
Checking Satisfiability of Tree Pattern Queries
for Active XML Documents

HAI-TAO MA1 , ZHONG-XIAO HAO1,2 , YAN ZHU3

1 School of Computer Science and Technology, Harbin Institute of Technology,
Heilongjiang, 150001, China

2 College of Computer Science and Technology, Harbin University of Science and Technology,
Heilongjiang, China

3College of Information Science and Engineering, Yanshan University, Hebei, China
1mahaitao@hit.edu.cn
2haozx@hrbust.edu.cn

3zhuxiaoyan@88mail.ysu.edu.cn

Abstract. Satisfiability is an important problem of queries for XML documents. This paper focuses on
the satisfiability of tree pattern queries for Active XML(AXML for short) documents conforming to a
given AXML schema. An AXML document is an XML document where some data is given explicitly
and other parts are defined intensionally by means of embedded calls to Web services, which can be
invoked to generate data. For the efficient evaluation of a query over an AXML document, one should
check whether there exists an (A)XML document obtained from the original one by invoking some Web
services, on which the query has a non-empty answer. An algorithm for checking satisfiability of tree
pattern queries for AXML documents that runs polynomial time is proposed based on tree automata
theory. Then experiments were made to verify the utility of satisfiability checking as a preprocessing
step in queries procession. Our results show that the check takes a negligible fraction of the time needed
for processing the query while often yielding substantial savings.

Keywords: Active XML, tree pattern queries, tree automata, satisfiability.

(Received October 30, 2007 / Accepted February 02, 2008)

1 Introduction

Active XML(AXML for short) Documents, as a pow-
erful tool for distributed data management, were firstly
proposed by Serge Abiteboul et al. in [2]. An AXML
document is an XML document where some of the data
is given explicitly and other parts are given intension-
ally, by means of embedded calls to Web services. When
one of these calls is invoked, the result will be returned
and inserted into the original document. Introducing
Web services improves the dynamic and flexibility of
XML documents largely. However, it brings many new
problems such as documents rewriting [15],documents
containment [3] and lazy queries for documents [1], and
so on.

XPath is a subset of the standard query language
for XML and is based on a basic paradigm of finding
bindings of variables by matching tree patterns against
a database. In this paper, we model queries as tree pat-
terns described by Miklau and Suciu [14].

Detecting whether a given query is satisfiable, i.e.,
whether there exist any documents satisfying the query
is an important problem of queries for XML documents.
If one can decide, at compiling time, that a query is
not satisfiable, then many unnecessary computations of
queries processing can be avoided. Satisfiability of queries
for XML documents has been widely investigated in re-
cent years [5, 9, 11]. However, the corresponding prob-
lem of AXML documents, to our knowledge, has not

been well presented and traditional methods for XML
documents become useless to solve it.

The focus of this paper is on the satisfiability prob-
lem of queries for AXML documents under a given AXML
schema. The problem is more intricate than XML be-
cause we should consider all Web service calls embed-
ded in it that may return some useful data contributing
to the query results.

The only paper we found about AXML queries is
[1]. The authors proposed a lazy manner of tree pattern
queries evaluation and payed more attention to how to
decide the relevant function calls. Here we focused on
the satisfiability of tree pattern queries for AXML doc-
uments.

Satisfiability of queries for XML documents had been
widely investigated in the past years. For instance, the
author of [9] discussed the satisfiability problem of XPath
expressions and obtained polynomial time (PTIME) bounds
of some fragments of XPath. In [11], the authors ad-
dressed a tree pattern formalism with expressiveness in-
comparable to XPath and showed that the satisfiability
problem is NP-complete for several restrictions of this
pattern language in the absence of document type def-
inition(DTDs). In [5] the authors explored the satisfi-
ability problem associated with XPath in the presence
of DTDs. However, these methods proposed by above
references can not be used directly to solve the satis-
fiability of queries for AXML documents. The reason
is that AXML documents contain embedded Web ser-
vices, and we should consider all these intentional parts
when checking the satisfiability of queries for AXML
documents.

Tree automata theory has been attracted more at-
tention along with the development of XML in recent
years. Neven Frank surveyed the relationships among
automata, Logic and XML in [16], and pointed out that
tree automata can be used to define XML schema lan-
guages and check XML documents validation. Tree au-
tomata theory has been used to solve XML typecheck-
ing problem [13] and optimize XPath based on DTD
[8]. In [8], the authors defined a new product tree au-
tomaton building from DTD and XPath query expres-
sion to generate the optimized form of XPath queries.
This paper also define a new product tree automaton
building from AXML schemas and tree pattern queries,
but our goal is to decide satisfiability of queries for
AXML documents conforming to a given schema by
deciding the emptiness of the product automaton.

In a recent paper, we showed that tree automata also
can be used to solve the problem of AXML document
rewriting [12]. AXML document rewriting is to decide
whether an AXML document can be translated into an-

other one conforming to a given target schema by in-
voking some web services embedded in it. To solve it,
we built two tree automata corresponding to the AXML
document and AXML schema and checked whether their
intersection is empty or not. Here we not only use an
extended tree automaton to represent AXML schemas,
but also use tree automata to abstract tree pattern queries
and check the satisfiability of queries for AXML docu-
ments conforming to the schema by deciding the prod-
uct automaton building from these two automata empti-
ness.

In the present paper, we use tree automata to repre-
sent query expressions and AXML schemas in a unified
framework. More precisely, we firstly build a new tree
automaton, AXML schema tree automaton(ASTA), to
capture the set of documents conforming to the given
schema. According to the tree pattern query expression,
then we build a regular tree automaton which describes
the set of documents that contain the query paths. To
check whether there exist any AXML documents sat-
isfying the query, it is sufficient to test whether the in-
tersection of these two sets is empty or not. For this
purpose, we build a product tree automaton from ASTA
and tree pattern query tree automaton and test its empti-
ness. If the product automaton is non-empty, it shows
that the query on this document is satisfied, otherwise,
unsatisfied.

The main contributions of this paper are as follows:

• We propose a new tree automaton, ASTA, to cap-
ture the set of AXML documents conforming to
the given schema.

• Given an AXML document t, AXML schema D
and a tree pattern query q, we propose an algorithm
that checks the satisfiability of query q for docu-
ment t conforming to schema D based on ASTA.

• Finally, we perform experiments to verify our al-
gorithm and show that this check takes a negligi-
ble fraction of the time needed for processing the
query while often yielding substantial savings.

The paper is organized as follows: Section 2 describes
the basic preliminaries knowledge about this paper. In
Section 3 we propose an algorithm for building an equiv-
alent ASTA corresponding to a given AXML schema.
An algorithm of checking satisfiability of tree pattern
queries for AXML documents conforming to a given
schema is presented in Section 4. The experimental re-
sults are studied in Section 5. Section 6 concludes the
paper.

2 Preliminaries
2.1 AXML Documents

We model AXML documents as ordered labeled trees
with data and function nodes. The latter correspond
to services calls. Firstly, we recall some definitions of
trees from [7] which we used to abstract AXML docu-
ments and tree pattern queries in the following sections.

Definition 1 (Ordered Tree.) A rooted tree is a tree in
which one of the nodes is distinguished from the others.
The distinguished node is called the root of the tree.

An ordered tree is a rooted tree in which the children
of each node are ordered.

A labeled tree is a rooted tree in which each node is
assigned a label.

We assume the existence of some disjoint domains:
N of nodes, L of labels, F of function names, andD of
data values. We review the definition of AXML docu-
ments from [15].

Definition 2 An AXML document t is an expression (T, λ),
where T = (N, E, <) is an ordered tree. N ⊂ N is a
finite set of nodes, E ⊂ N ×N are the edges, < asso-
ciates with each node in N a total order on its children,
and λ : N → L ∪ F ∪ D is a labeling function for
the nodes, where only leaf nodes may be assigned data
values from D.

Nodes with a label in L and nodes in D are called
data nodes while those with a label inF are called func-
tion nodes. The children subtrees of a function node are
the parameters of the call. When a function node is
called, these subtrees are passed to it and returned re-
sults (one node or an output subtree) will replace the
function node in the document.

For example, Figure 1 shows an AXML document.
Function nodes are denoted as square nodes and data
values are quoted. This document contains a list of ho-
tels, some of which are given explicitly and some only
intensionally, through an embedded call to the GetHo-
tels function. The document details for each hotel its
name, address, rating, and some nearby restaurants or
museums. When the first GetRestos call is invoked with
the address of the hotel as a parameter, it returns a list
of restaurant elements to replace the function node, as
showed in Figure 2.

Analogous to XML, AXML schemas represent the
specification which AXML documents must conform
to. To simplify the presentation, we consider a simple
DTD-like schema specification from [15].

Definition 3 An AXML document schema is an expres-
sion (L,F, τ), where L ⊂ L and F ⊂ F are finite set of

hotels

GetHotels

“BJ”
hotel

name
address

“Beijing”
“1st Av.”

rating

“five-star”

nearby

GetRestos
GetMuseums

“1st Av.”
“1st Av.”

Figure 1: A sample AXML document

hotels

GetHotels

“BJ”
hotel

name
address

“Beijing”
“1st Av.”

rating

“five-star”

nearby

restaurant
GetMuseums

name address

“Duck”“2nd Av.”

“1st Av.”

Figure 2: AXML document after a call

labels and function names respectively, τ is a function
that maps each label name l ∈ L to a regular expres-
sion over L ∪ F or to the keyword “data”(for atomic
data), and maps each function name f ∈ F to a pair of
such expressions, called the input and output types of f
and denoted by τin(f) and τout(f).

For instance, the following is an example of AXML
schema.

Example 1 An AXML schema D = (L,F, τ) defines
as follows:

data:

τ(hotels) = hotel∗.GetHotels,
τ(hotel) = name.address.rating.nearby,
τ(nearby) = restaurant∗.GetRestos.museum∗.
GetMuseums,
τ(restaurant) = name.address,
τ(museum) = name.address,
τ(name) = τ(address) = data,
τ(rating) = data.

functions:

τin(GetHotels) = data,
τout(GetHotels) = hotel∗,
τin(GetRestos) = data,
τout(GetRestos) = restaurant∗,
τin(GetMuseums) = data,
τout(GetMuseums) = museum∗.

Then AXML schema D defines the set of AXML
documents conforming to it.

2.2 Tree Pattern Queries

We model queries as tree patterns described by Miklau
and Suciu in [14].

Definition 4 A tree pattern query is a labeled tree whose
nodes are labeled by variable names, constants (ele-
ment names and data values), or the label wildcard
“∗”. The nodes labeled by variable names are called
variable nodes and those labeled by element names and
data values are called constant nodes. The tree also has
a distinguished set of edges called descendant edges
and a distinguished of nodes called the result nodes.

Figure 3 shows a tree pattern query. Descendant
edges are represented by double lines and result nodes
are pointed by variables.

hotels

hotel

name rating nearby

“Beijing” “five-star” restaurant

name address

X Y

Figure 3: A tree pattern query

To represent the problem of satisfiability, we use the
notion of query embedding from [1].

Definition 5 Given a tree pattern query q and an AXML
document t, an embedding of q into t is a tree homo-
morphism ρ from the nodes of q to the data nodes of t,
mapping the root of q to that of t, preserving the parent-
child and ancestor-descendant relationships (for regu-
lar and descendant edges, respectively.), mapping each
constant node of q to a data node of t with the same
label, and such that all the variable nodes of q with the
same variable name are mapped to data nodes having
identical labels.

We say that an AXML document t satisfies a tree pat-
tern query q provided there is an embedding ρ from q
to t. A query q is satisfiable if there is an AXML doc-
ument t that satisfies q. Then, our satisfiability problem
can be defined as follows.

Problem: Given a tree pattern query q and an AXML
document t conforming to schema D, we should check
whether document t satisfies q.

According to above definition, for instance, there
not exist any embedding from query q(showed in Figure
3) to document t(showed in Figure 1), that is, q is unsat-
isfiable for t. Observing document t, we can find that
it contains three function nodes: GetHotels,GetRestos
and GetMuseums. Furthermore, we can rewrite docu-
ment t to t′(showed in Figure 2) if we invoke function
node GetRestos according to schema D defined in Ex-
ample 1. Now query q is satisfiable for document t′. If
we choose to invoke function node GetHotels, it will re-
turn a list of hotel nodes containing some restaurant de-
scendant nodes or function node GetRestos, which also
maybe satisfy query q.

From above observation, we can see that decide the
satisfiability of a given query for AXML documents is
more intricate than XML documents, because we should
consider all these function nodes that maybe return some
useful data contributing to the query. We also can see
that AXML schemas determine whether an AXML doc-
ument conforming to it satisfies the given query or not.
It is important to note that queries only match the data
nodes of the document, because function nodes are the
only means to get the data they represent.

2.3 Tree Automata

Tree automata are extended from traditional string au-
tomata and the main differences between them are tran-
sition functions of states. In string automata, there is
just one state before a transition, while tree automata
support a set of states. This special property makes tree
automata more capable to deal with tree-structure data
such as XML documents. We recall the definition of
unranked non-deterministic tree automata(NTA) from
[6].

Definition 6 An unranked non-deterministic tree automa-
ton is a tuple B = (Q,Σ, δ, A), where Q is a finite set
of states, Σ is a finite alphabet, A ⊆ Q is the set of final
or accepted states, and δ is a function Q × Σ → 2Q∗ ,
or denoted as f(q1, . . . , qn) − a → q, such that f is a
regular string language over Q, for every a ∈ Σ and
q1, . . . , qn ∈ Q.

The set of all accepted trees is denoted by L(B) and
is called a regular tree language. In the sequence of
this paper, when we say tree automata we always mean
unranked non-deterministic tree automata.

In [8] the authors pointed that we can build an equiv-
alent tree automaton which describes all the documents

that contain the query paths conforming to a given tree
query pattern expression. This is illustrated next.

Example 2 Let us consider a simple tree pattern query
q = a/b// ∗ /[d][e] which first checks if the root is
labeled with a and it has a b-child node; if not, it re-
turns the empty set; otherwise, it returns all b’s de-
scendants that have both a d-child and a e-child: the
d and e children may occur in any order. Then we de-
fine B = (Q,Σ, δ, A) as follows:

Q = {s0, s1, s2, s3, s4},
Σ = {a, b, d, e},
δ = {ε−d → s3, ε−e → s4, s3s4−all → s2, s2−

all → s2, s2 − b → s1, s1 − a → s0},
A = {s0},
Here label all represents arbitrary symbol in Σ, that

is, all maybe one of a, b, d, e .
Intuitively, B works as follows: B assigns s3 and s4

to d-labeled leaf and e-labeled leaf; further, B assigns
s2 to any labeled node with children nodes labeled d
and e; and, B assigns s1 to b-labeled node with descen-
dant nodes labeled d and e. Finally, B accepts when the
root is labeled with a.

An AXML schema defines the set of AXML doc-
uments conforming to it. It is already known that a
tree automaton represents the set of trees accepted by
it. Since AXML documents can be abstracted as la-
beled trees, we can extend tree automata to represent
AXML schema and then this type of tree automata will
only accept all such AXML documents that conform to
the schema.

3 ASTAs

In this section, we represent the construction of ASTA,
which efficiently describes the set of the AXML docu-
ments conforming to a given schema.

The difficulty of building ASTA is how to define the
transition functions. From Section 2.3 we know that in
the definition of a tree automaton, the transition func-
tions are a set of regular string languages over states.
To define these transition functions, we make use of
nondeterministic finite automata(NFAs) to represent the
transition functions of ASTA for their equivalent to reg-
ular expressions; we refer unfamiliar reader to [10] for
details. Since AXML schema introduces function ele-
ments, we should process these parts firstly. For each
function node in a schema, we preprocess it as follows:
for example, the definition of data element v is τ(v) =
a.b.G.e, G is a function element and whose output type
is a disjunctive formula such as τout(G) = c|d, when
we define the transition function of element v, besides

to define the function {qa.qb.qG.qe − lab(v) → qv}
(lab(v) means the label of element v), we should also
add the following two functions to it: {qa.qb.qc.qe −
lab(v) → qv} and {qa.qb.qd.qe − lab(v) → qv}. Then
we get the final transition function of node v is {qa.qb.
(qG|qc|qd).qe − lab(v) → qv}. In other words, if ele-
ment v has a function element as its sub-element, then
all of the function output types should be added to the
set of transition functions of v. When a function el-
ement is invoked, one of the output instances will be
returned to replace the function element and become a
sub-element of the parent element of this function el-
ement. If the parameters of function elements and re-
turned results contain other function elements, we should
begin with the deepest function elements and recursively
process outward.

Given an AXML schema D, the algorithm showed
in Figure 4 represents the process of constructing an
equivalent ASTA.

Algorithm Construction of ASTA.

Input: AXML schema D = (L, F, τ).
Output: ASTA B = (Q, Σ, δ, A).
1: Σ = L ∪ F

2: for each element vi ∈ D with definition τ(vi) = data in D do

3: δ = δ ∪ {ε} − lab(vi) → qi

4: Q = Q ∪ {qi}
5: end for

6: for each element vj with subelements vj1 , . . . , vjm
in D do

7: δ := δ ∪ {f(qj1 · · · qjm
) − lab(vj) → qj}, where qj1 , . . . , qjm

∈ Q

8: end for

9: for each node element vf with output type Rfj
occurring in vj ’s subele-

ments do

10: δ := δ ∪ {{f(qj1 · · · qji−1
· qfj

· · · qjm
) − lab(vj) → qj}

11: end for

12: A = {qroot}

Figure 4: Building ASTA

We give the intuition of the above algorithm next.
Firstly, we defined the finite alphabet Σ and processed
the atomic data element to initialize ASTA B. Then
processed the data elements in D by building a finite
string automaton to represent the regular expression oc-
curring in the content models. For each function ele-
ment, we built two finite string automata to represent
the input type language and output type language re-
spectively. Finally, we defined the final state qroot to be
the root element of D, because the state of root element
is the only accepted state.

The algorithm can be performed in polynomial time,
because the only work needs is to scan schema D once.

Theorem 1 Given an AXML schema D, we can build
an equivalent ASTA in PTIME.

The correctness of above algorithm is obvious, be-
cause unranked tree automata are an abstraction of the
various XML schema proposals. Moreover, the unranked

tree automata are equivalent to the specialized DTDs of
Papakonstantinou and Vianu [17]. In our paper, AXML
schema is an extended of DTDs and naturally can be
abstracted by extended contex-free grammars.

4 Checking Satisfiability

According to Section 3, given an AXML schema D,
we can build an equivalent ASTA B1 that represents all
such documents conforming to D. On the other hand,
we can construct another regular tree automaton B2,
according to a given tree pattern query q, which de-
fines all such documents containing the query paths of
q. Then the intersection of L(B1) and L(B2) is all the
documents both conforming to D and satisfying query
q. Therefore, we translate the satisfiability problem of
query q for AXML documents into the non-empty prob-
lem of product tree automaton B building from B1 and
B2. Algorithm showed in Figure 5 represents this idea.

Algorithm Checking satisfiability.

Input: AXML schema D and tree pattern query q.
Output: true or false.
1: Building following automata:
2: (a) Tree automaton B1 = (Q1, Σ, δ1, A1), corresponding q.
3: (b) ASTA B2 = (Q2, Σ, δ2, A2), corresponding D.
4: (c) An empty tree automaton B = (Q, Σ, δ, A).
5: Q = {(q1, q2)|∃q1 ∈ Q1, q2 ∈ Q2, s.t.{ε} − a → q1 and {ε} − a → q2 for all

a ∈ Σ},
6: δ = {{ε} − a → (q1, q2)}, for all (q1, q2) ∈ Q},
7: A = {(q1, q2)|q1 ∈ A1, q2 ∈ A2}.
8: for all transitions s.t.

{f((q11, q21) . . . (q1n, q2n) − a → (q1, q2)|f(q11, . . . , q1n) − a → q1 ∈ δ1,
∃f(q′

21
, . . . , q′

2n
) − a → q2 ∈ δ2, f(q21, . . . , q2n) ⊆ f(q′

21
, . . . , q′

2n
) and

{(q11, q21), . . . , (q1n, q2n) ∈ Q}} do

9: Q = {Q ∪ (q1, q2)}
10: δ = δ ∪ {f((q11, q21) . . . (q1n, q2n)) − a → (q1, q2)}
11: if L(B) 6= φ then

12: return true

13: else

14: return false

15: end if

16: end for

Figure 5: Checking satisfiability of AXML documents

We should notice that the product automaton B is a
regular tree automaton, because only final XML docu-
ments would contribute to the query. That is, we only
care about whether there exists an XML document, which
can be obtained by invoking some function nodes in the
original AXML document, satisfying the given query or
not.

Example 3 Given a query expression q = //a/[b][c],
and an AXML schema D defines as follows:

data nodes: τ(p) = d.e, τ(e) = G|a, τ(a) = b.c,
τ(b) = τ(c) = τ(e) = data,

function nodes: τin(G) = data, τout(G) = a, we
check the satisfiability of q for document t conforming
to D.

(1)Firstly, we build the automata corresponding to q
and D respectively. Automaton B1 = (Q1,Σ1, δ1, A1),
where Q1 = {s1, s2, s3, s4}, δ1 = {ε−b → s4, ε−c →
s3, s3.s4 − a → s2, s2 − all → s1, s1 − all → s1}.
A1 = {s1}. ASTA B2 = (Q2,Σ, δ2, A2), where, Q2 =
{q1, q2, q3, q4, q5, q6, q7}, δ2 = {ε − b → q6, ε − c →
q7, q6.q7−a → q5, ε−G → q4, q4|q5−e → q3, ε−d →
q2, q2.q3 − p → q1}, A2 = {q1}.

(2)Next, we build the product automaton B of B1

and B2. Automaton B = (Q,Σ, δ, A), where Q =
{〈q6, s4〉, 〈q7, s3〉, 〈q5, s2〉, 〈q3, s1〉, 〈q1, s1〉}, δ = {ε−
b → 〈q6, s4〉, ε− c → 〈q7, s3〉, 〈q6, s4〉.〈q7, s3〉 − a →
〈q5, s2〉, 〈q5, s2〉−e → 〈q3, s1〉, 〈q3, s1〉−p → 〈q1, s1〉},
A = {〈q1, s1〉}.

(3)Finally, we test the automaton B is non-empty or
not.

We analyze the complexity and correctness of the
algorithm of Figure 5 next.

Theorem 2 The complexity of the above algorithm is
in PTIME.

Proof. The algorithm contains three tree automata con-
structions, everyone of which can be done in PTIME
according to Theorem 1. In the initial process,the al-
gorithm only scans elements once and it needs a lin-
ear time. Then there is a for-loop that makes a linear
number of scanning the set of transition functions, it
also can be done in PTIME. Finally, deciding whether
tree automata B is empty has already been known in
PTIME[16].

Theorem 3 The algorithm returns true if and only if an
AXML document t conforming to schema D satisfies the
given query q.

Proof. Suppose that document t conforms to D and sat-
isfies the given query q, we prove L(B) 6= φ. Accord-
ing to algorithm of Figure 4, we know that ASTA B1

defines the set of AXML documents conforming to D,
hence t ∈ L(B1). On the other hand, tree automaton
B2 built from query q represents all the documents that
contain the query paths. From our assumption, docu-
ment t has an accept running both on tree automata B1

and B2, namely we have got t ∈ L(B2). Therefore, the
product tree automaton B built from B1 and B2 is not
empty, that is L(B) 6= φ.

Suppose L(B) 6= φ, we prove that t conforming to
D satisfies query q. From L(B) 6= φ, we can build
an AXML document t′, produced by t by calling some
function nodes in it, satisfies t′ ∈ L(B). However,
L(B) = L(B1) ∩ L(B2), we have t′ ∈ L(B1) and

t′ ∈ L(B2). The former shows that t′ is an AXML doc-
ument that conforms to schema D, and the latter proves
that t′ satisfies the query q.

5 Experiments

Experiments environment To study the effectiveness
of testing satisfiability, we systematically ran a range
of experiments to measure the savings and overhead of
various documents size.

The documents schema we use have a structure very
similar to Example 1. They all consist of hotel ele-
ments, which may include calls to the functions: Ge-
tRestos, and GetMuseums; we also use an extra GetHo-
tels function whose result is a set of hotels. We use the
ToXgene[4] XML generator to produce documents. We
fix the number of function calls in the document by in-
structing ToXgene to be about 30% of the total number
of elements. Since we check the satisfiability of queries,
we do not consider the form of queries that contain the
label wildcard “*”. We report experiments performed
with three queries:

q1: /hotels/hotel
q2: /hotels/hotel[rating=’five-star’]
q3: //hotel/[rating=’five-star’][address=’1st Av.’]

We used Xalan to evaluate our queries and implemented
our satisfiability tests in Java. We performed our exper-
iments on a workstation running Fedora Core 6 with
256MBytes of RAM and a PIII 1.2GHz CPU. All val-
ues reported were the average of 5 trials after dropping
the maximum and minimum.

0

0.2

0.4

0.6

0.8

1

1k 10k 100k 1m

S
av

in
g

R
a
ti
o

Document Size(byte)

q1
q2
q3

Figure 6: Saving ratio experiment results

Saving & Overhead Ratios Let c be the time taken
to determine the satisfiability of a query q and let e be

the time it takes to evaluate the query over the docu-
ment. The saving ratio Sq obtained by using satisfia-
bility check on unsatisfiable queries is defined as Sq =
e−c

e and the overhead ratio incurred by doing satisfia-
bility check on satisfiable queries is defined as Oq =
e+c

e . Intuitively, the closer to 1 the two ratios are the
better.

Figure 6 and Figure 7 show the variation of savings
and overhead ratios with document size for the three
queries. On unsatisfiable queries, satisfiability check
leads to phenomenal savings. Our saving ratio is be-
tween about 0.6 and 0.9. On satisfiable check, we ex-
pect the overhead ratio to decrease as the document size
increases. Indeed, this behavior can be observed from
the figures. Overall, our results show that the overhead
is a negligible fraction of the evaluation time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1k 10k 100k 1m

O
ve

rh
ea

d
R

a
ti
o

Document Size(byte)

q1
q2
q3

Figure 7: Overhead ratio experiment results

The same conclusions were also obtained from the
experiments on the various number of function nodes in
document. Though the evaluation time of queries and
satisfiable check time were increased, the saving and
overhead ratios are almost same to above experiments.
We omit these results for brevity.

6 Conclusion

We investigated the problem of satisfiability of tree pat-
ter queries for AXML documents and proposed efficient
algorithms to solve it based on tree automata theory. We
complemented our analytical results with an extensive
set of experiments. While satisfiability checking can ef-
fect substantial savings in query evaluation, our results
demonstrated that it incurred negligible overhead over
satisfiable queries.

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful suggestions on earlier versions of this pa-
per. Zhongxiao Hao is supported by the Natural Science
Foundation of Heilongjiang Province of China (F00-06).

References

[1] Abiteboul, S., Benjelloun, O., Cautis, B.,
Manolescu, I., Milo, T., and Preda, N. Lazy
Query Evaluation for Active XML. Proceedings
of the ACM SIGMOD International Conference on
Management of Data(SIGMOD), pages 227–238,
2004.

[2] Abiteboul, S., Benjelloun, O., Manolescu, I.,
Milo, T., and Weber, R. Active XML: Peer-to-Peer
Data and Web Services Integration. Proceedings
of the International Conference on Very Large
DataBases(VLDB), pages 1087–1090, 2002.

[3] Abiteboul, S., Benjelloun, O., and Milo, T.
Positive Active XML. Proceedings of the
ACM Symposium on Principles of Database Sys-
tems(PODS), pages 35–45, 2004.

[4] Barbosa, D., Mendelzon, A. O., Keenleyside,
J., and Lyons, K. A. Toxgene: An extensible
template-based data generator for xml. In Pro-
ceedings of the Fifth International Workshop on
the Web and Databases(WebDB2002), pages 49–
54, 2002.

[5] Benedikt, M., Fan, W., and Geerts, F. XPath Sat-
isfiability in the Presence of DTDs. Proceedings
of the ACM Symposium on Principles of Database
Systems(PODS), pages 25–36, 2005.

[6] Bruggemann-Klein, A., Murata, M., and Wood,
D. Regular Tree and Regular Hedge Languages
over Unranked Alphabets. Technical report,
HKUST-TCSC-2001-0, The Hong Kong Univer-
sity of Science and Technology, 2001.

[7] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. Introduction To Algorithms. High Edu-
cation Press, Beijing, second edition, 2002.

[8] Gao, J., Yang, D., Tang, S., and Wang, T. DTD
Based Deterministic XPath Rewriting and Logi-
cal Optimization. Journal of Software(Chinese),
15(12):1860–1868, 2004.

[9] Hidders, J. Satisfiability of XPath Expressions.
Proceedings of the 9th International Conference

on Data Base Programming Languages (DBPL),
pages 21–36, 2003.

[10] Hopcroft, J. E., Motwani, R., and Ullman, J. In-
troduction to Automata Theory, Languages, and
Computation. Tsinghua University Press, Beijing,
second edition, 2002.

[11] L. Lakshmanan, H. W., G. Ramesh and Zhao, Z.
On Testing Satisfiability of Tree Pattern Queries.
Proceedings of the International Conference on
Very Large DataBases(VLDB), pages 120–131,
2004.

[12] Ma, H., Hao, Z., and Zhu, Y. Active XML Doc-
ument Rewriting Based on Tree Automata The-
ory. Wuhan University Journal Natural Sciences,
11(5):1325–1329, 2006.

[13] Martens, W. and Neven, F. Typechecking Top-
Down Uniform Unranked Tree Transducers. Pro-
ceedings of International Conference on Database
Theory(ICDT), pages 64–78, 2003.

[14] Miklau, G. and Suciu, D. Containment and Equiv-
alence for a Fragment of XPath. JACM, 51(1):2–
45, 2004.

[15] Milo, T., Abiteboul, S., Amann, B., Benjel-
loun, O., and Ngoc, F. D. Exchanging Inten-
sional XML Data. Proceedings of the ACM SIG-
MOD International Conference on Management
of Data(SIGMOD), pages 289–300, 2003.

[16] Neven, F. Automata, Logic and XML. Proceed-
ings of the 16th Intl Workshop Computer Science
Logic(CSL), pages 2–26, 2002.

[17] Papakonstantinou, Y. and Vianu, V. DTD Infer-
ence for Views of XML Data. In PODS ’00:
Proceedings of the nineteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of
database systems, pages 35–46, New York, NY,
USA, 2000. ACM Press.

