by offering larger delay bounds, or both.  
Appropriate upper and lower thresholds must be placed on 
delay and bandwidth respectively to keep new flows from 
obtaining undesirable QoS.  Resource management control is 
done independently at each node, with domains controlling 
their allocation policies.  Conversely, when there is a drop in 
demand, nodes can lower delay bounds or link share. 

On the other side of the coin, participation of end-hosts is 
needed to shift resource reservations when bottlenecks form.  
Since intermediate nodes can not change resource allocation 
if it threatens any flows within the current aggregate, 
cooperation is needed.  When adjusting delay requirements 
within nodes, the minimum delay field is raised or lowered 
appropriately.  New flows are now restricted to this delay 
bound during admission control; however, the current delay 
the node is servicing cannot change until all current 
reservations re-adjust.  To do so, nodes must wait for a period 
equal to its maximum refresh interval, examining refresh 
messages.  If reservations are no longer reserving at the 
current delay value, it can then be adjusted appropriately to 
the new minimum delay value.  Now, when end-hosts 
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examine network fingerprint information and notice that the 
QoS levels they are requesting are higher than currently being 
accepted from new flows, they must shift resource usage if 
possible.  Resource usage from bottleneck nodes can be given 
up, and obtained at other non-bottleneck nodes.   
 
3.3. Scheduling 
 

By controlling link bandwidth and their corresponding 
buffers at each node, packet loss, delay, and throughput can 
be managed.  This can be accomplished through admissions 
procedures allowing access to the resources, and scheduling 
disciplines to limit the competition of flows.   

To provide node-local QoS guarantees to a flow, a packet 
scheduling discipline is used to guarantee bandwidth and 
place an upper bound on delay.  The discipline may 
additionally provide bounds on jitter or loss.  This is done by 
choosing which packet to transmit when its respective 
outgoing link becomes idle.  While mechanisms within a 
node must be in place to address local QoS guarantees, there 
must also be mechanisms to ensure the end-to-end QoS is 
met. Due to the uncertainness of packet switching networks 
in a multiplexing environment, traffic patterns can become 
distorted through differing areas of load on the network.  
These distortions can result in bursts of traffic at differing 
points, regardless of how the traffic had entered the network, 
and can compromise QoS.  Consequently, appropriate 
mechanisms must be employed to handle these situations. 

The SCAR approach, as discussed earlier, is flexible and 
can support a wide variety of scheduling disciplines and 
algorithms that provide guarantees on bandwidth and delay.  
Since extensive work has already been dedicated to the 
development of approaches to scheduling network resources, 
this allows implementations of SCAR to leverage this 
existing work, and make use of an appropriate approach.   

 
4. Experimental Results and Analysis of SCAR 

 
In this section, we will analyze SCAR and its signaling 

protocol, SCAR-SP.  Where possible, we also compare our 
approach to current RSVP implementations, and other 
signaling protocols and architectures discussed in Section 2, 
including Boomerang, SGS, and YESSIR.  With no 
implementation available for other systems such as SCORE, 
we were unable to assess and compare with their 
performance.  For brevity, we report on highlights of the most 
important and interesting experimental results; for complete 
results, the reader is urged to consult [23] for details. 

 
4.1. Experiment Design and Setup 
 

Unfortunately, there is a lack of consistency in proof of 
concept and implementation of work in this area.  RSVP has 
multiple competing implementations available, while other 
approaches have implementations for only specific 
configurations of Linux or BSD Unix.  Some of the newer 
approaches have been implemented for simulation packages 
like the Network Simulator ns-2 [15].  As a result, analyses of 
SCAR involved a mixture of live network tests and 

simulations, with baseline testing to ensure that results were 
reasonably consistent and comparable. 

For primary testing, a 400MHz Celeron workstation with 
256MB of RAM was used, as this most closely matched the 
configurations of test machines in related work (again to ease 
comparisons).  As an operating system, we used the Knoppix 
Linux Live CD 3.6 distribution with kernel 2.4.27.  By doing 
so, there was no need for swap space or additional overhead 
as the lightweight kernel is loaded directly into RAM.   When 
traffic generation was required, a collection of Athlon XP 
1800 machines with 512MB of RAM were used, with the 
same Linux operating system, connected by 100MB Ethernet. 

  For simulations, we used version 2.27 of ns-2.  While 
there are some limitations when measuring nodal 
performance metrics, ns-2 is quite useful in generating very 
large topological simulations for study.  Nodal performance 
was measured through software instrumentation, as ns-2 is 
event driven, and runs independent from processing power.  
The Celeron was also our primary simulation system. 

SCAR and SCAR-SP were implemented and tested in this 
simulation environment.  To implement these in ns-2, sender 
and receiver agents were first created to generate and handle 
reservation requests and responses.  The sender agent was 
additionally responsible for generating and marking flows, 
and initiating periodic refreshes by sending DISC messages.  

Intermediate nodes and end-hosts had a SCAR-SP daemon 
inserted which provided the logic required to handle 
incoming SCAR-SP signaling messages.  Further modules 
were defined for policy, resource, and admission control.  As 
our architecture does not dictate which policies to use, for 
simplicity we use a generic ADMIT_ALL policy which 
allows any end-host to reserve any arbitrary amount of the 
available resources.  For scheduling purposes, we 
implemented rate-controlled servers at each node.  This 
involved placing per-input shapers at each link.  In   ns-2, this 
was done by overloading the recv() function, and shaping the 
data packets before any internal switching.  For simplicity, 
tests were restricted to leaky bucket regulated traffic. 

 
4.2. Validation of SCAR and SCAR-SP 

 
Before conducting performance and scalability testing, we 

first carried out a series of simulations to validate SCAR and 
SCAR-SP and ensure that they were functioning correctly.  
This involved the creation, maintenance, and teardown of 
flows, the proper scheduling of flows, and tests of flow 
protection, admission control, and the policing of 
misbehaving flows.  In all cases, SCAR and SCAR-SP 
performed as they should and were deemed to be delivering 
their respective functionality correctly. 

 
4.3. Performance and Scalability Experimentation 

 
Many signaling protocols and architectural designs have 

been slow to gain footing due to scalability concerns, which 
is defined as the capacity for the network to expand the 
amount of flows, nodes, and traffic.  These concerns are a 
direct result of the overhead required when signaling tens, if 
not hundreds, of thousands of flows simultaneously within 



core nodes.  To measure scalability, there are numerous types 
of overhead which are analyzed when studying signaling 
protocols and their respective frameworks; these include 
processing, memory, and network requirements.   

 
4.3.1. Processing Overhead 

 
Generally, the total processing overhead generated at an 

intermediate node can be divided into two parts; the signaling 
load, and session load.  Signaling load is determined by the 
number of signaling messages arrive at the node in some time 
frame.  Session load, on the other hand, deals with the 
management of existing reservations and their state. 

Overhead was calculated as the percentage of time spent 
by the test system in processing messages and maintaining 
and scheduling flows.  This data was collected using tools 
such as top and tcpdump when live tests were possible, and 
through instrumentation when simulations were required. 

For test purposes, the reservation refresh interval was set to 
30 seconds in all cases as suggested in [8], and all flows are 
set to live for 62.5 seconds before being regenerated, a value 
selected for comparison purposes with previous work in this 
area.  While flows in the real world will most likely live for 
longer periods, we choose a shorter interval to address 
scalability concerns during periods with many short-lived 
reservations.  In most cases, a reservation session within this 
interval would include a setup, two refreshes, and a teardown. 

 

 
Figure 6.  Processing Overhead 

 
We summarize the overhead results in Figure 6.  As can be 

seen, implementations of RSVP (KOM-RSVP, and the more 
optimized T-KOM-RSVP) had the most overhead, while 
SCAR and SGS producing excellent results, with SCAR just 
edging out SGS.  Both SCAR and SGS could handle 100,000 
simultaneous flows with less than a 50% processing load 
(with SCAR at 47.0% and SGS at 48.7%) in our test system.  
Boomerang performed reasonably well, but we could not 
observe YESSIR in this case due to issues in generating 
compatible traffic and flows. 
 
4.3.2. Memory Overhead 

 
Memory overhead at intermediate nodes is largely a 

function of the number of flows reserved and maintained at 
the node.  Approaches that require more memory run the risk 
of exhausting resources on nodes, particularly as the number 

of flows increases.  This ultimately places a limitation on the 
number of flows that can be effectively supported. 

Memory requirement measurements were obtained from 
monitoring the /proc virtual file system in testing live 
implementations, through instrumentation of simulations, and 
also through the examination and analysis of source code. 

Memory overhead requirements for various approaches are 
shown in Figure 7.  RSVP implementations had the highest 
memory overhead; the ISI RSVP implementation was found 
to be quite limited in the number of flows that could be 
supported.  SCAR and SGS both had low memory needs, 
while Boomerang and YESSIR had moderate needs.  
(YESSIR results were derived from code analysis without the 
generation of flows.)  SCAR is quite scalable from this 
perspective, as the memory it requires is independent of the 
number of flows due its stateless aggregate philosophy. 

 

 
Figure 7.  Memory Overhead 

 
4.3.3. Network Overhead 

 
Network overhead refers to the amount of additional 

network traffic introduced to support the creation, 
maintenance, and teardown of flows.  Since SCAR requires 
state in signaling messages, it incurs a higher overhead than 
other approaches as shown in Figure 8. 

 
Figure 8. Network Overhead 

 
Network overhead was computed based on an analysis of 

the protocol messages required to manage the number of 
flows required, assuming 30 seconds between refreshes and 
20 hops end-to-end, shown in [1] to be an accurate average 



for the Internet.  It is important to note that since YESSIR is 
an in-band protocol, it adds little network overhead itself; the 
overhead reported is primarily RTCP used to carry it. 

The higher network overhead for SCAR does not cause a 
significant concern.  As shown earlier, this network overhead 
does not impose a significant processing or memory burden 
on intermediate nodes.  Furthermore, the signaling overhead 
for SCAR is minimal in comparison to the network 
requirements of the flows themselves.  For example, typical 
rates on Sprint backbones are 2488Mbps (OC-48) with the 
number of flows for any given minute in the area of several 
hundred thousand [16].  Signaling overhead for SCAR-SP on 
such a link serving a generous 100,000 reserved flows 
requires only 0.3% of its link capacity.  In fact, network 
overhead remains a linear function, and it is generally not 
thought of as a problem when scaling to large numbers of 
flows in a call admission organization.  When one considers 
that processing and memory considerations would prevent 
many approaches, including RSVP, to be completely unable 
to handle this number of flows in the first place, SCAR is 
performing reasonably well. 

 
5. Conclusions and Future Work 

 
This paper presented SCAR, a stateless QoS architecture 

for the Internet that can provide end-to-end guarantees to 
multiple flows on demand.  It is highly scalable in its memory 
requirements, network requirements, and most importantly, 
processing requirements.  It provides a greater set of 
functionality than previous lightweight protocols, and 
mechanisms to assist in optimizing resource allocations.  It is 
not dependant on any particular scheduling algorithm, and 
can handle multiple traffic classifications.   

A new soft-state signaling protocol, SCAR-SP, was 
presented to enable signaling within this new architecture.  Its 
design allows either the sender or receiver to make 
reservations, and allows senders to specify their unique traffic 
characteristics to the network.  It can additionally operate 
through non-aware intermediate nodes in a transparent 
operation.  Experimentation has shown that nodes can handle 
hundreds of thousands of flows simultaneously with little 
impact on local node performance. 

In the future, we plan to continue experimentation and port 
our ns-2 implementation for use in live testing.  We are also 
currently investigating a variety of competing techniques to 
reduce the network overhead in signaling in SCAR-SP.  As 
mentioned earlier, more work needs to be done in developing 
billing and security modules for SCAR, continuing the work 
in [23].  Additionally, optimization of resource allocations, 
which has rarely been addressed in the past, needs to be 
researched and tested more thoroughly.   
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