
A Knowledge-Based Cohesion Metric for Object-Oriented Software 
 

CARA STEIN1  
LETHA ETZKORN2 

SAMPSON GHOLSTON3 
PHILLIP FARRINGTON3 

JULIE FORTUNE3 
 

1 Edinboro University of Pa  
Department of Mathematics and Computer Science 

215 Meadville St., Edinboro, PA 16412 USA 
cstein@edinboro.edu 

2,3 University of Alabama in Huntsville 
Huntsville, AL 35899 

2Computer Science Department 
letzkorn@cs.uah.edu 

3 Industrial and Systems Engineering Management Department 
 (gholston, paf, fortunej)@ise.uah.edu 

 
 

Abstract.  This paper presents Percentage of Shared Ideas (PSI), a metric for measuring the semantic 
cohesion of a class in object-oriented software. PSI uses information in a knowledge base to quantify 
the cohesiveness of a class’s task in the problem domain, allowing a clearer view of cohesion than 
code syntax provides. Furthermore, this metric is independent of code structure and could be 
calculated before implementation, providing clues to design flaws earlier in the software development 
cycle, when changes are less expensive. 
 In this paper, we define the PSI metric, provide theoretical and empirical validation, and compare 
PSI to well-known cohesion metrics. 
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1. Introduction 
Metrics can help software developers and managers 
assess the quality of software and pinpoint trouble areas 
in their systems. For instance, a metric may indicate that 
a class lacks cohesion. A cohesive class is one in which 
all of the members are closely related, focused on a 
single task. A class that lacks cohesion is poorly 
designed, and therefore is more likely to be error-prone 
[24]. If metrics are used to quickly and automatically 
find out which classes in a software system lack 
cohesion, the programming team can take steps to check 
those classes and improve them before the software has 

entered the integration and testing stages. Since changes 
are less expensive the earlier in the development 
lifecycle they are made [24], this can save the project 
considerable time and money. 
 Most software metrics are based on code syntax, 
quantifying the complexity or cohesion of an 
implementation by performing calculations based on 
counting code structures. In contrast, semantic metrics, 
introduced by [16],  quantify the meaning within a 
domain of the task being performed. To collect semantic 
metrics, first a program understanding system 
[2][22][14] performs understanding; in that way the 



operation of the software, or what the software does, is 
represented in a general knowledge-based format. In our 
semMet tool, a mature program understanding engine 
(the PATRicia system [12][13][14][15]) performs NL-
based understanding on comments and identifiers, and 
thus provides a problem domain level understanding of 
the software. 
 The structure of the code itself is not considered for 
semantic metrics, so it is not necessary for a system to 
be implemented in order to calculate semantic metrics. 
To illustrate this point, consider the following code 
sample provided by [27]: 
if (balance < withdrawal) {  
   bounce = true; 
}  
else {  
   bounce = false; 
}  
Compare that code sample with the following: 
bounce = (balance < withdrawal) ? true : false; 
 Traditional metrics such as lines of code produce 
different values for these two code samples, even 
though they do exactly the same thing. In contrast, 
semantic metrics would flag the concepts of balance, 
withdrawal, and bounce in the banking domain for both 
samples, regardless of the implementation details.   
 Semantic metrics are especially useful for measuring 
cohesion, which is hard to capture based on program 
syntax, according [3]. 
 However, before we can use any metric, we must 

make sure it is a valid measure of the attribute of 
interest. Many of the metrics that have been defined 
have never been adequately validated theoretically or 
empirically, making their use questionable. [17] found 
that many metrics are invalid or poorly defined. They 
suggested that any new metrics be valid and 
unambiguous. This paper addresses these points. 
 Others have also studied existing metrics and 
concluded that metrics must be valid and well defined, 
and too many existing metrics fail in at least one of 
these areas. [3] analyzed 13 cohesion metrics  and 30 
coupling metrics [4] from ten different sources. [3] 
found problems with all of these metrics except those 
proposed by [5]. These studies point to a clear need for 
valid, well-defined metrics. 
 This paper defines and analyzes PSI (percentage of 
shared ideas), a knowledge-based semantic cohesion 
metric. We validate PSI theoretically and empirically, 
and we compare its performance to six variations on a 
well-known cohesion metric, Chidamber and Kemerer’s 
LCOM [8][9]. 
 
2. Description of the PSI Metric 
To avoid the distortions due to programmer style or 
programming language that may affect syntactic 
metrics, [16]  proposed a suite of semantic metrics. We 
have created a tool called semMet to compute semantic 
metrics from the source code of software systems.  
 

Figure 1: A Conceptual Graph Example 



 SemMet incorporates Etzkorn’s PATRicia (Program 
Analysis Tool for Reuse) system, a mature program 
understanding engine [12][13][14][15]. Program 
understanding approaches can be divided into three 
categories: algorithmic, transformational, and 
knowledge-based. From there, knowledge-based 
approaches can be divided into three categories: graph-
parsing, heuristic, and using informal tokens. Informal 
token program understanding approaches include the 
DESIRE system, developed by [2] and the PATRicia 
system developed by [12][13]. The PATRicia system is 
a knowledge-based approach that incorporates a hybrid 
of heuristics and informal token use [14]. The PATRicia 
system (and semMet by extension) performs natural 
language processing on identifiers and comments from 
code in order to match these words with keywords and 
concepts in a knowledge base [12]. The PATRicia 
system program understanding engine was originally 
applied to identifying reusable components in object-
oriented software [13]; the main purpose of semMet is 
to calculate semantic metrics to assess the quality of 
software from source code or design specifications. 
 SemMet currently consists of two parts: the source 
code interface and the main processing module. A 
design specification interface will also be added to 
facilitate the calculation of semantic metrics from 
design specifications. The source code interface 
performs the following steps: 
• Retrieve the inheritance hierarchy and each class’s 

attribute variables and member functions. 
• Extract all comments at both class and function 

levels.  
• Use natural language processing to try to determine 

the part of speech for each identifier. For example, 
the function name “getBalance”  would become get 
(verb) and balance (noun). 

• Perform sentence-level natural language processing 
on comments to determine the part of speech of 
each word. This task can be accomplished with a 
high degree of accuracy because comments have 
their own sublanguage of the English language 
[12]. 

The main processing module performs the following 
steps: 
• Process all words (from comments and identifiers 

of source code or from prose descriptions in design 
specifications) through a knowledge base of 
concepts and keywords of the domain of the 
system. 

• Count concepts and keywords related to each class 
and each method of each class.  

• Use class- and function-level concept and keyword 
information to calculate metrics. 

 The knowledge base used by the semMet system 
uses the same structure as the knowledge base in the 
PATRicia system [12][14][15]. This structure consists 
of two layers: a layer of keywords tagged with part of 
speech information, and a layer of conceptual graphs 
[14][15]. Conceptual graphs are a knowledge 
representation format that can be used to show ideas and 
the relationships among them [26]. In semMet, 
conceptual graphs are used to represent the relationships 
among the ideas in the knowledge base. Conceptual 
graphs are made up of concepts, which represent 
entities, attributes, states, and events; and conceptual 
relations, which show how concepts are interconnected 
[26]. For instance, to show “ the mouse moves the 
scrollbar, which is part of the window,”  we might make 
a conceptual graph such as the one in Figure 1. This 
conceptual graph is read as follows: the scrollbar is part 
of a window, the state of the scrollbar is moving, and 
the agent of the scrollbar’s moving is the mouse. 
 Conceptual graphs make up one layer of the 
knowledge base of the semMet system. The other layer 
is an interface layer of weighted keywords, which have 
been tagged with parts of speech. Inference occurs from 
the interface layer to the conceptual graph layer, and 
further inference can occur between concepts in the 
conceptual graph layer.  
 To calculate semantic metrics using the semMet 
system, a knowledge base with this structure is created 
for the domain in which a piece of software is written. 
The words appearing in the identifiers and comments of 
a piece of code are compared to concepts and keywords 
in the knowledge base. Whenever a word from the code 
matches a keyword in the knowledge base, that keyword 
is associated with the class or member function. 
Furthermore, inference is performed from the keyword 
layer in the knowledge base to the conceptual graph 
layer. If a class or member function contains keywords 
which trigger a concept in the conceptual graph layer of 
the knowledge base, that concept is also associated with 
the class or member function. As in the PATRicia 
system, semMet’s knowledge base and inference engine 
are implemented in the CLIPS expert system shell [12]. 
Once the appropriate concepts and keywords from the 
knowledge base have been associated with each class 



and member function, semantic metrics are calculated 
based on this information.  
 To illustrate this, consider the abbreviated bank 
account class definition given in Figure 2. In this 
example, the identifiers Account, balance, type, 
interestRate, and getBalance, as well as the comment 
associated with the class definition, are processed. First 
multiple-word identifiers such as “ interestRate”  are split 
into their component words. Each word is assigned a 
part of speech. For example, in this case “account”  is a 
noun. Then, the words with their parts of speech are 

compared against the part-of-speech-tagged keywords 
in the interface layer of the knowledge base. In this 
example, the following keywords are matched:  account 
(noun), savings (adjective), checking (adjective), 
interest (adjective), rate (noun), and balance (noun). The 
keywords bank (adjective) and interest (noun) are not 
matched. All of the matched keywords are associated 
with the class Account. In addition, the keyword 
balance (noun) is associated with the function 
getBalance(), because that function’s name contained a 
match to the keyword. 

 

class Account {  
   private: 
   int type; // 0=savings, 1=checking 
   float interestRate; 
   float balance; 
    
   public: 
   float getBalance(); 
 } ; 

Figure 2: Illustration of semMet processing a bank account code example 
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 Then, inference occurs from the interface layer of 
keywords to the conceptual graph layer. In this case, the 
weighted links from the account (noun), savings 
(adjective), and checking (adjective) keywords meet the 
threshold of 1.0 for the Account concept to be matched. 
Also, the interest (adjective) and rate (noun) keywords 
meet the threshold for the Interest concept and the 
balance (noun) keyword meets the threshold for the 
Balance concept to be matched. Therefore, the Account, 
Interest, and Balance concepts are associated with the 
class Account. Similarly, the Balance concept is 
associated with the getBalance function, since its name 
matched the balance (noun) keyword, which met the 
threshold for the Balance concept. From there, further 
inferencing can occur within the conceptual graph layer. 
In this case, the link from the Account concept is fired, 
but it does not have enough weight to meet the threshold 
for the Bank_Account concept, so the Bank_Account 
concept is not matched.   
 The end result of this example is that the Account 
class is associated with the Account, Interest, and 
Balance concepts, and the account (noun), savings 
(adjective), checking (adjective), interest (adjective), 
rate (noun), and balance (noun) keywords. The 
getBalance() function is associated with the Balance 
concept and the balance (noun) keyword. This 
information is then used to calculate semantic metrics. 

  
2.1 Mathematical Notation 
In order to define metrics, we need to define some 
formal notation. Let C1, C2, …, Cm be the set of m 
classes in a system. Let Fa = Fa1, Fa2, …, Fan be the set 
of n member functions of class Ca. Let Aa = Aa1, Aa2, …, 
Aap be the set of p attribute variables declared in class Ca 
(not including any that may be inherited by class Ca). 
Let Ka be defined as the set of keywords in the 
knowledge base associated with class Ca, and let Oa be 
the set of concepts in the knowledge base associated 
with class Ca.  
 Let aaa OK

�
∪=  be the set of ideas associated 

with class Ca. Let Ra be the set of conceptual relations 
connecting to or from any concept in class Ca.  
 Similarly, let Kai be the set of keywords associated 
with function Fai, let Oai be the set of concepts 
associated with function Fai. 
 Let aiaiai OKI ∪=  be the set of ideas associated 
with function Fai, and let Rai be the set of conceptual 
relations associated with function Fai.  

Let # be a mapping from set Fa to set Aa such that Fai # 
Aaj if function Fai uses attribute Aaj somewhere in its 
implementation. Let ? be a mapping from Fa to Fa such 
that Fak ? Fal if function Fak calls function Fal. Let O be 
the set of all concepts in the knowledge base. Then let 
% be a mapping from set Ra to set O such that r % i if i 
is a concept in Oa and conceptual relation r forms a 
connection from concept i to any concept j in set O or 
from any concept k in set O to concept i. 
 
2.2 Definition of PSI (Percentage of Shared Ideas) 
Although the semantic metrics proposed by  [16] are not 
subject to distortions due to programming language or 
programmer style as traditional metrics are, they still 
have one obstacle: they require a knowledge base with a 
conceptual graph structure in order to be calculated. Not 
all knowledge bases have such a structure. Therefore, 
[27] proposed semantic metrics, including PSI, that can 
be calculated using any knowledge base that associates 
concepts or keywords with classes and their member 
functions, regardless of how the knowledge base is 
implemented.    
 PSI is the number of concepts or keywords shared 
by at least two member functions of a class, divided by 
the number of concepts or keywords belonging to any 
member function in the class. PSI for class Ca is defined 
as follows. 

 
 

 
 
for 1� i, j, k � |Fa|, or 0 if no ideas are associated with 
any function of the class [27]. 
 For example, define class Ca to contain four member 
functions and a total of ten ideas (concepts or keywords 
from the knowledge base) associated with member 
functions to make up the following sets: Ia1 = { i3, i4, i5} , 
Ia2 = { i4, i5, i6} , Ia3 = { i1, i2} , and Ia4 = { i6, i7, i8, i9, i10} . 
In this example, ideas i4, i5, and i6 are common to at 
least two member functions; the others are not. 
Therefore, PSI for class Ca = 3/10 = 0.30.   
 
2.3   Previous Syntactic Cohesion Metrics 
One of the most commonly cited suites of metrics is that 
proposed by Chidamber and Kemerer [8] [9]. Since 
Chidamber and Kemerer proposed these metrics, many 
people have analyzed, criticized, and proposed their 
own versions of these metrics. We will compare the 
performance of PSI to six versions of LCOM (lack of 

PSI= (1) 



cohesion in methods), originally proposed by [8] [9].  
Brief descriptions of these metrics are shown in Table 1. 

Full mathematical definitions can be found elsewhere 
[28]. 

 

 Definition Reference 
LCOM LCOM = the set of pairs of member functions with no instance variable used by both 

members in the pair  
[9] 

LCOM1 [13] added the constraint that a pair of member functions containing a member function 
and itself should not be counted. Inherited instance variables are not counted. 

[13] 

LCOM2 [8] specified a pair of member functions could not include the member function and 
itself. Inherited instance variables do not count.  

[8] 

LCOM3 An undirected graph has edges that are pairs of member functions with at least one 
attribute variable in common. LCOM3  = number of connected components of the graph. 

[23][19] 

LCOM4 A variation of LCOM in which there is an edge in the graph for each function that calls 
another function in addition to the edges for functions that share attribute variables  

[19] 

LCOM5 LCOM 5 is specified from the perspective of the number of functions accessing each 
attribute 

[13] 

Table 1: Definitions of Various LCOM Metrics 

  
3. Criteria for Evaluating Cohesion Metrics 
 Kitchenham, Pfleeger, and Fenton proposed a 
framework for evaluating software metrics [21]. In this 
framework, they described the structure of any measure 
as containing the entities being analyzed, such as classes 
or modules; the attribute being measured, such as size; 
the unit used, such as lines of code; and the data scale: 
nominal, ordinal, interval, or ratio. Units are valid only 
for interval or ratio data, but they can be adapted for use 
with ordinal data. In order for a value to have any 
meaning, the entity, the attribute being measured, and 
the units must be specified. The measure must be 
defined over a specified set of permissible values 
(discrete or continuous) [21].   
 In order to be valid, a measure must have: 
• Attribute validity: the entity being analyzed has the 

attribute 
• Unit validity: the unit is appropriate for the attribute 
• Instrumental validity: the underlying model is valid 

and the instrument was calibrated 
• Protocol validity: the protocol used for the 

measurement was valid and prevented errors such 
as double-counting [21]. 

 Furthermore, in order to be theoretically valid, a 
direct measure must have the following properties: 
• The attribute has different values for different 

entities. 

• The measure works in a way that makes sense with 
respect to the attribute and its values for different 
entities 

• Any of the attribute’s units can be used if the 
attribute is part of a valid measure. 

• The attribute can have the same value for different 
entities [21]. 

 For an indirect measure, the following properties 
apply: 
• A model of relationships among entities’  attributes 

is the basis for the measure. 
• No improper use of dimensionality occurs in the 

measure. 
• No unexpected discontinuities occur in the 

measure. 
• The units used are appropriate for the scale of data 

available [21]. 
 Another set of criteria for assessing metrics was 
proposed by [36]. These criteria were proposed to apply 
specifically to complexity metrics, but some of them are 
more generally applicable. Of these, [21] rejected most 
but incorporated properties 1, 3, and 4 into their 
framework. These properties are: 
 1. There exist different entities with different values. 
 3. There exist different entities with the same value. 
 4. There exist entities that perform the same function 
in different ways and have different values [29]. 
 [6] also proposed a set of criteria for metrics. 
Included in their criteria are some specific properties 
that cohesion metrics should have. These properties are: 



• Non-negativity and normalization: the value falls in 
a defined range [0, max] 

• Null value: the value is zero if there are no relations 
within a module 

• Monotonicity: adding relations within a module 
never decreases the value 

• Cohesive modules: the module created by merging 
two unrelated modules has a value less than or 
equal to the cohesion value of the more cohesive 
original module [6]. 

 
4. Theoretical Analysis of the Metrics 
PSI is an indirect measurement based on the direct 
measurement of counting the concepts and keywords 
from the knowledge base that are associated with each 
class and member function. In the main processing 
module of the semMet tool, a report is generated that 
lists which ideas (concepts and keywords from the 
knowledge base) are associated with each class and 
function. From this report, the sets I1,I2, …, Im and Ia1, 
Ia2, …, Ian are formed. The cardinality of each set is the 
quantification of the semantic mass of the 
corresponding class or member function [27].   

 To analyze PSI within the framework proposed by 
[21], we first define the entity being analyzed as a class; 
the attribute being measured as semantic mass; and the 
unit as the idea, defined as one concept or keyword in 
the knowledge base. The data scale is interval, because 
we can count ideas, but it does not make sense to talk 
about fractions of an idea. PSI meets Kitchenham, 
Pfleeger, and Fenton’s four properties for validity as 
follows: 
• Attribute validity: since semantic mass describes 

how many ideas are associated with a class or 
function, clearly the entity class has the attribute 
semantic mass. 

• Unit validity: idea is an appropriate unit for 
semantic mass. 

• Instrumental validity: the instrument is valid as 
long as the knowledge base associates concepts and 
keywords with classes and members in a way that is 
representative of their purpose within the domain. 

• Protocol validity: the measurement as defined in the 
formal notation given is unambiguous, consistent, 
and prevents double-counting [27]. 

 PSI also meets the non-negativity, normalization, 
null value, monotonicity, and cohesive 

 
Metric Kitchenham Framework Non-Negativity/ 

Normalization 
Null Value Monotonicity Cohesive Modules 

PSI � � � � � 
LCOM   � � � 
LCOM1   � � � 
LCOM2 ?  �  � 
LCOM3 �  � � � 
LCOM4 �  � � � 
LCOM5 ?  � � � 

Table 2: Summary of theoretical criteria fulfilled by each metric 

modules properties outlined by [6]. The value is always 
at least zero and always falls within the range [0, 1]. 
The value is zero if there are no shared ideas within a 
class. Adding relations (that is, instances of members 
sharing ideas) never decreases the value. If two 
unrelated modules are merged, the value is at most the 
higher original PSI value [27]. 
 Theoretical analysis has been performed on the 
LCOM metrics by [3]. This analysis is summarized in 
Table 2. PSI is included in this table for comparison 
purposes. It is unclear whether LCOM2 and LCOM5 
meet the Kitchenham framework. LCOM2’s units are 
based on the same model as LCOM and LCOM1, which 
satisfy unit validity but fail on other counts; however, 

LCOM2 involves subtracting pairs of modules with 
attributes in common. It is unclear whether this is an 
appropriate operation under the model. Similarly, 
LCOM5 has a unit of 1/attributes. This unit is not 
counted directly but by using a combination of other 
units. Therefore, the unit is only valid if this 
combination of units is based on a valid model. 
 
5. Empirical Analysis 
To perform our empirical analysis of PSI and the 
various versions of LCOM, we computed the metrics 
using the source code of a set of classes from two GUI 
systems written in C++, Gina [1] and wxWindows [25]. 



Then we compared the metric values to experts’  
assessments of the software. 
 The experts rated the cohesion of each class on the 
following scale: 0 = Bad, 0.25 = Poor, 0.50 = Fair, 0.75 
= Good,  1.00 = Excellent 
 To check the degree to which the experts gave 
consistent ratings of software cohesion, we computed 
inter-rater reliability for each team of experts. We used 
Gen++ [11] to calculate LCOM, HYSS [7] to calculate 
LCOM1, LCOM2, LCOM3, LCOM4, and LCOM5, and 
semMet to calculate PSI. 
 We performed statistical analysis to see how the 
metric values compared to the experts’  assessment of 
each class. We used the following hypotheses for the 
first two experiments.  
H0: � = 0 (There is no correlation between the metric 
value and the team’s value.) 
H1: � ≠ 0 (There is a correlation between the metric 
value and the team’s value.) 
 When two variables are independent, their 
correlation coefficient value is 0. A direct relationship 
between two variables is indicated by a positive value; 
an inverse relationship is indicated by a negative value. 
To understand the meanings of these values, Cohen [10] 
and Hopkins [20] proposed the following scale. 
< .01 – trivial, .10 - .30 – minor, .30 - .50 – moderate, 
.50 - .70 – large,  .70 - .90 - very large,  
.90 - 1.0 - almost perfect 
 
5.1 Experiment 1 
For this experiment, we computed metrics on a set of 13 
classes from the wxWindows system, a system written 
in C++ for cross-platform GUI development. It has been 
under development or in use for over twelve years [25]. 
These classes were selected to make a minimal 
windowing system.  

 Also, a team of experts from a graduate level 
software engineering course analyzed cohesion of the 
same 13 classes. Each expert had prior object-oriented 
programming experience, especially in C++. Most had 
at least a year of experience in software development. 
The experts’  ratings were averaged to get a team rating 
for each class. Group inter-rater reliability was 0.89, 
indicating a high degree of agreement among the 
experts. 
 From the scale proposed by [10] and [20], Table 2 
shows PSI has a statistically significant very large 
correlation with the experts’  ratings. Except for LCOM, 
the other metrics had only a moderate or large 
correlation with the experts’  ratings, if any. At this level 
of significance, LCOM3, LCOM4, and LCOM5 did not 
have a significant correlation with expert ratings. The 
exact values are given in Table 3.  We can see from 
these results that PSI is closer to these experts’  cohesion 
ratings than any of the LCOM metrics. 

 
Metric Correlation p-value Statistically 

Significant  
( �  = 0.05) 

PSI -0.7745 0.0019 � 
LCOM  -0.7257 0.0115 � 
LCOM1 -0.5782 0.0385 � 
LCOM2 -0.5557 0.0486 � 
LCOM3 -0.4873 0.0912  
LCOM4 -0.5371 0.0584  
LCOM5 -0.4462 0.1962  

Table 3: Metrics correlated with Expert Team 1 
cohesion rating (Experiment 1) 

 
5.2 Experiment 2 
In this experiment, we computed the metrics from a set 
of 277 classes from the Gina [1] and  wxWindows [25] 
systems and looked for correlation

 

 LCOM LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 
LCOM1 NS  
LCOM2 NS 0.9964  
LCOM3 NS 0.8997 0.9253  
LCOM4 NS 0.8561 0.8849 0.9838  
LCOM5 NS 0.4706 0.4868 0.5217 0.5436  
PSI 0.6333 0.6507 0.5895 NS NS NS 

Table 4: Pairwise correlation values for metrics (Experiment 2)



between the metrics, using  the following hypotheses: 
H0: � = 0 (There is no correlation between the metric 
values.) 
H1: � � 0 (There is a correlation between the metric 
values.) 
 We found a large correlation between PSI and each 
of LCOM, LCOM1, and LCOM2, but no significant 
correlation between PSI and any others. There was a 
very large correlation in each pairing of LCOM1, 
LCOM2, LCOM3, and LCOM4; LCOM5 had a 
moderate to large correlation with each of these. LCOM 
did not have a significant correlation with any metric 
except PSI.  Complete results are in Table 4. We 
indicated pairs with no statistically significant 
correlation with the label “NS.”  
 
6. Conclusion 
We performed theoretical and empirical analysis on PSI 
and six variations of LCOM. We found PSI is 
empirically and theoretically valid, and that it matches 
well with experts’  views of cohesion, performing better 
than any version of LCOM. Furthermore, since PSI does 
not rely on the structure of code, it could be calculated 
in the design phase, yielding results before 
implementation. Thus software engineers should 
consider using PSI to assess the cohesion of object-
oriented software. 
 
7. Future Research 
Future research includes extended empirical studies. 
Additionally, the next obvious expansion for this work 
is to create a tool to calculate semantic metrics from 
design specifications as well as from source code. We 
began to explore this issue, but it is a rich area for 
exploration. Although some syntactic metrics claim to 
be design metrics, most of them can be computed in an 
automated way only from source code. This is not the 
case with semantic metrics. 
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