
Building Adaptive Language Systems ∗

JÁN KOLLÁR1

JAROSLAV PORUBÄN1

Technical University of Košice
Department of Computers and Informatics

Letná 9, 042 00 Košice, Slovakia
1(Jan.Kollar,Jaroslav.Poruban)@tuke.sk

Abstract. The notion of change as a first-class entity in the language is the idea of software language
engineering. Multiple metalevel concept is an essential demand for a systematic language approach, to
build up adaptable software systems dynamically, i.e. to evolve them. A feedback reflection loop from
data to code through metalevel data is the basic implementation requirement and the proposition for semi-
automatic evolution of software systems. In this paper, we illustrate the ability for extensions primarily
in horizontal but also in vertical direction of an adaptive system. From the viewpoint of adaptability,
we classify software systems as being nonreflexive, introspective and adaptive. Introducing a simple
example of LL(1) languages for expressions, we present its nonreflexive and adaptive implementation
using Haskell functional language.

Keywords: Adaptive systems evolution, adaptive languages, semantic transformation, aspect oriented
languages, domain specific languages, reflection.

(Received August 03, 2007 / Accepted February 02, 2008)

1 Introduction

Adaptability is mostly related to the area of software en-
gineering – object oriented programming, aspect-oriented
programming, intentional programming, template pro-
gramming, etc. concentrating on transformation of pro-
gram codes. As a very interesting research direction,
programming (or even modelling) languages should pro-
vide more direct and explicit support for software evo-
lution. The idea would be to treat the notion of change
as a first-class entity in the language. This is likely to
cause a programming paradigm shift similar to the one
that was encountered with the introduction of object-
oriented programming.

Our work comes out from three areas: from the area
of monadic purely functional languages, from our re-
search on process functional language – an environment
oriented language without assignments [11, 12, 13, 14,

∗This work was supported by VEGA Grant No. 1/4073/07 –
Aspect-oriented Evolution of Complex Software Systems

15], and finally, from the area of aspect oriented pro-
gramming, dealing with the problem of modularizing
crosscutting concerns.

It may be noticed, that the frequently asked question
What an aspect is[21] is irrelevant, if we have an adap-
tive aspect oriented language, which unfortunately has
not been constructed, otherwise such language would
be simply adapted on a new, just arising aspect.

That is why we oriented our work to the analysis of
the principles of adaptiveness, renewing it by exploiting
at the area of computer languages rather than software
engineering concepts.

Below we mention some essential concepts related
to adaptive software evolution.

Metaprogramming is about writing programs that
represent and manipulate other programs or themselves
[4].

Reflection is an entity’s integral ability to represent,
operate on, and otherwise deal with itself in the same
way that it represents, operates on, and deal with its pri-

(Jan.Kollar,Jaroslav.Poruban)@tuke.sk


mary subject matter. Reflection is a fundamental con-
cept of self-adaptive systems.

The main idea of applying reflection as a general
principle for flexible systems in software engineering is
to split a system into two parts: metalevel and a base
level. A metalevel provides information about selected
system and makes the softwareself-aware. A base level
includes the application logic.

There are two aspects of reflection:introspection
and intercession. Introspectionis the ability of a pro-
gram to observe and therefore to reason about its own
state.Intercessionis a higher degree of reflection, since
it is the ability of a program to modify its own execution
state or alter its own interpretation or meaning. Both as-
pects require a mechanism for encoding execution state
as data, providing such an encoding is calledreification.

Different languages provide different levels of re-
flection. For example, the Java reflection API, allows a
programmer to discover methods and attributes in classes
at runtime, and to create objects of classes, whose names
are not known until runtime. Similarly, it is possible to
call methods and access attributes whose names are not
known until runtime, because they may be discovered
with the help of reflexive facilities, or they may be com-
puted at runtime. Thus, Java’s reflexive facilities pri-
marily support introspection. In contrast to Smalltalk,
Java does not allow to directly modify classes or meth-
ods by modifying their metaobjects at runtime, that is,
it does not support intercession.

Metaobjectsare objects that represent methods, ex-
ecution stacks, the processor, and nearly all elements of
the language and its execution environment. Most im-
portantly, regular language code can access and modify
these metaobjects.

There is a principal difference between metaclass
and metaobject. Java metaclass is static data while metaob-
jects in Smaltalk is dynamic data. As we will see, dy-
namic metadata is the proposition for building adaptive
systems.

In Section 2 we introduce our classification of soft-
ware systems from the viewpoint of the degree of re-
flexive behavior, and we analyze three selected cases.
We also present the conception of multilevel adaptive
language system.

In Section 3 we present LL(1) language for expres-
sions and its nonreflexive implementation. The crucial
points of its adaptive version are presented in Section 4.

Our approach is functional, and we use Haskell –
purely functional language and for practical experiments
we have used Hugs98 system.

This allows us to express adaptive translator con-
cisely and transparently.

Although the adaptation of the translator is not gen-
eral, i.e. adapted rules are not produced as an instances
of extended BNF form, and metalevel is scattered in
multiple modules, the principle of adaptation is visible
– it is generalization and abstraction.

We illustrate our approach just using one feedback
loop (from interpreter to translator), but such loops may
be formed between any subsequent phases.

2 Systems Behavior Classification

In this section we classify software systems from the
viewpoint of their degree of adaptive behavior.

We recognize setN (of system elements) withnon-
reflexivebehavior, setI with introspectivebehavior, and
setA with adaptivebehaviour.

Behaviorally,I is stronger thanN (we write it I >
N), since no element inN can behave in introspective
manner, but all elements inI can behave in a nonreflex-
ive manner. By an analogy,A is stronger thanI, so the
relation for different degrees of an adaptive behavior is
in (1).

N < I < A (1)

Provided that a system consists of sets of different
behavior, then they are structurally disjunctive. This
is inevitable proposition for the existence of feedback
loops from code to the same code via metalevel data, as
we see below.

We mention that the execution is a synonym for trans-
formation in general, such as translation, type check-
ing, code generation, loading, interpretation, modeling,
algebraic specification, and even for informal but con-
structive thinking about algorithmic problems. This is
so, because we relate our classification to dynamic trans-
formations of any kind, and then there are no strict bound-
aries between different types of transformations.

2.1 Nonreflexive Execution

Machine code – the constant set0C of instructions at
base level0 does not vary during execution, and then the
execution changes data0D(k) (the set of data records
on the stack or in the heap) to a new data set0D(k+1).
An execution step is the transformation of configuration
(2).

0C ×−→ 0D(k) =⇒ 0C ×−→ 0D(k+1) (2)

In (2), the relation( ×−→) denotes that many instruc-
tions from 0C, can access many data records0D.



This execution is nonreflexive, because there is no
feedback loop from data to code, and no possibility
given to code to observe or even to change itself.

2.2 Introspective Execution

In an introspective execution, code0C constructs and
changes data0D(k), as in nonreflexive execution. In
addition to this, each subset of the set0D(k) refer (which
we designate by↖−) exactly one element of static data
1S, and this data refers (↖+) a subset of code0C ac-
cording (3). Static data set1S at level 1 are metalevel
static data to the level 0.

1C ×−→ 1S
+↙ ↖−

0C ×−→ 0D(k)

=⇒
1C ×−→ 1S

+↙ ↖−

0C ×−→ 0D(k+1)

(3)
Since metalevel data (set of records)1S is static,

metacode1C may produce it once, and then the execu-
tion of 1C is finished. Clearly, such metacode cannot
be runtime process, and execution of0C is nonadap-
tive. However, it is introspective, because of existence
of feedback loop from code0C to code 0C via data
set 0D and some metadata element from1S.

2.3 Adaptive Execution

Adaptive execution step is defined in (4). In this case,
metalevel data1D(m) can change in runtime to data
1D(m+1), by execution of metalevel code1C. This
code itself is nonreflexive, since there is no feedback
loop via metadata at level 2. On the other hand, new
1D(m+1) may result to new0C(k), continuing its exe-
cution at level 0.

1C ×−→ 1D(m)

+↙ ↖−

0C(k) ×−→ 0D(k)

=⇒
1C ×−→ 1D(m+1)

+↙ ↖−

0C(k+1) ×−→ 0D(k+1)

(4)
It means that code at level 0 may be not just intro-

spective, but also adaptive, and this fact is essential for
an adaptive execution.

It is easy to see, that level 2 may be built upto level
1 similarly as level 1 upto level 0, etc. Such chain of
metalevels represent abstractions of previous level, and
this abstraction we recognized optimal, provided that

1. Cardinality relation| (`+1)D| � | `D| holds, since
each metalevel should express its base level con-
cisely, and

2. Computational time relation(`+1)τ � `τ hold,
which says that computational time at a metalevel
should be significantly shorter than that at a base
level.

In Section 3 we will introduce simple LL(1) lan-
guage for expressions and then, in Section 4, we present
our conception of dynamic adaptiveness, applied to this
language.

3 Nonreflexive Language

Syntax of LL(1) language of expressions is written in
extended BNF form (5).

E → A { (” + ” | ”− ”) A }
A → B [ (” ∗ ” | ”/”) A ]
B → const | ”(” E ”)”

(5)

where[ϕ] = (ϕ| ε), ε is empty symbol,ϕ is a syn-
tactic expression, and{ϕ} = ε | ϕ | ϕ ϕ | . . . is the
transitive closure.

The priority and associativity of operations defined
by LL(1) grammar (5), is as follows: operations(+)
and(−) are left-associative and they are on lower prior-
ity than operations(∗) and(/) that are right-associative.

The nonreflexive implementation of this language is
depicted in Fig. 1.

Figure 1: Nonreflexive Language

In addition, the task of adaptation, which we will
solve in Section 4 is depicted in Fig. 1 by red arc, which
forms essential feedback loop between the result of in-
terpretation and the translation to postfix code.

Lexical analysis is defined by the translation schemes
L (6) and implemented by functionlexical .

L[[ ” + ” | ”− ” | ” ∗ ” | ”/” | ”(” | ”)” | const ]] =
AL | SL |ML |DL | LL |RL |VL (aToI const)

(6)



whereconst is string form of an integer, which is
translated to value usingaToI. We use sum operation|,
instead of definingL for each symbol separately.

The semantics given by (7) yields the implementa-
tion by functiontranslate , which translates lexical
code (symbols) to postfix code.

E [[ A { (AL | SL) A′ } ]] =
A[[ A ]] { A[[ A′ ]] (Add | Sub) }

A[[ B [ (ML |DL) A ] ]] =
B[[ B ]] [ A[[ A ]] (Mul |Div) ]

B[[ VL v | LL E RL ]] =
Push v | E [[ E ]]

(7)

Translation starts byE [[ E ]], sinceE is starting sym-
bol.

Interpretation is defined by functioneval , which
produces the result on the stack, when applied to postfix
code according (8).

eval pcode (8)

Code generation and loading are composed into sin-
gle pass. The transformation of postfix code operations
to machine code instructions is defined by schemeC in
(9)

C[[Add]] = 1 C[[Sub]] = 2
C[[Mul]] = 3 C[[Div]] = 4
C[[Push x]] = 5 x

(9)

wherex is an integer value, stored on the target code
immediately after code 5 of instructionPush.

Machine code is generated and produced to mem-
ory (represented as a list) by functiongenload , which
performs code generation as well as loading actions and
this function is invoked by the application (10)

genload pcode (10)

wherepcode is postfix code produced by function
translate . The value of the application (10) is ma-
chine code.

Machine architecture comprises program counterPC,
stack pointerSP (instead of stack pointer), accumula-
tor A, the memory comprising target codetcode, and
the stackstack.

The execution step is defined by the transformation
of machine configuration (11).

(PC, SP, A, tcode, stack) ⇒
⇒ (PC ′, SP ′, A′, tcode, stack′) (11)

Machine code execution is invoked by

exec (0, 0, 0,tcode, [])

wheretcode is target code loaded in memory.
We will not provide the Haskell functions, that im-

plement the language, since they are trivial, we just at-
tend, that the schemeE is implemented by functionpE,
the schemeA is implemented by functionpA, and the
schemeB is implemented by functionpB.

However, below we introduce a simple example, which
illustrates intermediate codes, the result of interpreta-
tion, as well as final configuration of machine architec-
ture after execution, for source expression2+3*5 , as
obtained by Hugs98 interpreter. As defined by gram-
mar (5), the multiplication is of higher priority than the
addition, as expected.

> lexical "2+3*5"
[VL 2,AL,VL 3,ML,VL 5]
> translate [VL 2,AL,VL 3,ML,VL 5]
[Push 2,Push 3,Push 5,Mul,Add]
> eval [Push 2,Push 3,Push 5,Mul,Add]
17
> genload [Push 2,Push 3,Push 5,Mul,Add]
[5,2,5,3,5,5,3,1,0]
> exec (0,0,0,[5,2,5,3,5,5,3,1,0],[])
(8,1,17,[5,2,5,3,5,5,3,1,0],[17])
>

It may be noticed thatgenload addsExit instruc-
tion (of code 0), to be able to stop the execution.

Since our implementation is functional, the inter-
preter of the language is the composition

eval.translate.lexical

and compiler, machine code generator, loader and exe-
cution is the application

exec(0, 0, 0, (genload.translate.lexical)s, [])

wheres is a source expression and composition

(genload.translate.lexical)

translate source expressions to target code.

4 Adaptive Language

First, let us introduce the specific task of adaptation in-
formally.



Depending on a result of interpretation (on
the stack), the semantics (7) of language should
be changed, so the next interpretation of the
same source expression may yield different re-
sult.

The feedback loop depicted in Fig. 1 determines that
we require new version fortranslate function, de-
fined by (7), which is its zero variant (Variant 0).

Let the task of adaptation is as follows. Ifres is
some result of interpretation, then we require next three
variants:

1. If res < 10, then we require operations(+) and
(−) to become right-associative, i.e., for variant 1,
the ruleE in (7) should change to the form (12).

E [[ A [ (AL | SL) E ] ]] =
A[[ A ]] [ E [[ E ]] (Add | Sub) ] (12)

2. If 10 ≤ res < 20 then we require(∗) and(/) to
become left-associative, for variant 1, the ruleA
in (7) should change to the form (13).

A[[ B { (ML |DL) B′ } ]] =
B[[ B ]] { B[[ B′ ]] (Mul |Div) } (13)

3. An finally, if res ≥ 20, then mutual interchange of
priority of {+,−} and{∗, /} is required. It means
that variant 3 requires changes of both rulesE and
A, according (14).

E [[ A [ (ML |DL) E ] ]] =
A[[ A ]] [ E [[ E ]] (Mul |Div) ]

A[[ B { (AL | SL) B′ } ]] =
B[[ B ]] { B[[ B′ ]] (Add | Sub) }

(14)

As follows from our requirement above, if a non-
zero variant is sometimes selected, the language will
never be adapted to its zero variant.

All changes above are underlined. Then we simply
generalize rules forE andA, implementing them by
single functiongS.

In addition, to this, adaptive functiontranslate
is sensitive on variant which is defined in metadata, by
constant functionvariant .

Variants are defined in moduleMetaData , as shown
in Fig. 4.

Adaptive translator is shown in Fig. 3.

The adaptiveness is reached by parameter

(s1, t, lo1, o1, lo2, o2, s2)

of gS, by functionrules , and by functionap .
Functionrules represents translation rules in a graph

form, i.e. as a data and it is sensitive to variant. The
translation rules are then applied indirectly – using func-
tion ap .

Adaptive translator is of type

translate :: Int− > LexSyms− > PCode

i.e. it is abstracted nonreflexive translator, of type

translate :: LexSyms− > PCode

by variant number – a new parameter of typeInt .
Defining auxiliary function

translexk = (translatek).lexical

we may test the sensitivity to variants.
Expression64/16/8− 2− 2 is translated

- as((64/(16/8))− 2)− 2 for variant 0,

- as(64/(16/8))− (2− 2) for variant 1,

- as(((64/16)/8)− 2)− 2 for variant 2, and

- as64/(16/((8− 2)− 2)) for variant 3, see below.

> translex 0 "64/16/8-2-2"
[Push 64,Push 16,Push 8,Div,Div,
Push 2,Sub,Push 2,Sub]
> translex 1 "64/16/8-2-2"
[Push 64,Push 16,Push 8,Div,Div,
Push 2,Push 2,Sub,Sub]
> translex 2 "64/16/8-2-2"
[Push 64,Push 16,Div,Push 8,Div,
Push 2,Sub,Push 2,Sub]
> translex 3 "64/16/8-2-2"
[Push 64,Push 16,Push 8,Push 2,Sub,
Push 2,Sub,Div,Div]
>

The implementation of adaptive language is shown
in Fig. 2

Finally, we let us define metacode, in moduleMetaCode ,
see Fig. 5.

Selection criteria are defined by functionselVariant ,
and as an example, we define functionadaptSeq , which
computes a list of pairs, first item being a variant num-
ber and second item being the result of evaluation, such



Figure 2: Adaptive Language

that corresponds to varying semantics dependent on pre-
vious result. We will compute original and four next
results.

For example

> adaptSeq "64/16/8-2-2"
[(0,28),(3,16),(2,-4),(1,32),(3,16)]

so the value 28, computed by original (variant 0) se-
mantics yields the selection of variant 3 (because28 ≥
20), and the same source expression will be recomputed
in the second step with interchanged priority, i.e. as
64/(16/((8− 2)− 2)), which yields the result 16. This
result will determine variant 2 for the third step, hence
we have the result(−4), etc.

The analysis of next two cases is left to a reader.

> adaptSeq "2+3*5"
[(0,17),(2,17),(2,17),(2,17),(2,17)]
> adaptSeq "2+3*8"
[(0,26),(3,40),(3,40),(3,40),(3,40)]
>

SubstitutingevalS by loadS or by execS we
would see that adapted postfix code affects code gen-
eration, loading and the execution. It means that it is
possible to decide first for interpretation and then pro-
duce highly efficient machine code. Of course, in our
implementation is the architecture interpreted, so we
have all resources accessible. In realistic computer ma-
chine there may be a problem with accessibility of in-
ternal registers, which is the main obstacle for building
directly executable adaptive systems (and a reason for
runtime environments).

As can be seen, our adaptive translator is more adapt-
able, than we have required. For example, it is possible
to extend variants inMetaData to vary the semantics
of lexical symbols (to obtain∗ for addition and+ for
multiplication).

5 Related Works

No matter how well an application is decomposed into
modular entities, some functionality always crosscuts
this modularization. This phenomenon is known as the
tyranny of the dominant decomposition [7]. As a con-
sequence, such functionalities cannot be evolved sepa-
rately. The implementation convolution problem refers
to the phenomenon that, for a large number of non-
trivial functionalities, although their semantics are dis-
tinctive, their implementations do not have clear mod-
ular boundaries within the code space and, more se-
riously, often tangle with one another. This prohibits
these functionalities from being pluggable [24].

Meta-modeling generic environments [17] provide
the opportunity for multi-paradigm modeling, not how-
ever in combined manner. In spite of the principles of
building software architectures were defined [20], there
is no guarantee that the developed software system is
without errors. Adding new aspects in the new life-
cycle, some previous aspects may be forgotten, and re-
moving indicated errors, new errors may be involved.

Aspect paradigm [1, 10, 2, 6, 16, 18, 22, 23] is based
on modularization of aspects and their binding into im-
plementation by weaving [9, 16]. The source code of
aspect module is woven into different parts of target
code during compile time in the case of static aspects
or it is bound and executed in the run-time when some
specific event occurs in the case of dynamic aspects.
The set of join points is designated using logical condi-
tions in pointcut designators. The main reason why the
aspect paradigm is not widely accepted is the absence of
general aspect model. Instead of one general methodol-
ogy for development, monitoring and re-configuration
of complex software systems, ad-hoc methods are ap-
plied nowadays. The programmer must take into ac-
count a lot of details of the system implementation, such
as function names, parameters, types and even the or-
der of execution - control flow to be competent to apply
aspect oriented paradigm in everyday practice. These
details have crosscutting nature because they represent
new aspect as an added system property from the lexi-
cal, syntactic, semantic and run-time side of implemen-
tation.

Marginally, our work is related to the area of soft-
ware evolution, such as dynamic software reconfigura-
tion, on-line software evolution, or even dynamic unan-
ticipated software evolution [19], but our approach dif-
fers in that our goal is not to change the software by
program transformation, but transforming, i.e. adapting
a language.

Current research is concentrating to the semantics of
aspect languages. For example, the denotational seman-



tics of dynamic join points can be found in [22], a sys-
tem for reasoning about temporal join points in [6], the
analysis of AspectJ language [9] based on Scheme lan-
guage in [16], and based on MiniMAO is introduced in
[3]. Mining aspects and static refactoring are proposed
in [7], as a basis for mutual interconnection of the spec-
ification and implementation. It has been shown that
generic weaving based on repeated transformation of
a program may fail in case of imperative assignments
ad statement sequences [8]. Aspects inµABC calcu-
lus are primitive computational entities [2] and the state
of computation is represented by a dynamically con-
structed advice.

A two-dimensional separation of concerns for com-
piler construction is introduced in [25] yields us to think
about two dimensional domain specific language evo-
lution. We feel the perspective of domain specific lan-
guages will grow as the domain can be understand not
just as an entity associated to an application, but to the
metalevels of an adaptive multiparadigm language. This
direction seems to us better than semi-automatic ap-
proaches based on artificial intelligence evolution, such
as in [5]. Each detail of a complex software system
must be transparently reflected. Otherwise it is impos-
sible to be responsible for its reliability. This however
does not mean that reflection at a metalevel could not
substitute the reflection at the base level.

6 Conclusion

Presented adaptive translator of trivial LL(1) language
illustrates the ability for further extensions. First, it
is possible to provide feedback loops from any subse-
quent phase of language implementation to any preced-
ing phase, via metadata. For example, it is possible to
replace names by feedback loop from translator, inter-
preter, machine code generator, loader, or even from tar-
get machine execution, since it is interpreted.

The weakness of presented solution is evident – its
scattered definition of metalevel. But this is just for
this reason, that we have used purely functional lan-
guage without monads. A solution to this problem is
functional language with monads, or an object oriented
imperative language. Also low flexibility of algebraic
types can be noticed, but this problem is over the scope
of this paper.

On the other hand, it can be seen, that metalevel is
formed by abstraction, which is implemented exactly as
it is defined in terms of lambda calculus. Starting with
original form of translator, i.e. with an expressione, we
provide adaptive version by shifting original functions
to local level (LETREC) of function representing new
version of the translator. And this fact means exactly

abstracting lamda expressione to lambda abstraction
(λk.e), wherek is a parameter designating any version.

In this paper, the generalization of two translation
rules, is clearly ad-hock solution, and we plan extended
it in the future for all syntactic trees, generated from ex-
tended BNF form (or BNF form for LR(k) languages).
An alternative to denotational semantics – attributed gram-
mars – can be also used.

The main contribution of this work, from the view-
point of our future research, is as follows:

- Domain specific languages can be developed as
adaptive language systems for rather metalevel do-
mains than application domains.

- Provided that some level or metalevel is adaptive,
it contains feedback loops from data to code via
metalevel or metametalevel.

- Even if any level or metalevel is adaptive, it must
be still manually initiated (i.e. programmed, spec-
ified, modeled). By the way, it is a base principle
of control systems. The task of adaptive systems is
to reduce this manual work, or shift it to the met-
alevel or metametalevel.

The prototype solution presented in this paper is just
starting point to the research in emerging field of soft-
ware language engineering. The idea is to treat the no-
tion of change as a first-class entity in the language.

References

[1] Bebjak, M., Vraníc V., Dolog, P. Evolution of
Web Applications with Aspect-Oriented Design
Patterns. Proc. of ICWE 2007 Workshops, 2nd In-
ternational Workshop on Adaptation and Evolu-
tion in Web Systems Engineering, July 19, Como,
Italy, pp. 80–86, 2007.

[2] Bruns, G., Jagadeesan, R., Jeffrey, A., Riely, J.
µabc: A minimal aspect calculus. In Proceed-
ings of the 2004 International Conference on Con-
currency Theory, Springer–Verlag, pp. 209–224,
2004.

[3] Clifton, C., Leavens, G. T. MiniMAO: Investigat-
ing the semantics of proceed. FOAL 2005 Pro-
ceedings, Foundations of Aspect–Oriented Lan-
guages Workshop at AOSD 2005, pp. 51–61,
2005.

[4] Czarnecki, K., Eisenecker, U. E. Generative Pro-
gramming: Methods, Tools, and Applications.
Addison Wesley, 832 pp, 2005.



[5] Črepinšek, M., Mernik, M. Inferring Context-Free
Grammars for Domain-Specific Languages, Conf.
on Language Descriptions, Tools and Applica-
tions, LDTA 2005, April 3, Edinburgh, Scotland,
UK, pp. 64–81, 2005.

[6] Douence, R., Motelet, O., Sudholt, M. A formal
definition of crosscuts. In Reflection 2001, num-
ber 2192 in LNCS. Spring–Verlag, pp. 170–186,
2001.

[7] Ebraert, P., Tourwe, T. A Reflective Approach
to Dynamic Software Evolution. In the pro-
ceedings of the Workshop on Reflection, AOP
and Meta–Data for Software Evolution (RAM–
SE’04), pp. 37–43, 2004.

[8] Fradet, P., Sudholt, M. Towards a Generic Frame-
work for Aspect–Oriented Programming., Third
AOP Workshop, ECOOP’98 Workshop Reader,
LNCS, Vol. 1543, pp. 394–397, 1998.

[9] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,
M., Palm, J., Griswold, W. G. An Overview of
AspectJ. ECOOP’01, LNCS, vol. 2072, pp. 327–
355, 2001.

[10] Kiczales, G., Lamping, J., Menhdhekar, A.,
Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J. Aspect–oriented programming. In Mehmet Ak-
sit and Satoshi Matsuoka, editors, ECOOP ’97
– Object–Oriented Programming 11th European
Conference, Jyväskylä, Finland, volume 1241,
Springer–Verlag, , pp. 220–242, 1997.

[11] Kollár, J. Object Modelling using Process Func-
tional Paradigm. Proc. ISM’2000, Rožnov pod
Radhošťem, Czech Republic, May 2–4, pp. 203–
208, 2000.

[12] Kollár, J. Unified Approach to Environments in
a Process Functional Programming Language.
Computing and Informatics, 22, 5, pp. 439–456,
2003.

[13] Kollár, J., Porubän, J., Václavík, P. Separating
Concerns in Programming: Data, Control and Ac-
tions. Computing and Informatics, 24, 5, pp. 441–
462, 2005.

[14] Kollár, J., Novitzká, V. Semantical Equivalence
of Process Functional and Imperative Programs.
Acta Polytechnica Hungarica Vol. 1, No. 2,
pp. 113–124, 2004.

[15] Kollár, J., Porubän, J., Václavík, P. From Eager
PFL to Lazy Haskell, Computing and Informatics,
25, 1, pp. 61–80, 2006.

[16] Masuhara, H., Kiczales, G. Modeling crosscutting
in aspect–oriented mechanisms. In ECOOP 2003
– Object–Oriented Programming European Con-
ference, Springer–Verlag, pp. 2–28, 2003.

[17] Ledeczi, Á., Maroti, M., Bakay, A., Karsai, G.,
Garrett, J., Thomason, C., Nordstrom, G., Sprin-
kle, J., Volgyesi, P. The Generic Modeling En-
vironment. Proc. of WISP’2001, May, Budapest,
pp. 34–42, 2001.

[18] Lieberherr, K., Lorenz, D. H., Ovlinger, J. Aspec-
tual Collaborations: Combining Modules and As-
pects. The Computer Journal, 46(5), pp. 542–565,
2003.

[19] Oliveira de Almeida, H., Perkusich, A., Ferreira,
G., Loureiro, E., de Barros Costa, E. A Com-
ponent Model to Support Dynamic Unanticipated
Software Evolution, SEKE 2006, San Francisco,
CA, USA, pp. 262–267, 2006.

[20] Perry, D., Wolf, A. Foundations for the study of
software architecture, ACM SIGSOFT Software
Engineering Notes, 17, pp. 40–52, 1992.

[21] Steimann, F. The paradoxical success of aspect-
oriented programming. OOPSLA 2006, pp. 481–
497, 2006.

[22] Wand, M., Kiczales, G., Dutchyn, C. A seman-
tics for advice and dynamic join points in aspect–
oriented programming. Trans. on Prog. Lang. and
Sys., 26(5), pp. 890–910, 2004.

[23] Walker, D., Zdancewic, S., Ligatti J. A theory
of aspects. In Proceedings of the eighth ACM
SIGPLAN international conference on Functional
programming, Uppsala, Sweden, ACM Press,
pp. 127–139, 2003.

[24] De Win, B., Piessens, F., Joosen, W., Verhanne-
man, T. On the importance of the separation–of–
concerns principle in secure software engineering.
Workshop on the Application of Engineering Prin-
ciples to System Security Design, Boston, MA,
USA, November 6–8, pp. 62–76, 2002.

[25] Xiaoqing Wu, Roychoudhury, S., Bryant, B. R.,
Gray, J. G., Mernik, M. A Two-Dimensional Sep-
aration of Concerns for Compiler Construction.
Proceedings of the 2005 ACM symposium on Ap-
plied computing, pp. 1365–1369, 2005.



7 Appendix

module Translator where

import Lexical
import MetaData

translate :: Int -> LexSyms -> PCode
translate k ls = (snd . pE) (ls,[])

where
rules = [("E", gS v1), ("A", gS v2), ("B", pB) ]

where (v1,v2) = variants !! k

ap nt = snd (head [(n,f) | (n,f) <- rules , n==nt])

pE = ap "E"

gS :: (String,Char,LexSym,Operation,LexSym,Operation,String)->
(LexSyms,PCode) -> (LexSyms,PCode)

gS (s1,t,lo1,o1,lo2,o2,s2) ([],cs) = ([],cs)
gS (s1,t,lo1,o1,lo2,o2,s2) (ls,cs)

| t == ’c’ = cls ((ap s1 ) (ls,cs)) []
| t == ’a’ = alt ((ap s1 ) (ls,cs)) []

where cls ([], cs) no = ([], cs++no)
cls ((l:ls), cs) no

| l == lo1 = cls ((ap s2 ) (ls,cs++no) ) [o1]
| l == lo2 = cls ((ap s2 ) (ls,cs++no) ) [o2]
| otherwise = ((l:ls),cs++no)

alt ([], cs) os = ([], cs++os)
alt ((l:ls), cs) os

| l == lo1 = alt ((ap s2 ) (ls,cs)) (os++[o1])
| l == lo2 = alt ((ap s2 ) (ls,cs)) (os++[o2])
| otherwise = ((l:ls),cs++os)

pB :: (LexSyms,PCode) -> (LexSyms,PCode)
pB ([],cs) = ([],cs)
pB (((VL x):ls),cs) = (ls,cs++[Push x])
pB ((l:ls),cs) | l == LL = skipR ((ap "E" ) (ls,cs))

where
skipR ((l:ls’),cs’) = (ls’,cs’)

Figure 3: Adaptive translator to postfix code



module MetaData where

import Lexical -- to access LexSyms type

data Operation = Add | Sub | Mul | Div | Push Int

type PCode = [Operation]

variants = [(r1,r2), (r3,r2), (r1,r4), (r5,r6)]
where

r1 = ("A",’c’,AL,Add,SL,Sub,"A")
r2 = ("B",’a’,ML,Mul,DL,Div,"A")
r3 = ("A",’a’,AL,Add,SL,Sub,"E")
r4 = ("B",’c’,ML,Mul,DL,Div,"B")
r5 = ("A",’a’,ML,Mul,DL,Div,"E")
r6 = ("B",’c’,AL,Add,SL,Sub,"B")

Figure 4: MetaData module – definition of variants

module MetaCode where

import Lexical
import Translator
import Evaluation

selVariant v | v < 10 = 1
| v >= 10 && v < 20 = 2
| v >= 20 = 3

evalS k = eval . (translate k) . lexical

loadS k = genload . (translate k) . lexical

execS k s = exec (0,0,0,(genload . (translate k) . lexical) s,[])

variate s (vs,res) ls 0 = ls
variate s (vs,res) ls (n+1) = variate s (vs’,res’) (ls ++ [(vs’,res’)]) n

where
res’ = evalS vs’ s
vs’ = (selVariant res)

adaptSeq s = variate s (vs,res) [(vs,res)] 4
where

res = evalS 0 s
vs = 0

Figure 5: MetaCode module – user defined metacode


	Introduction
	Systems Behavior Classification
	Nonreflexive Execution
	Introspective Execution
	Adaptive Execution

	Nonreflexive Language
	Adaptive Language
	Related Works
	Conclusion
	Appendix

