
A Framework for Reengineering Web Applications to Web Services

BOUCHIHA Djelloul 1, MALKI Mimoun 2, Mostefai Abd El Kader 3

1 EEDIS Laboratory, University of Sidi Bel Abbes 22000, Algeria
bou_dje@yahoo.fr

2 EEDIS Laboratory, University of Sidi Bel Abbes 22000, Algeria
malki_m@univ-sba.dz

3 EEDIS Laboratory, University of Sidi Bel Abbes 22000, Algeria
mostefai_aek@univ-sba.dz

Abstract. Web services technology and Service-Oriented Architectures (SOA) are rapidly developing and widely

supported. However, it is fairly difficult for existing Web applications to expose functionality as services in a

service-oriented architecture, because when Web applications were built, they served as monolithic systems. This

paper describes a framework called WA2WS, which can be used for constructing Web Services from existing Web

applications. This framework consists of two phases. First, an abstraction phase which consists in extracting UML

conceptual schema from a Web application using domain ontology. Second, an implementation phase which consists

in generating the JAVA code of Web service from the UML conceptual schema using mapping rules.

Keywords

Reengineering, Web Services, Service-Oriented Architectures (SOA), Web applications, Ontology, UML.

(Received September 15, 2007 / Accepted January 04, 2008)

1. Introduction

The World Wide Web is rapidly being adopted as the

medium of collaboration among organizations. Web

applications are today legacy systems, which constitute

valuable assets to the organizations that own them. A

Web application is an application delivered to users

from a Web server over networks such as the Internet or

an intranet. Web applications are popular due to the

ubiquity of the Web browser as a client [7].

Figure 1: Three-tier model of Web application
architecture.

A Web application is commonly structured as a three-

tiered application as shown in Figure 1. In the most

common form of the three-tier Web application model,

the Web browser is the first tier, an engine using some

dynamic Web content technology (such as CGI, PHP,

JSP or ASP) is the middle tier, and a database is the

third tier. The Web browser sends requests to the middle

tier, which serves its client by making queries and

updates against the database and by generating a user

Interface (HTML responses) [7].

On the other hand, Web services technology is rapidly

developing and widely supported. It consists of a set of

related specifications that define how components

should be specified (through the Web-Service

Description Language – WSDL), how they should be

Browser Data base App Logic

Client Application Server Data Server

advertised so that they can be discovered and reused

(through the Universal Description, Discovery, and

Integration API – UDDI), and how they should be

invoked at run time (through the Simple Object Access

Protocol API – SOAP).

Web services are based on Service-Oriented

Architectures (SOA), which is the keystone of service

oriented computing. SOA includes some architectural

components, such as service providers, service

consumers and service repository. All the service usage,

such as delivery, acquisition, consumption, composition

and so on, is based on this architecture. SOA is an

important paradigm that supports service management.

It is an architecture evolution, and it affects the software

life cycle from the service point of view. SOA is

particularly applicable when multiple applications

running on varied technologies and platforms have to

communicate with each other [5].

This situation necessitates the development of

automated reengineering methods for constructing Web

services out of existing functionalities already offered

through Web application of organizations today.

2. Related Work

Many approaches were proposed to revitalise Web

applications in network environment with service-

oriented technology:

Eleni and al. present a general method for constructing

wrappers for Web-based applications, so that they

exchange data with shared semantics such as defined in

the XML domain model [2].

Yingtao and al. choose to reverse-engineer the

presentation layer of the Web application, in order to

extract from its behaviour a set of functionalities. The

extracted functionalities can then be specified in terms

of WSDL Web-service specifications, and they can be

deployed through proxies accessing the original Web

server and parsing its responses [10].

Jianzhi and al. propose a Grid services-oriented

reengineering approach to create stateful resources from

conventional HTML Web sites, which applies

hierarchical cluster and wrapper techniques to extract

and translate Web sites resources. It supports services

identification and packaging and archives Web site

evolution into Grid services environment by exploiting

Web Service Resource Framework (WSRF) [6].

Hoang and al. propose a mechanism to wrap existing

CGI-based Web sites in Web services. These services

inherit all features from the sites while can be enriched

with other Web service features like UDDI publishing,

semantic describing, etc [4].

Robert and al. propose an integration approach, which

consists in exploiting Web application interface, and

converting HTML responses documents to XML

documents. Wrapper technology is used for extracting

appropriate information from HTML documents and

translating this information to XML documents, which

can be treated later automatically [8].

Michiaki and al. propose a framework called H2W,

which can be used for constructing Web Service

wrappers from existing multi-paged Web applications.

H2W's contribution is mainly for service extraction,

rather than for the widely studied problem of data

extraction [7].

The described approaches above can be classified

according to two criterions: either by the analysed

element in input (interface or source code), or by the

generated element at output (Wrapper, new Web service

or other). With the first criterion [2], [6], [7], [8] and

[10] analyze the interface, i.e., analyse HTML responses

documents of HTTP requests and not the source code of

the Web application. However, [4] analyses the source

code (CGI queries) of the Web application. With the

second criterion which is the generated element at

output [2], [4], [6], [7] and [8] generate a Wrapper to

wrap the Web application as a Web service. Whereas,

[10] generates WSDL specification, which can be

exploited to use the Web application as a Web service.
UML conceptual

schema

Web applications need to undergo a sequence of

preliminary activities to evolve toward Web services. In

our work, these activities may be conceived as the

cascade of two phases: an abstraction phase centered

around a preliminary reverse-engineering activity.

Followed by an implementation phase, i.e., a sequence

of forward engineering steps leading to the new Web

service.

OntoWeR WeSerBuilder

In fact, we need a preliminary conceptualization phase;

during this phase we build an abstract conceptual

schema, a high level representation encompassing the

existing Web application abstraction using domain

ontology. We recover an UML conceptual schema. The

recovered schema is now being used to create a new

Web service offering the same functionalities as the

Web application; implementing this Web service is the

task of the forward engineering phase.

3. Proposed framework

There are two essential challenges for reengineering

Web applications towards Web services. First is

extracting the logical data for the machines from data

decorated with HTML for human readers. Second is

extracting a noninteractive service for machines from

interactive services scattered over multiple Web pages

for humans [7].

In this paper we propose a framework called WA2WS

for constructing Web Services from existing Web

applications. We regard our framework as mainly for

data extraction, because many of the Web applications

around us are data-intensive, where the main purpose of

the application is to present a large amount of data to

their users [9]. Our goal is to migrate an existing Web

application to new Web Service by combining a reverse-

engineering approach first and a forward engineering

approach after (Figure 2).

Figure 2: WA2WS framework.

OntoWeR: is a software supporting an Ontology based

Web Reverse-engineering approach, covering the

abstraction phase by recovering a presentation schema

using domain ontology. The presentation schema is

stored through UML language.

WeSerBuilder (Web Service Builder) is a CASE

(Computer Aided Software Engineering) tool covering

the implementation phase (Web service forward

engineering) by generating a JAVA code from the UML

conceptual schema using mapping rules (between

conceptual level and logical level).

4. Abstraction phase

Bouchiha and al. propose a new approach for reverse-

engineering Web applications. The approach aims to

generate an UML conceptual schema modeling the Web

application. The major contribution of this approach is

the use of ontology1 in the abstraction process [1].

The intuition underlying this approach is: an UML

conceptual schema is hidden under the user interface of

a Web application. This interface exposes HTML forms

to their users’ browsers, possibly enhanced with client-

side scripts in different languages. The user has to

appropriately interpret the semantics of the information

required by the form and to fill it out correctly. Then, the

server application responds with another HTML

1 Ontology is an explicit specification of a conceptualization
[3].

Page
Web
Page
Web

Web
pages

R
ev

er
se

-e
ng

in
ee

ri
ng

(A

bs
tr

ac
tio

n
ph

as
e)

 Forw
ard engineering

(Im
plem

entation phase)

JAVA code

document containing usually tables and lists that the

user can interpret as an answer to his original request.

Ontology based Web Reverse-engineering approach

consists of three successive phases (Figure 3): First is

the extraction of useful information from HTML pages.

Second phase is the analysis of the extracted information

using domain ontology. Last phase is the generation of

corresponding UML conceptual schema.

Figure 3: Ontology based Web Application Reverse-
engineering Process [1].

4.1. Extraction of useful information

This phase starts with filtering HTML pages, followed

by the extraction of DOM2 and finally the extraction of

useful information from DOM. Filtering consists in

 2 DOM: Document Object Model is an API which consists in

decomposing the HTML or XML document content in a tree
structure of nodes (each element of the document is a node).

browsing the source code of HTML pages, eliminate

useless tags, and preserve useful ones as <form>,

<table>, <td>, <tr>, , , etc. The result of this

stage is a set of cleaned HTML pages. Cleaned HTML

pages will be presented in DOM logical format in order

to facilitate its manipulation. From this DOM logical

format, we can now extract useful information hidden in

tables, lists, forms etc.

4.2. Analysis

The analysis phase consists of three stages. First is a

Morphological analysis applied on the fields of tables

and the elements of lists, extracted from HTML pages.

We obtain a set of terms which can be identified later as

concepts of the ontology. Second stage is the calculation

of semantic distance which aims to quantify how much

two concepts are alike. Last stage is the inference which

consists in inferring new concepts and relations before

generating the UML conceptual schema. The inference

starts with the deduction of new concepts and relations

to obtain a set of concepts and relations with which we

can form a set of groups. Each group represents a

connected graph3. Before generating the final

conceptual schema, the resulting groups from the

previous stage must be unified in a single group.

4.3. Conceptualization

From the enriched set of concepts and relations, we can

now construct an UML conceptual schema as follow:

each concept and relation will be presented respectively

by an UML class and relation. The relation expressed by

the term part-of will be presented as an UML

aggregation relation. The subsumption relations will be

translated as a generalization relationship. Multiplicities

of the relations are also extracted from the domain

ontology to be presented in the UML conceptual

schema.

3 A graph is connected if and only if there is a path between
any pair of vertex in the graph.

Reverse- engineering Process

Domain
ontology

UML conceptual schema

Analysis

Page
Web
Page
Web

Web
pages

Extraction of useful
information

Useful information
(tables, lists…)

Conceptualization

Enriched set of
concepts and relations

4.4. OntoWeR tool

This approach is supported by a tool named OntoWeR.

This tool is composed of four subsystems (Figure 4):

− Acquisition Module: allows the acquisition of

HTML pages, as well as the domain ontology.

− Extractor: allows extracting useful information from

the acquired HTML pages.

Figure 4: OntoWeR Architecture.

− Analyzer: executes operations, which aim to

generate an UML conceptual schema.

− Viewer: allows viewing the resulting conceptual

schema.

4.5. Example

To see that this approach is efficient, feasible and

reliable, a detailed example has been presented in [1].

For their experimentation they chose an ontology for a

Semantic Web of tourism4. It describes the tourism

domain. The Web site on which they perform their

experiments is http://www.hm-usa.com/. It is a Web site

for tourism in the United States of America. The UML

conceptual schema obtained after applying their

approach on the chosen site is presented in Figure 5.

4 http://protege.stanford.edu/plugins/owl/owl-library/travel.owl

Object

Activity

Sightseeing

Museums

Destination

Beach

City

Capital

Accommodation

Hotel

AccommodationRating

RuralArea UrbanArea

hasAcommodation 0..* 0..*

hasActivity 0..* 0..*

isOfferedAt 0..* 0..*

hasRating 0..* 0..*

0..* hasPart

hasContact 0..* 0..*

Contact

- hasZipCode
- hasStreet
- hasEmail
- hasCity

Farmland

Figure 5: UML Conceptual schema of the chosen site.

5. Implementation phase

This phase consists of two successive steps (Figure 6):

first step is mapping to DLM, which consists in applying

mapping rules to have the corresponding data logical

model (DLM). Second step is the generation of JAVA

source code, which consists in generating the source

code of the new Web service.

Figure 6: Forward engineering Process.

5.1. Mapping to DLM

For representing data at a logical level, we have chosen

the relational model, because it is simple and easy to be

manipulated. Mapping rules, which are applied to have a

relational DLM from UML conceptual schema, are as

follows:

Forward
Engineering
Process

Mapping to DLM

Relational DLM

Generation of
Source code

Source code of the
new Web service

UML conceptual schema

Domain
ontology

Acquisition
module

Extractor
Web

application

Viewer

Analyzer

User

http://www.hm-usa.com/
http://protege.stanford.edu/plugins/owl/owl-library/travel.owl

− Each class becomes a relation. Attributes of the

class become attributes of the relation. The class

identifier5 becomes a primary key of the relation.

− Each 1-1 association is translated by including the

primary key of one of the two relations as a foreign

key into the other relation.

− Each 1-N association is translated by including the

primary key of the relation, of which the maximal

multiplicity is *, as a foreign key in the other

relation.

− Each M-N association is translated by creating a

new relation, of which the primary key is the

concatenation of the two primary keys of

participating relations. Attributes of the association

class are inserted into this new relation, if it is

necessary.

− For the generalization relationship, the superclass

and subclass are each one represented by a relation.

The two relations share the same primary key.

Discriminator6 must appear as an attribute in the

relation corresponding to the superclass.

− Aggregations follow the same rules as associations.

5.2. Generation of JAVA code source

For each relation of DLM, we must create many

methods corresponding to the operations of

manipulation of the data base table described by this

relation. The most important operations are: Listing,

insertion, suppression, updating and research.

− The listing method allows displaying the content of

the data base table corresponding to the relation.

This method has not any parameter.

5 Identifier is the chosen attribute that uniquely identifies an
object from other objects.
6 Discriminator is an attribute of enumeration type indicating
that the object property became abstract by a particular
generalization relationship.

− The insertion method allows adding a new element

in the data base table. It has as parameters the

attributes of the relation.

− The suppression method allows deleting an element

from the data base table. It has as parameter the

element code to be deleted.

− The updating method allows modifying the values

of an element of the data base table. It has as

parameters the element code to be modified, plus

the new values to be saved.

− The research method allows finding an element in

the data base table. It has as parameter the element

code to be found.

Finally, all methods, which allow the manipulation of

the entire data base, will be integrated in one Web

service.

5.3. WebSerBuilder CASE

The implementation phase is supported by a CASE tool

named WeSerBuilder. This CASE tool is composed of

three subsystems (Figure 7):

− Acquisition Module: allows the acquisition of UML

conceptual schema.

− Mapping engine: allows the generation of the

source code after applying the mapping rules.

UML conceptual
schema

Acquisition
module

Figure 7: WeSerBuilder Architecture.

− Viewer: allows viewing the resulting DLM and

JAVA code source.

~~~~~~ 
~~~ 
~~~~~~ 
~~~~~ 


Viewe

Mapping
engine

 rUser

5.4. Example

For a stock management system, we have the following

information: A customer is characterized by a customer

code, first name, last name, birth date and Address. He

orders products at a given date and with a given amount.

A product is characterized by a code product and a unit

price. A product can be either a paper or a pen. A paper

is characterized by its width and its height. A pen is

characterized by its color. Each product is ordered from

only one supplier (but the supplier can provide many

products). A supplier is characterized by a supplier code

and name.

The UML conceptual schema describing such system

can be represented as follow:

Figure 8: The UML conceptual schema of a stock

management system.

When WeSerBuilder tool receives in input the UML

conceptual schema given above, it applies the mapping

rules to have the following data logical model.

CUSTOMER (CodeCus, Fname, Lname, Birth D,
Adress)
PRODUCT (CodeProd, Type, UnitPrice, CodeSupp)
PAPER(CodeProd, Width, Height)
PEN(CodeProd, Color)
SUPPLIER (CodeSupp, NameSupp)
ORDER (CodeCus, CodeProd, Date, Amount)

We can see that each class is represented by a relation.

The ORDER association class is also represented by a

relation, with adding the customer code and the supplier

code as attributes in the ORDER relation. The 1-N

association between supplier and product is translated by

adding the supplier code to the PRODUCT relation. We

add the Type discriminator to the PRODUCT relation.

We add also the code of PRODUCT superclass to

PAPER and PEN relations.

Now, WeSerBuilder generates the source code of Web

service which allows the manipulation of a data base

named Stock and represented by the previous DLM.

Next, we present an extract of the generated code

source.

import java.io.*;

Customer

CodeCus
Fname
Lname
Birth D
Adress

Product

CodeProd
UnitPrice

Order

Date
Amount

Paper

Width
Height

Pen

Color

Supplier

CodeSupp
NameSupp

* *

*
1 Provide

import java.sql.*;
public class Stock {
 public Stock() { }
 private static Connection dbCon;
 static String Tab[][]=new String[10][2];
 static Connection connect() throws
ClassNotFoundException, SQLException {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 dbCon =
DriverManager.getConnection("jdbc:odbc:Stock","","");
 return dbCon;
 }
 static void close() throws SQLException {
 dbCon.close();
 }
 public static int Inserer(int CodeSupp, String
NameSupp) throws SQLException,
ClassNotFoundException {
 dbCon=connect(); int rs = 0;
 try {
 Statement s = dbCon.createStatement();
 rs= s.executeUpdate("INSERT INTO
Supplier (CodeSupp, NameSupp) VALUES (" +
CodeSupp +", '" + NameSupp +"')");
 }catch(SQLException e) {}
 close(); return rs; }
…
This part of the source code contains: java API

declaration, class constructor, declaration of the used

variables, connection and closing functions of the data

base and a function which allows the insertion of one

supplier.

6. Conclusion and future work

Reengineering is the process of analyzing a subject

system to identify the system components and their

interrelationships, and to create representations of the

system in an improved or a new form. The work we

have described in this paper focuses clearly on the latter

goal. The basic idea underlying our work is to reverse-

engineering the existing data driven Web application to

create representations at a higher level of abstraction,

then we apply mapping rules to create a new Web

service with the same functionalities of the initial Web

application. In this paper, we proposed a fundamental

framework, called WA2WS, for Web service

construction from existing Web applications by

combining a reverse-engineering approach first and a

forward engineering approach after.

The strong point of the reverse-engineering process is

that it relies on a very rich semantic reference which is

the domain ontology. However, it focuses on removing

presentation design and recovering structural

information from only HTML interface of the existing

Web Application. As future work, we have to

investigate also the code source to have not only static

abstraction but also dynamic one. The forward

engineering process must be enhanced by new rules for

implementing dynamic aspect.

The work reported in this paper is clearly work in

progress, but we believe that the results of our initial

experimentation are quite promising, and we continue to

develop and evaluate this process.

References

[1] Bouchiha Dj., Malki M., Benslimane S-M. Ontology

Based Web Application Reverse-Engineering Approach.

INFOCOMP (Journal of Computer Science) VOLUME

6-N. Pages: 37-46. 1-MARCH 2007.

[2] Eleni S., Judi T., Gina S. Constructing XML-

speaking Wrappers for WEB Applications: Towards an

Interoperating WEB. In the Proceedings of the 7 th

Working Conference on Reverse Engineering, Brisbane,

Queensland, Australia, 59-68, IEEE Computer Society

Press. Page: 23-25 November 2000.

[3] Gruber T., A translation approach to portable

ontology specifications. Knowledge Acquisition 5(2),

pages 199-220, 1993.

[4] Hoang P-H., Takahiro K., Tetsuo H. Web service

gateway - A step forward to e-business. In Proceedings

of the 2004 IEEE International Conference on Web

Services (ICWS”04). 2004.

[5] Jen-Yao C., Kwei-Jay L., Richard G-M. Web

Services Computing: Advancing Software

Interoperability. IEEE Computer, pp. 35-37, 2003.

[6] Jianzhi L., Hongji Y. Towards Evolving Web Sites

into Grid Services Environment. Proceedings of the

Seventh IEEE International Symposium on Web Site

Evolution (WSE’05). 2005.

[7] Michiaki T., Kenichi T. Decomposition and

Abstraction of Web Applications for Web Service

Extraction and Composition. In Proceedings of the 2006

IEEE International Conference on Web Services (ICWS

2006). Chicago, Illinois, USA. pp.859-868. September,

2006.

[8] Robert B., Georg G., Marcus H., Wolfgang S.

Interactively adding web service interfaces to existing

web applications. Symposium on Applications and the

Internet (SAINT'04) p. 74. 2004.

[9] Stefano C., Piero F., Maristella M. Conceptual

modeling of data-intensive Web applications. IEEE

Internet Computing, 6(4):20–30, 2002.

[10] Yingtao J., Eleni S. Towards Reengineering Web

Sites to Web-services Providers. In Proceedings of the

Eighth European Conference on Software Maintenance

and Reengineering (CSMR’04), pp. 296-305. 2004.

