From Weaving Schemes to Weaving Patterns *
JAN KOLLAR

Technical University of KoSice
Department of Computers and Informatics
Letn&a 9, 042 00 KoSice, Slovakia

Jan.Kollar@tuke.sk

Abstract. Coming out from the process functional paradigm and ugt#@ — a process functional
language, a generalized approach to weaving at the micro-structural level is presented. Exploiting the
application of processes a¥L reflection property, we develop a generalized weaving scheme and we
express it in the form of weaving pattern. Different specializations and extensions of weaving patterns
occurring in aspect oriented languages are discussed. Weaving patterns expressed in terms of weaving
chains provide us with the flexibility inevitable for the aspect oriented evolution of software systems
instead of aspect oriented programming. Presented abstraction in the form of patterns comes out from
integrating imperative, purely functional and object paradigms in the process functional paradigm and

it may contribute to the application of aspect oriented approach to the area of automatic evolution of
software systems.

Keywords: Aspect oriented programming, weaving strategies, software architectures, systems evolution,
implementation paradigms.

(Received March 06, 2005 / Accepted April 20, 2005)

1 Introduction to modularize crosscutting concerns. An aspect mod-
ule in AspectJ contains pointcuts and the associated ad-

. . : .) Yices. A pointcut construct denotes a collection of join
sential principles in software engineering. It says th

. points. AspectJ code can be executed before, after or
software should be decomposed in such a way that di P

f t ts of th bl t hand in place of the program execution when a join point is
erent concerns or aspects of the problem at hand afg. \\oq These actions are defined Leing ASpocts spe-

solved in well-separated modules or parts of the SOftc’iﬁc constructsbefore after, andaround These con-

ware [3/20]. . i structs are called advices|[8.]19], since they comprise
Aspect oriented programming![8, 114] offers a new,yyised code.

parad'gm for software dgvelopme_nt, Wh'(.:h complements The aspect oriented approach is a software program-
conventional programming paradigms with a higher de-

gree of separation of concerns. The development cr)rfnng methodology, which makes programs more reli-

. o le, because mutual interconnections between original
an aspect oriented application is commonly supporte
rogram modules and the aspect module are performed
by an aspect language, such as AspedtJ [8] to modu-

. : automatically, by weaving [8, 14, 21]. The reasons are
larize crosscutting concerns as aspects; and the asp oy

ecC, . . S . . .
. >IN the application of specification principles, that are ex-
weaver that instruments the component program withy e app! 101 SP P ples, -
) ploited using logical formulae for the selection (picking
aspect programs to produce the final system.

A 0 def ¢ of | ‘ (t)ut) a set o join points, in which advises are applied.
c ines a set of new language constructs S
Spe efine © guage cons Out motivation for the development of more abstract

*This work was supported by VEGA Grant No. 1/1065/04 — Specform of WeaVin_g pattern.s for weaving §c'hemes comes
ification and implementation of aspects in programming from the following questions that are arising:

The separation-of-concerns principle is one of the e

Jan.Kollar@tuke.sk

1. Can the methodology itself ensure non-existencexpressionsPFL reflection means reflecting the prop-
of bugs in programs? erties of a system in the form of values computed during

execution at the level of type expressions.

2. Is the set of pointcut designators in current aspect The essence of process functional paradigm is intro-
languages complete and/or is it extensible in a flexduced in sectiofi]2, in which both outer and infR.
ible manner? reflection property is illustrated, as an assumption for

the systematic approach to weaving.

3. Is it appropriate to use the names in pointcut des- |n section[3, we will simply suppose, that a joint
ignators, considering that then a programmer stilhoint in the form of the application is selected. Then
must have a very detailed notion about the originajve will be interested, how an advice (which is again in
modules, otherwise one mistake in advice modulghe form the application) can be woven into the original
may yield unwanted woven programs? code, developing a weaving scheme.

In particular, we are interested in weaving scheme,

4. Is the current aspect oriented approach applicabignich does not affect the function of original code, pro-
to all levels of granularity of systems, in the uni-yided that advice is purely functional. As a result, we
form way, with the same reliability? Or is it re- answer the question about the possibility of finding the
stricted, being just a coarse-grained extension eriginal application after weaving.
object approach? Formal remarks and comments to this scheme are

introduced in sectiop|4. We also present more abstract

5. Even, is aspect oriented approach applicable juglm for weaving schemes, considering the structure of
to systems programming in a life-cycle? Or, would

. - - r%ﬁplications separately from semantics, in the form of
it not be possible to separate the specification anghains. Weaving patterns are weaving schemes defined
the implementation systematically,

_ : to provide any, terms of weaving chains.

opportunity for systems evolution, such thatmakes \yg giscuss the flexibility of weaving patterns as the
them live at any time? abstraction of weaving schemes in secfipn 5.

Related works are introduced in sectidn 6.

Especially with respect of the last question, we are . ;
In conclusion, we summarize our results.

interested in the uniform weaving mechanism, as a gen- : . : '
. . In this paper, we omit the question, how to find a
eral systems evolution principle. . T)
collection of join points. We are concentrated to weav-

Since weaving transformations yield semantic chan- . o o
X ing and its generalization, as the proposition for a sys-
ges [19], they must be inspected far more systema 9 g prop y

. i : . tt'ématic approach to the evolution of software architec-
cally, first from the structural point of view, as it was e :
done ub to now. That is why. we are focusing on th tures based on the specification of goals in terms of
structurl?al essen.ce of one cai/é ory of weavin gtransfo%-pes and values, rather than names, introduced by a
gory 9 ogrammer. The names of functions, processes, lambda

mgroi:;lar}g ;?;L:Er?m'c effects are mentioned JLIv‘[ﬂriables, etc., in this paper are introduced just for the
ginatly, ' purpose of explanation.

i Inl thed pz:?t, ;Ne hzaéj\{e found tfb1at. |rtnper<’;1tlzj/§, func- We use mathematical notation f@FL programs,
|0nafan t'o Jelc pa:ja_l |gmgs Egn_ € 'E_eﬁ]ra €d N a PrY,ce it is more appropriate for our purposes. For exam-
cess functional para igmif :] IN WNICh Processes alge instead of concrete types, suchlats or Float
defined in terms of expressions, as it is done in Haske]|

. . . . e use types in general form, such@s Ss, etc. All
[1.7], bUt.W.'t.h memaory c_ells visible, being all shifted to PFL function and/or process definitions, introduced in
type definitions (type signatures) of processes. In th

this paper are not numbered.
way, higher-order functions, parametric polymorphism pap

and overloading are preserved. o
Our approach is based on more abstract and still inf Reflection in PFL
plementation level ofPFL — a process functional lan- PFL reflection property enables to access and update
guage than provided by current imperative languagesthe values in environment variables outside the defini-
The application of processes is a single executiotion of a function, whenever the function is applied to
mechanism ifPFL. Control values are explicitly visi- its arguments. Such functions are called processes —
ble, opposite to imperative languages. The concerns bence the namprocess functionaparadigm. APFL
variable environment and code are well-separdted [1{pure) function is defined in terms of the type defini-
12]. The source form of alPFL expressions is purely tion (see the equation comprising and the definition
functional, and environments are associated with typghe equation comprising:). For example, functiorf

of two arguments, which sums them, is defined as fol- Binding the environment variablesandwv in pro-

lows:

fIZT1—>T2—>T
fzy=z+y

cesses is transparent, since it is static — exclusively via
type definitions. Notice, process body+ y remains
unchanged.

The same environment variable (suchwuam case

The definition of function above is illustrated in fily.1d) may be shared by multiple arguments of a process.
Provided that environment variables occur in the tydelvironment variables may be even shared by different
definition as the attributes of the argument types, sudiocesses; but this case is not illustrated in this section.

function is called the process.

Since of two arggments,_fqnctithay bg rewri_tten 21 Outer Reflection
or transformed easily, obtaining four possible kinds of _ _
processes, see Hiy.1 a), b), c), and d), corresponding@iter reflection property enables to update the envi-

the following cases of definitions.

Case a):
fouly =T, —T
fzy=z+y
Case b):
fuoTli—ovly—>T
fzy=z+y
Case ¢):
fouTly —ovly—T
fzy=z+y
Case d):
fouly -uTo—T
fzy=z+y
L4
f
+
%
qnY
Function f 4 e a
©®
d)
Processes f

Figure 1: Function and processes

ronment cells by data values of arguments, and to ac-
cess them by the unit value arguments. Both effects are
reached by the applications of processes.

Let us consider case b) of process Fig[]].

The application(f 3 2) is evaluated by subsequent
parameter passing, and the evaluationfdbody, ac-
cording to Fid.2.

"4 v v
X y X y X y
f f
+
update
and

parameter parameter evaluation
passing passing

Figure 2: Application to data values - example of the update

Starting with the undefined value in environment
variablev, the crucial is the second parameter value
passing, since of assigning (or reflecting) this value to
v by the side effect. The value of the application is 5,
and it will be the same, even for pure function (case a),
or processes in cases b) or d). However, the reflected
value in case b) would be = 3 and in case dj = 2.

Provided that the value af is 2, for example as a
side effect of applicatioff 3 2), the other application,
see Fig.B, may access the value stored,insing the
unit value as the second argument.

The unit value and its (unit) type, are designated in
PFL by (), as in Haskell. In Fi@]S, a small ball marks
it, while big balls mark data values.

hIZT1HT2—>T
hlz]ly=gzy*xg()4

é ; access i i

where
gulz]Ti —» 2T, =T
gry=x+ty
pggs";%e’ pgéc;;\:%er evaluation (7)
A D Since of the same name(in the box) used for the

environment variable of local procegand for lambda
variable of pure functiork, the same stack cell (allo-
cated for the first parameter &) is used for both of
them.

The environment variableis the environment vari-
able of g, local to h. The definition of functiom is
shown in Fid.4.

The result of applicatiofi: 3 2) is 35. The substan-
tial is the fact, that after passing 3 loy 3) to lambda
variablex of h, this value is accessible as the value of

environment variable of g in application(g () 4).
The application operation, represented by the space

in a program, is left associative operation, i.e. it holds
(f5() = ((f@s)@()). As can be seen, the operation
@ is marked by boxes in all figures.

For the purpose of explanation, we have used jus
constant arguments of the process. Of course, the arg
ments of processes may be any complex expressions
general.

It would be possible to designate the environmen
variablesu andv by the same names as lambda vari-
ables, i.e. byr andy, because of different positions of
lambda variables and environment variables in a men
ory. In process functional paradigm, lambda variable
are not just holes, that represents values used in functic
(lambda abstraction) body, as it is in lambda calculus
but they designate stack memory cells, containing (as
result of application) actual parameter values, similarl
as itis in imperative languages.

Environment variables may reside on the stack, i before atter @9
global memory, or in object record, corresponding tc
imperative and object paradigm.

On the other hand, the values of processes are de-
fined by expressions, in terms of lambda variables, not

using environment variables, corresponding to purely We introduce local environment variabieo show

functional paradigm. that it is updated two times. Because multiplicat{en
. is left associative operation,is updated by the value 2,

2.2 Inner Reflection and after that by the value 4.
Suppose a function/processand its local procesg. Now, let us discuss the effect of different modifica-

The inner reflection enables to access and to upddiens of the body of functiork. Replacing the expres-
one or more environment variables of proceshat are siong z yg () 4 by expressioy z yxg () (), the result
matched with lambda variables of a function/process of (h 3 2) is 25.

Let PFL functionk with a local procesg be defined Provided that the body ig () v * g () (), the result
as follows: is again 25.

Figure 3: Application to data and control values - example of the
access

Figure 4: Inner reflection as a result of shari@ variable

Theresultoly y z+g () () body is 16. After passing Designating the types of expressions used in the orig-
the value 2 by(g v), this value is stored in environment inal application, the application rule is defined py (1).
variablex of g, i.e. it replaces the argument value
of h. It means thal(g y =) evaluates tdg 2 2), not

to (g 2 3), as one might think. This case illustrates the R R

ex Q1 ez Q1 ... ey Qniq

ability for substitution of the value of argumentof i (1)
by the value of argument Mathematically, computing erez ... eni@n
(h 2 2) instead of(h 3 2) is a nonsense. Computation- Considering the application order given by currying
ally, in aspect programming, changitlg3 2) to (2 22) — a mechanism that guarantees a subsequent application
may be useful. of arguments — it holds

The variations on different bodies above illustrate
the flexibility and simplicity of transformations based erez ...en=_(..((e1)e2) ...) en (2)

on process functional paradigm 7L, yielding dif- Supposing eager evaluation of expressions, the ap-

ferent semantic effects. plication order given by (2) yields the precedence (time

. Expl_omng process functlonal parad;gm_ﬁ?-"ﬁ_, full order) for expressions in the original application, as fol-
imperative semantics is reached considering just app Bws:

cations and application dependencies, what clearly yields
the S|g.n|f|cant S|mp!|flcat|on of squrce—to-source trans- e < ey < ... <€y 3)
formations, as required for weaving.
Now, we will define the advice, again in the form of
. . an application.
3 Weaving Requirements This advised application evaluates corresponding to

In this section we define our particular task and the ret-he application rule {4), with evaluation ordgf (5).

sult, which will be obtained by the weaving of original

and advice — both in the form of applications. ag::Sy— 51— ...—= 8,1 — 5,
We suppose that a join point in the form of origi- a1 Sy az Sy ... ap Sy 4
nal application has been picked out@¥L functionp, ag @i ... ap Sy @)

which is defined as follows:

puTy —...—=>T,—=T apaiag ... ap = (...(((ag) a1) az) ...) an (5)
paywp=0(erer ... en)w The application ordef]5) yields the precedence of
It means, thap is defined by expression advice expressions, as follows:
ag < a1 <as < ...<ay (6)
olereg ... ep)w

Since the advised application may contain free vari-

of the typ€eT’, which comprises the original applica- ables, which we want to be bound by parameters of
tion original functionp in woven form, it is reasonable to

express the advice in the form of the definition of func-

(eres ... en) tion, as follows:

i.e. join point. Prefix and postfix partsandw are advice :: Ro = ... = Itm = Sn

out of our interest, since they do not contain the appli- advice Ty ... Ty = ag Ay ... an
cation(ey ea ... ey). in which all, originally free variables can be seen now
For the purposes of more transparent descriptio@®s lambda variables;, ..., z.,.

we will use the abbreviated form for argument variables The abbreviated form fardvice is as follows:
and types below, and we designdie— ... — T, by
TP, andz; ...z, by X?. Using this shortcuts, the ab-
breviated form ofy definition above is as follows:

advice :: R™ — S,

advice X™ =ag ay ... an
The original procespg and the functiorudvice are
p:TP T illustrated in Fid.p.
pXP=0c(ejes ... e5)w The task of weaving is as follows:

Instead of concrete input arcs that represent the flow
of values, the "buses of arcs" are used, since of general
form of weaving scheme.

4 Weaving Scheme and Weaving Pattern

The woven form of functiom is the value of weaving
schem@&V, which is introduced in Fi]7.
In woven form, both original and advised applica-
tions are step-by-step synchronized.
In Fig[7, the shortcut)®* stands fors, unit values
used as arguments, i.e. for() ... ().
N———

Function p Function advice Sk . ,
Local processesd;, and local functionad), are gen-

erated using original names for variables in expressions
Figure 5: Original functionp and advice defined by functianivice e anday.

The shortcufS*—") stands for type expressiéf;, —
....S,) and the forn(Q*—") stands for type expression
(Qr — ...Qn). In both cases, the parentheses are rel-
evant, since parameters andzx, are functions.

The shortcufX** is used fors; lambda variables,
identical to free variables used iy on the right hand
side of adj, definition. By other words, lambda vari-
ables can be generated from the set of free variables
used inay.

Sharing the subset of paramet&? of p is given by
attributed typeX'T** of a local procesad, in which
the expressiom;, is evaluated. The shortcXT** is
used instead of,,, 71 — ... — Ty, Ty, such that
{Tuyy o, } CXP

Except that original and advised application are syn-
chronized, we may conclude, that the functjois not
changed, provided that the advice does not affect envi-
ronment variable which is used by the original applica-
tion. If this is true (and it may be detected based on the
1. Advised code defined bydvice must be woven application dependence analysis), then, for example, we

into functionp, using the values of arguments;of are sure, that a potential bug in advice does not infect

of the same type. the original program and vice versa, since both are ex-

o)) ecuted using disjunctive computational spaces. On the
2. Byweaving, itis necessary obtain evaluation preCgner hand, if this is not the case, it is possible to de-

Figure 6: Requirements to woven form

dence, as follows: tect statically where and when the original function is
o < €1 <y < €3 <ag < ... <en~an affected by the side effect caused by advice, and vice
versa.
i p -
3. The value of functiorp must not be affected by The variablesr,,, ..., z,, from X? may be gen

weaving. As we will see later, since of flexibility ?rategrgﬁf;gfr?an%itgh'?gitsypheosv’vgzer;oirsngsgft%??;CZ'
of the developed scheme, it is easy to substitut!d P ' ’ e P
. . of this paper. But careful reader may notice, that the ac-
this requirement by other. L o
curate, deterministic and non-redundant solution is not
The execution of original application and advisedso trivial, as might seem at the first sight.
application in time, as well as sharing parameter values It may be also noticed, that the definition of an ad-
of p by advised application are illustrated in Fig.6. Thevice by the constant application would simplify the weav-

irrelevants andw parts ofp body are omitted. ing scheme significantly, but it is still possible to share

p:TP T

po:J(€1€2 en)W:|:| advice =

puTP T
pXP =0 (ady ()*°) w

where
adg :: XT° — Q,
ado Xs0 = CLd6 ag

adjy :: (SO — Q,,
ady x, = ady x4 €1 ()

S1

ad1 .- (S()*’n) — (Qlﬁn) N
XT — Q,
ady T4 o X% = ad) (x4 a1) Te

ady = (ST = (QF7") — Qn

ady Tq Te = ady T4 (T €2) ()2

adg :: (S177) — (Q*~") —
XT* — @,
ady Tq Te X2 = adh (x4 a2) e

ady 2 (S*77) = (Q*™") — Qn
adly T4 o = adz (x €3) x4 ()%

XT* ' - Q,
_ /
adp_1 Tq Te X1 = ad), | (T4 Gn-1) Te

ad;7471 o (S(n—l)—m) N (Q(n—l)—>n) N Qn
adl,_1 Tq Te = adp_1 Tq (Te €7) ()51

ad, == (S=D=") - Q, —
XT" — Q,
ady, Tq e X5 = ad), (x4 ap) T,

ad], :: Sp — Qn — Qn

U —
ady, Tq Te = Te

Figure 7: General Weaving Scheme

cationag a; as . ..a, by the chaimoo.. .o, the weav-
ing pattern, which corresponds to weaving schéme
in Fig[7, can be expressed as follows.

Wlee...0] 0oo...o=°_°° % (7

The value of weaving pattern above expresses that
two independent applications are evaluated (in horizon-
tal direction) while the precedence of evaluation in time
of all expressions is determined in vertical direction.

Considering just the chains in weaving patterns, we
may abstract from function of computation, but it is still
possible to reason about the types. We may conclude,
that types in circle chain are independent from types in
bullet chain, but such that application rulg$ (4) gnd (1)
hold.

Let us discuss now the specialization and possible
extensions of weaving patterns.

5 Discussion

It is possible to specialize weaving pattgrh (7), to obtain
beforeadvice byy/; andafter advice by,

Wife]o="° Wole]o=,° (8

[}

In weaving patterns[[7) anfl](8), it is supposed the
value for original is produced by bullet chain, since of
its bottom position in pattern. We may notice the flexi-
bility of the schemen.

Changing the definition of the last function W
toad), x, x. = x,, and its type taS,, — @, — Sy,
the advised application value is used instead of original,
which vice-versa will be computed by the side effect.
Then the value of functiop will be changed, even if
the advice is purely functional.

This corresponds to the weaving scherngs W,

andW}, according to[(®) and (10).

¢ ° (9)

o O O o

W/ [ee...0] coo...0=

common space of environment variables and hence to
affect the original function.

The required time order is guaranteed by the appli-
cation order of generated local processég and local
functionsad),. However, the variables in bot), and In addition, the conditionS,, = @Q,, must be sat-
aj remain unchanged, after weaving. isfied, otherwise the advice could not be used instead

Provided that we designate the original applicatiomf the original. It means tha¥V’ is valid, provided
e1 ez ...e, by the chaire e ... e and the advised appli- that type checking rul¢ (11) holds, awt and WV, are

Wilelo=,* Wife]o=" (10)

o

valid, provided that type checking rufe {12) hold, as folbe expressed in terms of weaving pattern, defined by
lows. (T?.

ee...0o:T=000...0:T (12) I[e]o=0o (17)

The simplest and correaroundweaving is defined
o T—=o:T (12) by the pattern4, or A, in (18).
The insteadadvices defined by weaving schemes
W', Wi, andW; are associated with the evaluation of A;[e] co=°_° Ay[e] co=_°_ = (18)
original expressions by the side-effect. An alternative
is the weaving scheme that replaces original application On the other hand, the patterns defined[by (19) are
by advised application, according fo [13). wrong.

Ws[ee...e] coo...o=000...0 (13) A’l[[o]]o:o.o /2[[.]]020'0 (19)

In this way, _the chaim e . .. e is forgotten forever. This is so because applying the weaving pattern to
For such advisingee...e: T'= ooo...o: T'must ginaie. it holdso : 7. But, at the same time, : T is
hold.) L . used in pattern twice in applicatiar, first occurrence

The weaving above is trivial for a constant in thebeing of typeT, — T, and the second occurrence of

role of advised application, because constants do ng{e typeT:. Formalizing this, we obtain the condition
exploit lambda variables of original function or process@)_

in which they are woven. Otherwise it is impossible
simply to substitute an original represented by bullet (0:T)N(o:Th — To) A(o:Th) (20)
chain by the advice represented by circle chain in func-
tion/process body. Instead of that, it is necessary to use But this is a contradiction, since the unification of
the similar approach as for the scheme defined in types fails on equatioty — 7> = T (orT' — T =
Fig[4. However, this weaving belongs to the different)-
category, which is not the subject of this paper.

The same holds for weaving pattefn](14), in whict6 Related Work
¢ designates the (empty) position in which o will be

. In practice, the principle of separation of concerns is
substituted.

not always that easy to achieve. As it turns out, no mat-

ter how well an application is decomposed into modular
Ws[oe] coo=o00co0e (14) entities, some functionality always crosscuts this modu-
Provided that it holds Iarizatior). This phenome'n.on is known as the tyranny of
the dominant decomposition. As a consequence, such
crosscutting functionality (often called a concern) can-
not be evolved separately, as it affects all other entities
we obtain in the application[[5].

Many security experts feel uneasy about trying to
isolate security-related concerns, because security is such
a pervasive property of a piece of software. The imple-

which means, that instead original evaluation of exmentation convolution problem refers to the phenomenon
pressiore;, the application of operaticifl to arguments that, for a large number of non-trivial functionalities, al-
evaluates, yielding either or e;, depending on boolean though their semantics are distinctive, their implemen-
value of expression; . In this way, the evaluation may tations do not have clear modular boundaries within the
depend on values in external variable environment a¢middleware) code space and, more seriously, often tan-
cessible via processes applieddn In this way, dy- gle with one another. This prohibits these functionali-
namic weaving is enabled, while static weaving definetles from being pluggablé [20]. For example, the prin-
by (I4) is just inevitable preliminary step. ciples of orthogonal and weakly orthogonal aspects in-

Finally, we discuss the simplest formiokteadand struct in the design of aspects that are included in some
aroundweaving. The Wand’s [19hsteadadvising can system configurations, but not in others [3].

e—¢; and ooo=1ifa; as (15)

OOO.:ifalagel (16)

Aspect mining and static refactoring techniques are Introducing the essence of process functional paradigm
proposed in([b], to detect and separate the cross-cuttimgcluding the reflection property, we have developed the
concerns respectively. In a second step, the well-moduaheme for weaving two applications. The functionality
rized application should be controlled at the metalevedf transformed functiop, as a result of weaving given
by a monitor with full reflective capabilities. by the value ofV in Fig[7 remains unchanged, except

On the other hand, to achieve new semantics of wdhat its computational time has increased, as a result of
ven programs, novel-programming constructs can badvice computation by the side effect. Although the
found in aspect languages, that are the subject of fotransformed is an executabl®FL function with gen-
mal analysis. This analysis is complicated, since therated names, it may be noticed, that our approach is
restrictions are given by the complexity of implementanot oriented to considering the names by a user.
tion language, such as Java. Moreover, the form of original application is trans-

Simplifying the structure of language, better result$ormed to the form such that cannot be supposed to be
are achieved, and the analysis is more complex and vafgund as a join point anymore. This follows us to con-
able. For example, taking as a basis MiniMAQ [2],clude, that repeated weaving decreases the transparency
practically all constructs of AspectJ analyzed, in conef woven programs, hence there is no benefit from the
trast to previous works. fact that it is source-to-source transformation.

Strategies that are used to aid in the rapid construc- Of course, it is not critical for a very coarse aspect
tion of new domain-specific weavers and an adoptiogriented programming at the level of classes, using a
of generative programming approaches with respect t@ry simple advising patterns in aspect oriented pro-
constructing a weavelr [7] require non-trivial source-togramming languages. Some of them we have analyzed
source program transformations. in discussion.

The design of a generic framework to express as- At the same time, expressioas (marked bys), and
pects as syntactic transformations as well as a genegj¢ (marked byo) (and of courser andw parts) may be
weaver requires the semantic properties for the definjhe subject of collecting new join points in the form of
tion of aspects be used![6]. However, an approach tgppjications.
gengric Wgaving 'base.d on repegted program transfor- 14 pe able to apply weaving as a general composi-
mations might fail using imperative assignments anglon method for generating software architectures by the
statement sequence. o specification of goals of evolution, we have introduced

There is strong need for formalizing aspeCts [18] agye apstracted representation of weaving schemes in the
well as for manipulating them using more formal lan<q,m of weaving patterns, using chains. It could be

guages as implementation languages, see for examplgsossible without a single execution engine — the ap-

pabe [1]. _ N plication of processes, as a result of process functional
To be able to provide models describing goals a”Baradigm.

strategies for reaching the properties of software SyS- e main contribution of this paper is the separation

tems, not just models or meta-models for software ags o \ctural and semantic aspects of weaving, provid-
chitectures, such as in [13], we must think about increg, 5 new idea of generalized approach to weaving on
mental evolution instead of incremental programming, 1« anstract level. Our general weaving scheme in

[15], and formalize not just design patternsl|[16] but als?—'ig[] and its patterr[]7) are still general just with re-

implementation patterns. spect of one category of patterns.
Inferring the grammar for the language, from frag- How to generate, to mutate and to combine weav-

mslms_ 40f péogrtamlj yvrlc;tﬁn n (:lff\%ent Iar;gtuao?ets IS poﬁ'ng patterns, that are some kind of genetic information
sible [4]. Ourtask is di erent. Ve want to de erm'm':‘affecting the systems generation (or evolution) by as-
an abstracted general weaving pattern, and then to us

¢ hil ft hitecture is inf gct manner, is the future, and the systematic study of
as a parameter, while software architecture 1s interre ategories of weaving chains, associated with semantic
i.e. automatically generated from the model, which de-

. . . rules is the subject of our current research.
scribes the substantial properties of the system.

7 Conclusions References

Presented abstraction in the form of weaving patternd1] Bruns, G., Jagadeesan, R., Jeffrey, A. and Riely, J.
may contribute to the theory of aspects([1] 18], as well pabc: A minimal aspect calculugn Proceedings
as to the application of aspect oriented approach to the of the 2004 International Conference on Concur-
automatic evolution of software systems in the future. rency Theory, Springer-Verlag, p.209-224, 2004.

(2]

3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

(12]

Clifton, C. and Leavens, G. MiniMAO: Investi-
gating the semantics of procede DAL 2005 Pro-
ceedings, Foundations of Aspect-Oriented Lan-
guages Workshop at AOSD 2005, p.51-61, 2005.

Colyer, A., Rashid, A. and Blair, GOn the Sep-
aration of Concerns in Program FamilieSech-
nical Report, Computing Department, Lancaster
University, 11 p., 2004.

érepinéek, M., Mernik, M., Bryant, B. R., Javed,

F. and Sprague Alnferring context-free gram- 1

mars for domain-specific languagélectronic
notes in theoretical computer science, No.141,
p.99-116, 2005.

Ebraert, P. and Tourwe, R Reflective Approach
to Dynamic Software Evolutiorin the proceed-

ings of the Workshop on Reflection, AOP and[17]

Meta-Data for Software Evolution (RAM-SE’04),
p.37-43, 2004.

Fradet, P. and Sudholt, MTowards a Generic

Framework for Aspect-Oriented Programming.[18]

Third AOP Workshop, ECOOP’98 Workshop
Reader, LNCS, v.1543, p.394-397, 1998.

Gray, J., Bapty, T., Neema, S. and TuckHan-
dling crosscutting constraints in domain-specific

modeling. Communications of the ACM, v.44, [19]

No.10, p.87-93, 2001.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,

M., Palm, J. and Griswold, WAn Overview of [20]

AspectJECOOP’01, LNCS, v.2072, p.327-355,
2001.

Kollar, J. PFL Expressions for Imperative Control
Structures.Proc. Scient. Conf. CEI'99, October
14-15, Hethny, Slovakia, p.23-28, 1999.

[21]

Kollar, J. Object Modelling using Process Func-
tional Paradigm.Proc. ISM’2000, Roznov pod
Radho3m, Czech Republic, May 2-4, p.203—-
208, 2000.

Kollar, J. Unified Approach to Environments in
a Process Functional Programming Language.
Computing and Informatics, 22, 5, p.439-456,
2003.

Kollar, J., Poruban, J. and Vaclavik, $eparat-
ing Concerns in Programming: Data, Control
and Actions.Computing and Informatics, 24, 5,
p.441-462, 2005.

[14]

[16]

[13] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G.,

Garrett, J., Thomason, C., Nordstrom, G., Sprin-
kle, J. and Volgyesi, Fhe Generic Modeling En-
vironment.Proc. of WISP’2001, May, Budapest,
p.34-42, 2001.

Lieberherr, K., Lorenz, D. H. and Ovlinger, As-
pectual Collaborations: Combining Modules and
Aspects.The Computer Journal, v.46(5), p.542—
565, 2003.

5] Mernik, M. and Zumer, V.Incremental pro-

gramming language developmef@@omputer lan-
guages, Systems and Structures, v.31, p.1-16,
2005.

Mikkonen, T. Formalizing Design Patternsin
Proc. ICSE’'98, p.115-124, 1998.

Peyton Jones, S. L. and Hughes, J. [editéts}
port on the Programming Language Haskell 98
— A Non-strict, Purely Functional Language.
163 p., 1999.

Walker, D., Zdancewic, S. and Ligatti, A. the-
ory of aspectsln Proceedings of the eighth ACM
SIGPLAN international conference on Functional
programming, Uppsala, Sweden, ACM Press,
p.127-139, 2003.

Wand, M. A Semantics for Advice and Dynamic
Join Points in Aspect—Oriented Programming.
LNCS, 2196, p.45-57, 2001.

De Win, B., Piessens, F., Joosen, W. and Verhan-
neman, T.On the importance of the separation-
of-concerns principle in secure software engineer-
ing. Workshop on the Application of Engineer-
ing Principles to System Security Design, Boston,
MA, USA, November 6-8, p.62-76, 2002.

Wu, H., Gray, J. G., Roychoudhury, S. and
Mernik, M. Weaving a debugging aspect into
domain-specific language grammaBsoceedings
of the 2005 ACM symposium on applied comput-
ing, p.1370-1374, 2005.

	Introduction
	Reflection in PFL
	Outer Reflection
	Inner Reflection

	Weaving Requirements
	Weaving Scheme and Weaving Pattern
	Discussion
	Related Work
	Conclusions

