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Abstract. Workflow scheduling is solved using heuristics and meta heuristics. Heuristics are problem-
dependent techniques. Meta heuristics are general purpose method of solving different types of problem.
It can be single objective or multiple objectives. This paper focuses on our proposed algorithm named
as Double Hybrid NSGA-II Algorithm (DHNSGA-II) that improves up the convergence of the NSGA-
II algorithm by employing Pre-selection and Memetic algorithms. DHNSGA-II does hybridization at
two levels. At the first level, it uses Pre-selection operator and the second level it uses Memetic algo-
rithm. Pre-selection operator seeds the DHNSGA-II with the previously generated solutions. Memetic
algorithm improves the current population using multi-objective local search. Apart from DHSNGA-II
we introduced an approach to rank the Pareto frontiers because Pareto frontier has many solutions; it is
nearly impossible to choose the best solution. The experimental result reveals that the proposed approach
in this research performs well in optimizing the workflow scheduling jobs.
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1 Introduction

Due to advances in wide-area network technologies and
low cost of computing resources, Grid computing [8]
has been established as an active research area for large-
scale collaborative and distributed e-business and e-
science applications. One of the motivational factors
for Grid computing is to aggregate the capabilities of
widely distributed resources and to provide non-trivial
services to users. A utility Grid is a hardware and soft-
ware infrastructure that provides dependable, consis-
tent, pervasive and inexpensive access to high-end com-
putational capabilities.

The goal of the utility Grid is to utilize all available
free computational resources to overcome difficulties

generated by complicated tasks with enormous com-
puting workloads. One of the current research prob-
lem is to devise new and efficient methods for resource
management. Many applications in e-business and e-
science is designed as workflow. As a result large num-
ber of workflow management tool has been developed
[1], [7], [15] to manage the workflow execution.

In the past, researchers have developed heuristics
and meta heuristics for workflow scheduling, namely
List [16], Cluster [17] and GA [11] scheduling. These
scheduling algorithms minimize the makespan. Now a
days, user has to pay-per-use thus, he wants that his
work should be complete in least time, at least cost.
To solve this issue various constraint based heuristics
[18] have been developed that gives a single solution but
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user wants a range of solutions because he has to pay.
Thus, various multi objective meta heuristic has been
developed in which NSGA-II [4], is one of the most
efficient and famous multi-objective evolutionary algo-
rithms. NSGA-II algorithm is better than other exist-
ing non-dominated sorting algorithms because NSGA-
II employes non-dominated sorting without using an ex-
ternal memory, sharing parameter and time complexity
of one iteration is O(mN2), where m is the number of
objectives and N is the size of population.

NSGA-II is not well suited for fine tuning solution
which are very close to optimal solution and it does not
search in promising region. Thus, this paper describes
and compares the three versions of NSGA-II in order
to increase the convergence and diversity of NSGA-II.
The first version is seeded NSGA-II. Seeded NSGA-II
guarantees to explore in promising region. The seeded
NSGA-II differs from the unseeded NSGA-II. In seeded
NSGA-II population is seeded with Meta heuristics
while in unseeded NSGA-II entire population is ran-
domly generated. The second version is multi-objective
local search, known as Memetic NSGA-II. Memetic
NSGA-II performs neighborhood search, on the best
solution that is near to optimal solution. The last ver-
sion is a combination of Pre-selection and Memetic
NSGA-II and denotes as DHNSGA-II. Apart from this,
we have also introduced Pareto front ranking, since
Pareto front contains many solutions, to pick the best
optimal solution; we have ranked the solutions. Rank
of solutions is computed using Technique for Order
Performance by Similarity to Ideal Solution (TOPSIS)
method. TOPSIS [13] algorithm ranks the solution
based upon the closeness value of each alternative with
reference to the ideal solution.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 presents the
problem definition. Section 4 describes DHNSGA-II,
our proposal for workflow scheduling. The results are
presented and discussed in Section 5. Finally, in Sec-
tion 6 we conclude the work and suggest future research
directions.

2 Related Works

Researchers have also developed constraint based
scheduling algorithm using backtracking [18] and itera-
tive programming [3] that minimizes the budget within
deadline or vice versa. These algorithms manage to
obtain better performance, but less efficient. Various
multi-objective meta heuristics [18], [2] have been de-
veloped. These heuristics compute a Pareto front on
two objectives using simple NSGA-II [4] and do not
suggest how to select solutions from Pareto front.

Figure 1: Grid scheduler

Local search can be applied on first, best or random
solutions. It can be applied before genetic operators,
during genetic operators or after genetic operators. It
can be applied on population, offspring or both. Siarry
et al. [14] have tested and suggested that local search
applied on best solutions give better results. Similarly,
Ishibuchi et al. [10] have tested various multi-objective
local search methods on flowshop scheduling. They
have found that if local search is applied on few off-
spring, it gives better performance.

Steady state [6] and Thread based parallel [12] ver-
sion of NSGA-II are also introduced. Steady state
NSGA-II does not use auxiliary population, generates
single offspring, performs non-dominated sorting on
offspring and population. Thus, its time complexity
is more than NSGA-II. Thread based parallel NSGA-II
uses multiple threads to compute the objectives of solu-
tions. They have reported thread based parallel NSGA-
II does not perform well. Garg et al. [9] have applied
Reference point based NSGA-II that uses preference
operator rather than crowding operator and it requires
user input.

Our work differs from the above mentioned research
efforts. We focus on DHNSGA-II that is seeded with
GA and perform local search on the best solution. We
also considered three objectives namely computation
cost, makespan and communication cost while others
considered only two objectives. This work has also de-
veloped a new decision maker to select the best solution
from Pareto front.

3 Problem Definition

This section formulates the grid resource scheduling
problem into grid resource market model. It consid-
ers the utility Grid that is a collection of heterogeneous
clusters and network resources. Clusters are heteroge-
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Figure 2: Workflow of 8 tasks

neous in processor architecture and pricing. Network
resources have different speed and cost. We use Di-
rected Acyclic Graph (DAG) to model an application
as shown in Fig. 2a. A workflow w is represented by
a DAG G = (v, e, x, c), where v and e are the sets of
tasks and directed edges respectively. A node in the
task graph represents a task that runs non-preemptively
on any cluster. Each edge is denoted by eij correspond-
ing to the data communication between ti and tj where
ti is called immediate parent task of tj . Child task can-
not be started until all of its parent tasks are completed.
A task which does not have a parent task is called entry
task tentry. A task that does not have a child called exit
task texit. x is computation matrix in which xij is com-
putation time of task i on cluster j. c is the communica-
tion matrix where cij is communication time between
(ti, tj). Fig. 2a, 2b and 2c show the DAG of 8 tasks,
computation matrix and communication matrix respec-
tively.

DHNSGA-II scheduling algorithm minimizes
makespan, computation cost and communication cost.
It first determines the schedule of workflow using
DHNSGA-II that encompass task ordering and cluster
identification number on which task will be executed.
The objective functions are defined as follows:

Makespan: The makespan is equal to completion
time of a workflow. The completion time comij of a
task ti on the cluster cj is given by

comij = stij+xij (1)

Here, stij is the start time. Start time of the entry task is
zero. Other tasks start time is computed by considering
the completion time of all immediate predecessors of

the task. The computation time xij is added, to start
time of the task to compute completion time.

makespan (sch) = max (comj) , ∀ j = 1 . . .m (2)

Here, comj is the latest completion time of cluster cj ,
m is the number of clusters and sch is schedule of the
workflow. Makespan of the workflow is the maximum
of comj .

Computation cost: It occurs when task is executed
on a cluster. The computation cost of task ti on cluster
cj is determined by

compuCostij = compuCostj ∗ xij (3)

Here, compuCostj is cluster computation cost in dol-
lars ($), and xij is computation time of task i on cluster
j. Computation cost compuCost of schedule sch is
calculated as follows:

compuCost(sch) =

N∑
i=1

compuCostij (4)

Communication cost: It occurs when a cluster transfers
result of a task to other clusters. The communication
cost is defined as:

commuCostij = commuCostj ∗ cij (5)

Here, commuCostj is the communication cost and
cij is the communication time between task i and j.
Communication cost is not reciprocal of communica-
tion time. Communication cost commuCost of sched-
ule sch is computed as follows:

commuCost(sch) =

N∑
i=1

commuCostij (6)

4 DHNSGA-II

The multi-objective optimization problem consists of a
number of objectives and several equality and inequal-
ity constraints [4] as shown below:

f(x) =fi (x) , fi+1 (x) , fn(x), i = 1, 2, 3, . . . .., n
(7)

Subjected to gi (x) ≥ 0, i = 1, 2, 3, . . . ..,m (8)

hi (x)= 0, i = 1, 2, 3, . . . .., h (9)

Here f(x) is the decision vector representing a feasible
solution, i.e. satisfying the m inequality constraints and
h equality constraints; fi is the i

th objective function to
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Figure 3: Unconstrained non-dominated sorting

be minimized, n is the number of objective functions,
gi is the inequality constraints and hi is the equality
constraint.

For unconstrained optimization problem, a solution
x dominates y, if (a) the solution x is no worse than so-
lution y in all objectives, and (b) x is strictly better than
y in at least one objective. If any one of (a) and (b) is
violated, the solution x does not dominate the solution
y.

The dominating concept is illustrated in Fig. 3.
Here, solution ’1’, ’2’, and ’3’ are the non-dominating
solutions. But solution ’4’ is dominated by solution ’2’
as the solution ’2’ is better in one objective and is equal
in other objective. On the other hand, solution ’6’ is also
dominated by solution ’2’. In this case, solution ’6’ is
not worse than solution ’2’ with respect to the second
objective, but the solution ’2’ is strictly better than so-
lution ’6’ with respect to the first objective. Solution ’5’
is dominated by solution ’2’ and ’4’ as ’2’ and ’4’ are
better than solution ’5’ in both the objectives.

DHNSGA-II is an enhancement of NSGA-II where
solutions are seeded and local search is applied on
population. Pictorial diagram and Pseudo code of
DHNSGA-II is as shown in Fig. 4 and Algorithm 1 re-
spectively. Its, initial population p′ is seeded through
GA solutions (lines 3 to 4). GA employes selection,
crossover and mutation operator similar to DHNSGA-
II. Objective values are evaluated (line 5). In order
to compute offspring p′′, parents p are selected from
population p′ using Binary Tournament operator (line
7). Two-point crossover and insertion based mutation
is applied on parents p (lines 8 to 9). After that newly
generated offspring p are evaluated to determine their

Figure 4: DHNSGA-II

fitness (line 10) and added into new offspring p′′ (line
11). This process is repeated until the size of offspring
p′′ is less than population size popSize. Next, simple
neighborhood search is applied to newly generated off-
spring (line 13). Non-dominated sorting between off-
spring and population is performed to assign different
fronts (line 14). This process is repeated until genera-
tion gen is less than number of generation N .

Algorithm 1 Pseudo code DHNSGA-II
1: Input = G(v, e, x, c)
2: Output = multiple schedule
3: for gen = 1→ N do
4: p′ ← seedsWithPreGernatedSolutions();
5: computeObjectives(p′);
6: for i = 1→ popSize do
7: p← selectTwoParents(p′);
8: p← performCrossover(p);
9: p← performMutation(p);

10: computeObjectives(p)
11: p′′← addOffspring(p);
12: end for
13: p′′← performLocalSearch(p′′);
14: p′ ← nonDominatedSorting(p’, p”);
15: end for

4.1 Implementation of DHNSGA-II

The chromosome is represented using two strings
namely matching string and scheduling string. Schedul-
ing string represents the schedule. Matching string rep-
resents the task order. Following genetic operators are
used:
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4.1.1 Chromosome Representation

The process of representing a solution that conveys the
required meaning is necessary. We have used solu-
tion string (Ss), and matching string (Ms) of length
v. Matching string contains the value between 0 to max
cluster. Ms[i] = k means the task vi is assigned to
cluster k. Solution String Ss is generated using topol-
ogy sort of length v. Solution string Ss[i] = k indicates
that vk is ith sub task of the DAG.

4.1.2 Selection/Replacement

Selection phase is used to allocate reproductive trials to
chromosomes according to their fitness. There are dif-
ferent approaches that can be applied during the selec-
tion phase. We have used Binary Tournament operator
[4]. This operator selects the population based on the
rank and crowding distance. An individual selected has
either its rank lesser (better) than the other or its crowd-
ing distance greater than the other.

4.1.3 Crossover

The different crossover operators have been devel-
oped for the GA. We have used the most popular
two-point crossover operator on the scheduling string.
Two-point crossover operator randomly selects two
crossover points within a chromosome. Then inter-
changes the two-parent chromosomes between these
points to produce new offsprings.

4.1.4 Mutation

Mutation is a background operator which produces
spontaneous random changes in the chromosome. A
simple way to achieve a mutation would be to alter one
or more genes. Insertion picks two random values and
moves the second value to follow the first in scheduling
string. It preserves most of the order and the adjacency
information.

4.1.5 Pre-selection

Pre-selection seeds the population with pre generated
solutions of GA. We have seeded through three genetic
algorithms. Fitness function of GAs minimizes the
makespan, computation cost and communication cost.
Crossover, mutation, selection and number of evalua-
tions of NSGA-II are used in GA.

4.1.6 Local Search

This algorithm selects current solution c from offspring
and searches its neighborhood solution c′ using local

search operator namely move and swap mutation. Move
mutation randomly moves a task from one cluster to
other cluster. Swap mutation exchanges tasks between
two clusters. Neighborhood search is applied on small
number of solutions at random time. It computes the fit-
ness function using equation 10 of c′ that requires mini-
mum, maximum and weight of each objective. Weights
are generated randomly for each iteration such that
sums of weights are one. c′ replace the c in population,
if it dominates c.

fc=

m∑
i=1

wi
fin −mini

maxi −mini
(10)

4.1.7 Evaluation

Evaluation of population is performed over three objec-
tives that are described above. Non-domination count
of solutions are computed in order to find different
fronts. If particular front size is more than the remain-
ing population size, it performs crowded comparisons
operator for clustering and selects the remaining chro-
mosomes.

4.2 Time Complexity

Time complexity of DHNSGA-II is similar to NSGA-II
because one iteration of NSGA-II takes O(mN2), GA
one iteration time complexity is O(N2) and it runs for
m objectives thus time complexity of seeded NSGA-II
is O(mN2). Local search is performed on small num-
ber of solutions at less time. Thus, time taken is O(pl),
where p is number of solutions on which local search
is performed, l is the number of times local search is
performed on p, m is the number of objectives and N
is the population size. Therefore, time complexity of
DHNSGA-II is O(mN2).

5 Simulation and Evaluation

Simulation has been performed on Intel core, i-5, 2.4
GHz, 8GB RAM processor using jMetal [5] tool kit.
jMetal toolkit provides an environment to solve multi-
objective optimization problems. To test the effective-
ness of the DHNSGA-II, real world DAG of Gauss
Elimination algorithm is used as a workflow. Gauss
elimination graph is introduced by Topcuouglu et al.
[16]. Gauss Elimination algorithm finds the upper tri-
angle of a square matrix. This application requires ma-
trix size of m as an input, that should be 2m. The total
number of tasks in a Gauss elimination graph is equal
to (m2+m−2)/2. It requires several input parameters,
and these are matrix size in the graph, average compu-
tation cost (10, 15, 100, 200), computation to commu-
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nication ratio (0.1, 1, 2, 10), heterogeneity factor (0.2),
range of communication cost (1 to 10) and computation
cost (0.1 to 0.9).

Local search operator is performed on number of
solutions like (10, 10, 5), and mutation is performed on
each solution (1, 2, 5) times. Remaining DHNSGA-II
parameters are shown in Table 1.

To assess the search capability of the proposed algo-
rithm, we have generated 16 Gauss elimination graphs
of a particular matrix, that is combination of different
average computation cost and communication ratio. For
each graph, ten times communication cost and compu-
tation cost of resources are generated and local search
operator is applied. Thus particular matrix graph is
evaluated 160 times. We have compared the seeded
NSGA-II and Memetic NSGA-II with DHNSGA-II.
Seeded and Memetic NSGA-II is denoted as NSGA-
II*, NSGA-II** respectively. DHNSGA-II is denoted
as NSGA-II***. NSGA-II* is seeded with GA. NSGA-
II** applies the local search on the best solution. Best
solutions are picked out using Roulette wheel selection
method. Local search is applied on number of solutions
at number of times that vary at each iteration.

Table 1: NSGA-II Parameters

Parameter name Value
Population size 100
Cross over rate 0.8

Mutation 0.3
Generation 500

Crossover operator Two point crossover
Mutation operator Insertion based mutation
Selection operator BinaryTournament

Local selection operator Roulette wheel
Local operator Move and swap

5.1 Performance Index

Multi-objective Optimization (MOO) algorithms mea-
sure two parameters regarding the obtained solution set
and reference solution set. It should converge close to
the reference solution set, and it should maintain diverse
solution set. The first condition clearly ensures that the
obtained solutions are near optimal, and the second con-
dition ensures that a wide range of tradeoff solutions are
obtained. Hyper Volume (HV) indicator [19] is used to
compute both convergence and diversity.

It computes difference between non-dominated so-
lution set obtained from algorithm and reference solu-
tion set. Reference solution set is obtained by merging

Figure 5: Comparison of NSGA-II*

all of the non-dominated solutions generated by all of
the algorithms. The higher value is better for HV.

5.2 Results of DHNSGA-II

To compare different multi-objective scheduling algo-
rithms, reference solution set is obtained by combining
the non-dominated solutions generated from three al-
gorithms. Figs. 5 to 7 show the comparison between
reference solution set and non-dominated solution set
obtained of matrix size 16. In the figures, communi-
cation cost (blue color) and computation cost (orange
color) show the reference solution set and, communica-
tion cost (red color) and computation cost (green color)
show the solution set of different algorithms. Reference
solutions have least communication cost, computation
cost and makespan. From the figures it is clearly visi-
ble that NSGA-II*** Fig. 7 has least computation cost,
communication cost and makespan. NSGA-II*** has
more number of solutions around the reference point
while other solutions are scattered. This is because
its initial population is seeded and local search is ap-
plied. NSGA-II*** has at least 20% less makespan,
communication cost and computation cost than other
algorithms. From the figures it can be also observed
that NSGA-II* performs better than NSGA-II**, be-
cause solutions are seeded. Thus, we observe that the
pre-selection operator plays a greater role than the local
search. NSGA-II* has 15% less objective value than
NSGA-II**.

Inter Quartile Range (IQR) value (It measures a
variability of data by ignoring outliers of different quar-
tiles) of HV of different size of matrices is summarized
in Table 2. Since the lesser value of IQR is better,
from the table it can be observed that NSGA-II*** ob-
tains least value than other algorithms. NSGA-II* per-

INFOCOMP, v. 13, no. 1, p. 12-20, June 2014.



Basal and Hota Hybrid Multi-objective Workflow Scheduling on Utility Grids 18

Figure 6: Comparison of NSGA-II**

Figure 7: Comparison of NSGA-II***

forms better than NSGA-II**. NSGA-II*** overall av-
erage (all matrices) HV value is 0.11 lesser than NSGA-
II*. Similarly, NSGA-II* overall average (all matrices)
value 0.06 is lesser than NSGA-II**.

Table 2: HV of Matrices

Matrix NSGA-II* NSGA-II** NSGA-II***
8 0.46 0.47 0.32

32 0.38 0.40 0.21
16 0.32 0.34 0.22
64 0.25 0.42 0.23

5.3 Ranking of Non-dominated Solutions

A large number of non-dominated solutions are pro-
vided by the DHNSGA-II, so the subjective ranking
of solutions is very difficult and also will not be pre-

cise. In this work, a comprehensive approach has been
adopted to rank the non-dominated solutions. Non-
dominated solutions are ranked using TOPSIS algo-
rithm. It gives the rank of a solution based on relative
closeness with positive (maximum) and negative (min-
imum) values of a separation matrix. Separation matrix
which is an N-dimensional Euclidean distance of each
alternative from the positive solution and negative solu-
tions is computed as follows:

R+
i =

√√√√ n∑
i=1

(
xij − x+

i

)2
, i = 1, ..,m (11)

R−i =

√√√√ n∑
i=1

(
xij − x−i

)2
, i = 1, ..,m (12)

Here, m is the number of objectives, n is the number
of solutions, xij is normalized value of each solution’s
objective, x+

i and x−i are the maximum and minimum
values of each objective.

The relative closeness of each solution i with ideal
solution R−i and R+

i is measured as shown in equation
(13).

C+
i =

R−i
R−i +R+

i

0 ≤ c+i ≤ 1; i = 1, . . . , n (13)

The solution that has the least value of C+
i is considered

as the best alternative.

5.4 Results of Ranking Algorithm

The developed approach has been tested on different
matrices. Top five solutions of each algorithm are se-
lected by giving equal weight (0.33, 0.33, 0.34). After
that ratio of makespan and total cost (communication
cost and computation cost) is computed. Matrix of size
16 and 32, top five solutions, objective functions ratio,
of each algorithm is tabulated in Table 3 and 4. It can
be observed that NSGA-II*** obtained less ratio than
other two algorithms and NSGA-II* has less value than
NSGA-II**.

6 Discussion

In the present study, workflow scheduling problem is
analyzed and solutions are proposed for utility Grid.
The proposed scheduling algorithm minimizes the com-
putation cost, makespan and communication cost. The
multi-objective problem of workflow scheduling is
solved using seeded NSGA-II, Memetic NSGA-II, and
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Table 3: Ratio of Makespan and Total Cost of Matrix 16

No. NSGA-II* NSGA-II** NSGA-II***
1 11.24 13.96 3.82
2 12.31 13.80 4.23
3 11.22 12.80 4.35
4 11.71 13.58 4.38
5 11.47 11.67 4.14

Table 4: Ratio of Makespan and Total Cost of Matrix 32

No. NSGA-II* NSGA-II** NSGA-II***
1 17.90 23.77 8.14
2 17.81 20.64 8.17
3 17.85 21.88 7.99
4 18.09 20.87 7.90
5 18.68 23.19 8.20

DHNSGA-II. The reference solution set is obtained by
combining the Pareto front of all the algorithms. Then,
spread and convergence of algorithms are measured
along with reference solution set. From the results, it
is noted that DHNSGA-II gives the satisfactory per-
formance. The DHNSGA-II is further analyzed using
TOPSIS to rank the solutions built upon their distance
from the best solution and worst solution. Consider-
ing the ranking of the solutions, the decision manager
may choose a suitable candidate among the top-ranking
solutions to justify the objectives defined by the man-
agement along with the present market scenario. In
the current study neighborhood search is used as lo-
cal search. In future, authors plan to apply other local
search techniques like archived multi-objective based
simulated annealing to improve the results.
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