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Abstract. Hybrid Particle Swarm Optimization (PSO) algorithm that combines the idea of global best
model with the idea of local best model is presented in this paper. The hybrid PSO mixes the use of
the traditional velocity and position update rules of star, ring and Von Neumann topologies all together.
The objective of building PSO on multi-models is that, to find a better solution without trapping in local
minimums models, and to achieve faster convergence rate.

This paper describes how the hybrid model will get the benefit of the strength of gbest and lbest
models. It investigates when it would be better for the particle to update its velocity using star or ring or
Von Neumann topologies. The performance of proposed method is compared to other standard models
of PSO using variant set of benchmark functions to investigate the improvement.
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1 Introduction

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eber-
hart and Dr. Kennedy in 1995, inspired by social be-
haviour of bird flocking or fish schooling[7],[8],[10]. In
a PSO system, a swarm of individuals (called particles)
fly through the search space. Each particle represents
a candidate solution to the optimization problem. The
position of a particle is influenced by the best position
visited by itself (i.e. its own experience) and the po-
sition of the best particle in its neighborhood (i.e. the
experience of neighboring particles).

When the neighborhood of a particle is the entire
swarm, the best position in the neighborhood is referred
to as the global best particle, and the resulting algorithm
is referred to as the gbest PSO. When smaller neighbor-
hoods are used, the algorithm is generally referred to as
the lbest PSO [12]. The performance of each particle
(i.e. how close the particle is to the global optimum) is

measured using a fitness function that varies depending
on the optimization problem.

The effect of neighborhoods on PSO has been in-
vestigated by Kennedy [6][9]. Two common neighbor-
hood topologies are star (or wheel) and ring (or circle)
topologies. For the star topology one particle is selected
as a hub, which is connected to all other particles in the
swarm. For the ring topology, particles are arranged in
a ring. Each particle has some number of particles to its
right and left as its neighborhood. However, Kennedy
and Mendes [9] proposed another PSO model using a
Von Neumann topology. For the Von Neumann topol-
ogy, each particle is connected to its four neighbor par-
ticles (above, below, right and left particles). Figure1
illustrates the different neighborhood topologies. The
results show that the performance of the PSO can be
improved using different neighbourhood topologies es-
pecially when applied to multimodal functions.

The purpose of this paper is to investigate the per-
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formance of PSO when multiple methods of nieghbor-
hoods combined together in the same search algorithm.
For each iteration, particle will update its velocity (and
then its position) using the neighbourhood topology that
gives better position (fitness).

The rest of the paper is organized as follows:
Section 2 provides an overview for standard PSO. An
overview of neighbourhood topologies is shown in sec-
tion 3. The proposed algorithm is presented in section
4. Benchmark functions to measure the performance of
hybrid algorithm with other strategise are provided in
Section 5. The Results of the experiments are presented
in Section 6. Finally, section 7 concludes the paper and
provides guidelines for future research.

2 Standard Particle swarm optimization

PSO was introduced by Kennedy and Eberhart in 1995.
It was inspired by the swarming behaviour as is dis-
played by a flock of birds, a school of fish, or even
human social behaviour being influenced by other in-
dividuals [7].

PSO consists of a swarm of particles moving in an
n dimensional. Every particle has a position vector
(present[]) encoding a candidate solution to the prob-
lem and a velocity vector (v[]). Moreover, each par-
ticle contains a small memory that stores its own best
position seen so far (pbest[]) and a global best posi-
tion (gbest[]) obtained through communication with its
neighbor particles.

PSO is easy to implement and has been successfully
applied to solve a wide range of optimization problems
such as continuous nonlinear and discrete optimization
problems [7][8][12]. The swarm in PSO is initialized
with a group of random particles (solutions) and then
searches for optima by updating generations. In each it-
eration, each particle is updated by following two "best"
values. The first one is the best solution (fitness) it has
achieved so far. This value is called pbest[]. Another
"best" value that is tracked by the particle swarm opti-
mizer is the best value, obtained so far by any particle
in the population. This best value is a global best and
called gbest[]. When a particle takes part of the pop-
ulation as its topological neighbors, the best value is a
local best and is called lbest. [15]

After finding the two best values, the particle up-
dates its velocity and positions with following equation
(1) and (2).

v[] = wv[] + c1× rand()× (pbest[]− present[])
+c2× rand()× (gbest[]− present[]) (1)

present[] = present[] + v[] (2)

where, w is the inertia weight, which was first intro-
duced by Shi and Eberhar[12][13], v[] is the particle ve-
locity, present[] is the current particle (solution). pbest[]
is ,as stated before, the best position seen so far by par-
ticle. Where gbest[] is the global best position obtained
so far by any particle. rand() is a random number be-
tween (0,1). c1, c2 are acceleration constants [14], usu-
ally c1 = c2.

In equation (1), the first part represents the inertia
of pervious velocity; the second part is the "cognition"
part, which represents the private thinking by itself; the
third part is the "social" part, which represents the co-
operation among the particles [5]. Velocity updates can
also be clamped through a user defined maximum ve-
locity, Vmax, which would prevent them from explod-
ing, thereby causing premature convergence [1].

The pseudo code for PSO is summarized as follows
[16]:

(1) Initialize a population of particles with random po-
sitions and velocities of d dimensions in the prob-
lem space.

(2) For each particle, evaluate the fitness according to
the given fitness function in d variables.

(3) Compare current particle’s fitness with its previous
fitness. If current value is better than the previous,
then set pbest[] value equal to the current value, and
the pbest[] location equal to the current location in
d dimensional space.

(4) Compare fitness evaluation with the population’s
overall previous best position. If the current value
is better than gbest[], then reset gbest[] to the cur-
rent particle’s array index and value.

(5) Change the velocity and position of the particle ac-
cording to equation (1) and (2), respectively.

(6) Repeat steps (2) to (6) until a criterion is met, usu-
ally a sufficiently good fitness or a maximum num-
ber of iterations/epochs.

3 Neighbourhood topologies

Various types of neighbourhood topologies are investi-
gated and presented in literature [6]. The neighbour-
hood topologies which are considered in this paper are:

a. Star (or wheel) topology.



b. Ring (or circle) topology.

c. Von Neumann (or Square) topology.

3.1 Star Topology

Star Topology, which is also known as gbest, is a fully
connected neighborhood relation. In star topology, one
particle is selected as a hub, which is connected to all
other particles in the swarm. However, all the other par-
ticles are only connected to the hub. Using the gbest
model the propagation is very fast (i.e. all the particles
in the swarm will be affected by the best solution found
in iteration t, immediately in iteration t+1). This fast
propagation may result in the premature convergence
problem. This occurs when some poor individuals at-
tract the population- due to a local optimum or bad ini-
tialization - preventing further exploration of the search
space [2]. Figure 1(a) illustrates the star neighborhood
topologies.

3.2 Ring Topology

A Ring topology, which is also known as lbest, con-
nects each particle to its K immediate neighbors (e.g.
K = 2 (left and right particles). The "flow of informa-
tion" in ring topology is heavily reduced compared to
the star topology. It will for instance take 2swarmsize
time steps for a new global best position to propagate
to the other side of the ring. However, using the ring
topology will slow down the convergence rate because
the best solution found has to propagate through sev-
eral neighborhoods before affecting all particles in the
swarm. This slow propagation will enable the particles
to explore more areas in the search space and thus de-
creases the chance of premature convergence. In lbest
model, the particle replace the equation (1), by the fol-
lowing:

v[] = wv[] + c1× rand()× (pbest[]− present[])
+c2× rand()× (lbest[]− present[]) (3)

Where lbest[] represent the best position found so far
by K immediate particle’s neighbors. Figure1 (b) illus-
trates the ring neighborhood topologies.

3.3 Von Neumann topology

Von Neumann topology was proposed by Kennedy and
Mendes [9]. Von Neumann is also a type of lbest model.
However, in Von Neumann topology, particles are con-
nected using a grid network (2-dimensional lattice) where
each particle is connected to its four neighbor particles
(above, below, right, and left particles)[10]. In Von
Neumann topology, particles update their velocity using

equation (3). However, not like Ring topology, lbest[]
here represent the best value obtained so far by any par-
ticle of the neighbors (above, below, right, and left par-
ticles). Like Ring topology, using Von Newmann topol-
ogy will slow down the convergence rate. Slow prop-
agation will enable the particles to explore more areas
in the search space and thus decreases the chance of
premature convergence. Figure1 (c) illustrates the Von
Neumann neighborhood topologies.

Figure 1: Representation diagram for neighborhood topologies

4 Hybrid topology

In hybrid topology (or model) star, ring and Von Neu-
mann topologies are combined together in the same al-
gorithm. For each generation, the particle will analyze
its next position using all different topologies. Particle
will select the topology with the smallest fitness value
and will update its velocity and position according to it.
Modification on basic PSO is going by replacing step 5
in the standard pseudo code, which presented in section
2, by the follows:

(5) Analytical steps
(5.1) Star topology evaluation
(5.1.1) temporary Calculate particle
velocity according to equation (1)
and temporary Update particle
position according to equation (2)
(5.2)Ring topology evaluation
(5.2.1) Find lbest using
ring topology (right, left particles)
(5.2.2) temporary Calculate particle
velocity according to equation (3),
and temporary Update particle
position according to equation (2)
(5.3) Von Neumann topology evaluation
(5.3.1)Find lbest using Von Neumann
topology (above, below, right,
and left particles)
(5.3.2) temporary Calculate particle
velocity according to equation (3),
and temporary Update particle
position according to equation (2)
(5.4) calculate fitness for steps
(5.1.2), (5.2.3) and (5.3.3)



(5.5) update velocity and position
using the topology that gave minimum
fitness in step (5.4).

5 Benchmark Functions

For comparison, nine benchmark functions that are taken
from evolutionary computation literature [17][3][11][4]
are used. All functions (except The Camel-back) are
high-dimensional problems. Functions Sphere, Schwe-
fel’s Problem2.22 and Rosenbrock are unimodal. Step
Function has one minimum (unimodal) but it is a dis-
continuous Function. Schwefel’s Problem 2.26, Ras-
trigin, Ackley and Griwank are multimodal functions
where the number of local minimum increases expo-
nentially with problem dimension[11]. For that they ap-
pear to be the most difficult class of problems for many
optimization algorithms[17]. The Camel-Back function
is a low-dimensional function that has only a few local
minima.

For each of these functions, the goal is to find the
global minimize, formally defined as
Givenf : <Nd → <
Find x∗ ∈ <Nd such that f(x∗) ≤ (x),∀x ∈ <Nd

The following is functions that were used:

A. Sphere function, defined as

f1(x) =
Nd∑
i=1

x2
i

where x∗ = 0 and f(x∗) = 0 for -100≤ xi ≤ 100.

B. Schwefel’s Problem 2.22, defined as

f2(x) =
Nd∑
i=1

|xi|+
Nd∏
i=1

|xi|

where x∗ = 0 and f(x∗) = 0 for −10 ≤ xi ≤ 10.

C. Step function, defined as

f3(x) =
Nd∑
i=1

(bxi + 0.5c)2

where x∗ = 0 and f(x∗) = 0 for -100≤ xi ≤ 100.

D. Rosenbrock function, defined as

f4(x) =
Nd/2∑
i=1

(
100

(
x2i − x2

2i−1

)2 + (1− x2i−1)
2
)

where x∗ = (1, 1, ..., 1) and f(x∗) = 0 for -30≤
xi ≤ 30.

E. Generalized Swefel’s Problem 2.26, defined as

f5(x) = −
Nd/2∑
i=1

(
xi sin

(√
|xi|
))

where x∗=(420,9687,...,420,9687)
and f(x∗) = −12569.5 for -500≤ xi ≤ 500.

F. Rastrigin function, defined as

f6(x) = −
Nd∑
i=1

(
x2

i − 10 cos (2πxi) + 10
)

where x∗=(0) and f(x∗) = 0 for -5.12≤ xi ≤ 5.12.

G. Ackley’s function, defined as

f7(x) = −20 exp

(
−0.2

√
1
30

Nd∑
i=1

x2
i

)
− exp

(
1
30

Nd∑
i=1

cos (2πxi)
)

+ 20 + e

where x∗=(0) and f(x∗) = 0 for -32≤ xi ≤ 32.

H. Griewank function, defined as

f8(x) = 1
4000

Nd∑
i=1

x2
i −

Nd∏
i=1

cos
(

xi√
i

)
+ 1

where x∗=(0) and f(x∗) = 0 for -600≤ xi ≤ 600.

I. Six-Hump Camel-Back function, defined as
f9(x) = 4x2

1 − 21x4
1 + 1

3x
6
1 + x1x2 − 4x2

2 + 4x4
2

where x∗=(-0.08983,0.7126),(-0.08983,0.7126)
and f(x∗) = −1.0316285 for -5≤ xi ≤ 5.

6 Results and discussion

This section compares the hybrid (combination of star,
ring and Von Neumann topologies) PSO to other PSO
models. The effect of the number of particles, problem
dimension with corresponding number of iterations is
explored.

For all the algorithms used in this section, c1 = c2 =
1.49, w = 0.72 and Vmax = half the length of the search
space as specified in section 5. The initial population
was generated from a uniform distribution in the range
specified. Furthermore, for specific run R, the random
initialization strategy was used for the first algorithm
(i.e. hybrid) only, while all other algorithms (i.e. star,
ring and Von Neumann) used the same positions that
have been generated for the first algorithm. Hence for
comparison purpose the same particles were used in all
algorithms in specify run. The velocity was initialized
to zero. In order to investigate whether the hybrid PSO
scales well or not, different numbers of particles m with
different dimensions are investigated. The results re-
ported in this section are averages and standard devia-
tions over 30 simulations. The numbers of particles m
that used are 50 and 40. Gmax is set as 500 and 1000
generations corresponding to the dimensions 20 and 30
respectively. Unless otherwise specified.

Tables 1, 2,3,4,5, and 6 list a representative set of
results from the conducted experiments. The tables in-
clude the test function, the dimensionality of the func-
tion, the number of generations the algorithm was run
and the average best fitness for the best particle found



Table 1: Mean best fitness of 30 run and standard deviations (±SD) of uni-modal function optimization results for 50 particles.

f Dim Gen Hybrid topology Star topology Ring topology V onv Neumann

20 500 0.000000±0.000000 0.000000±0.000000 0.000030±0.000026 0.000000±0.000000
f1 30 1000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000

20 500 0.000000±0.000000 0.000000±0.000000 0.000684±0.000262 0.000014±0.000005
f2 30 1000 0.000000±0.000000 0.000000±0.000000 0.000017±0.000007 0.000000±0.000000

20 500 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
f3 30 1000 0.000000±0.000000 0.033333±0.182574 0.000000±0.000000 0.000000±0.000000

20 500 13.611410±7.903354 26.732893±31.441795 19.478951±13.006731 23.527544±22.735853
f4 30 1000 24.534685±18.997162 155.183746±565.559387 34.818619±26.005678 44.442329±46.125607

Table 2: Mean best fitness of 30 run and standard deviations (±SD) of uni-modal function optimization results for 40 particles.

f Dim Gen Hybrid topology Star topology Ring topology V onv Neumann

20 500 0.000000±0.000000 0.000000±0.000000 0.000035±0.000026 0.000000±0.000000
f1 30 1000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000

20 500 0.000000±0.000000 0.000000±0.000000 0.000728±0.000304 0.000022±0.000010
f2 30 1000 0.000000±0.000000 0.000000±0.000000 0.000017±0.000007 0.000000±0.000000

20 500 0.000000±0.000000 0.000000±0.000000 0.000017±0.000006 0.000000±0.000000
f3 30 1000 0.000000±0.000000 0.133333±0.730297 0.000000±0.000000 0.000000±0.000000

20 500 11.569695±3.735688 26.766483±39.607185 35.082821±25.284101 25.695148±23.108534
f4 30 1000 35.504734±28.051165 42.174423±28.117460 41.780052±24.425417 38.154171±25.684706

Table 3: Mean best fitness of 30 run and standard deviations (±SD) of uni-modal function optimization results for 50 particles, Dimension =
10 and Gmax=1000 .

f Dim Gen Hybrid topology Star topology Ring topology V onv Neumann

f1 10 1000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
f2 10 1000 0.000000±0.000000 0.000000±0.000000 0.000017±0.000006 0.000000±0.000000
f3 10 1000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
f4 10 1000 0.290909±1.018993 0.871010±1.341269 2.073656±1.536980 1.778074±0.814718

for the 30 runs of the test functions respectively. Stan-
dard deviation for each value is also listed.

Tables also list the corresponding average best fit-
ness for the Standard PSO using Star topology, Ring
topology and Von Neumann topology with the same set-
tings (where they are applicable) as described in the pre-
vious section. Unimodal functions are listed in Table 1,
2 and 3. Where Multimodal Functions are represented
in Tables 4, 5 and 6.

6.1 Unimodal Functions

Table 1, Table 2 and Table 3, summarize the results
obtained by applying the different methods to the uni-
modal problems. The results show that hybrid PSO per-
formed better than (or at least equal to) the other strate-
gies in all tested functions.

By experiments, the best results for unimodel func-
tions have been obtained when the population size set to
50, dimension of functions set to 10 and the iterations

set to 1000 as showing in Table 3. Figure 2 shows the
average best fitness for each generation (Gmax=1000)
for tested unimodal functions. The figures compare Hy-
brid topology model with other versions of PSO. In
graphs hybrid refer to PSO using hybrid of star, ring
and VN topologies, gbest refer to standard PSO using
star topology, lbest refer to standard PSO using ring
topology, where Von Neumann refer to standard PSO
using Von Neumann topology. The graphs illustrate a
representative set of experiments for functions using 50
particles with a dimension set to 30.

In experiments with the four unimodal functions,
the hybrid PSO achieved better results and had the faster
convergence rate than all other versions of PSO. Albeit
the convergence speed for gbest model-star topology-
is close to convergence speed of hybrid model, gbest
model trapped in a local optimum for the Rosenbrock
function very early during the search. The Ring topol-
ogy has the slowest conversion speed.



Figure 2: Comparison between the different versions of PSO on the unimodal functions. The vertical axis represents the function value and
the horizontal axis represents the number of generations.

Table 4: Mean best fitness of 30 run and standard deviations (±SD) of multi-modal function optimization results for 50 particles.

f Dim Gen Hybrid topology Star topology Ring topology V onv Neumann

20 500 -6582.76807±386.52445 -5996.71143±524.58221 -5866.97998±330.94025 -6059.55469±357.65851
f5 30 1000 -8914.60547±725.81543 -8422.02441±645.38501 -8096.08887±486.61813 -8526.37114±699.16046

20 500 15.072241±5.235845 24.13549±10.242969 23.827868±6.161203 18.37709±6.360409
f6 30 1000 29.580095±7.421592 47.109001±14.644919 43.183247±9.907544 34.49754±8.657301

20 500 -0.000002±0.000000 0.213074±0.569593 0.002532±0.001336 0.000061±0.000033
f7 30 1000 -0.000002±0.000000 0.908264±0.869754 0.000107±0.000056 -0.000001±0.000000

20 500 0.020594±0.014840 0.021555±0.018157 0.002014±0.004293 0.010821±0.013712
f8 30 1000 0.007554±0.007312 0.017034±0.030371 0.001738±0.004388 0.006651±0.009345

2 500 -1.031628±0 -1.031628±0 -1.031628±0 -1.031628±0
f9 2 1000 -1.031628±0 -1.031628±0 -1.031628±0 -1.031628±0

Table 5: Mean best fitness of 30 run and standard deviations (±SD) of multi-modal function optimization results for 40 particles.

f Dim Gen Hybrid topology Star topology Ring topology V onv Neumann

20 500 -6234.282227±465.074768 -5854.051758±580.406738 -5589.804199±367.290497 -5946.909180±604.808838
f5 30 1000 -9093.771484±627.405029 -8136.155762±596.664673 -8148.088379±634.528687 -8549.250977±639.801392

20 500 17.064165±5.176713 24.899055±9.928655 25.317053±4.282255 20.124708±6.895897
f6 30 1000 34.526691±8.480634 53.018333±15.796675 43.660721±9.189561 35.492195±9.290305

20 500 -0.000002±0.000000 0.344388±0.642362 0.002796±0.001943 0.000073±0.000031
f7 30 1000 -0.000002±0.000000 1.377343±0.861749 0.000178±0.000190 -0.000001±0.000001

20 500 0.017056±0.015856 0.029470±0.030515 0.010097±0.011802 0.011811±0.014860
f8 30 1000 0.005994±0.007162 0.014171±0.014704 0.001504±0.003455 0.005247±0.010582

2 500 -1.031628±0 -1.031628±0 -1.031628±0 -1.031628±0
f9 2 1000 -1.031628±0 -1.031628±0 -1.031628±0 -1.031628±0

6.2 Multimodal functions

Multimodal functions with many local optima are often
difficult to optimize. Table 4, Table 5 and Table 6, sum-



Table 6: Mean best fitness of 30 run and standard deviations (±SD) of multi-modal function optimization results for 50 particles,
Dimension=10 and Gmax=1000.

f Dim Gen Hybrid topology Star topology Ring topology V onv Neumann

f5 10 1000 -3636.255371±208.135071 -3397.954590±254.216766 -3426.145752±263.891815 -3599.254395±233.310791
f6 10 1000 2.722301±1.500988 6.440560±4.133302 5.246451± 1.956245 3.463268±1.319513
f7 10 1000 -0.000002±0.000000 -0.000002±0.000000 -0.000002± 0.000000 -0.000002±0.000000
f8 10 1000 0.043794±0.022501 0.072239±0.040020 0.028187±0.019831 0.032108±0.020075
f9 2 1000 -1.031628±0.000000 -1.031628±0.000000 -1.031628±0.000000 -1.031628±0.000000

marizes the results obtained by applying the different
methods to the multimodal problems.

The results show that the hybrid PSO performed bet-
ter than (or at least equal to) the other strategies in all
the tested functions except for the Griewank function,
where lbest using ring topology performed slightly bet-
ter. Table 4, 5 and 6 show that in general the perfor-
mance of Schwefel Problem 2.26 function and Griewank
function improved by increasing the dimension prob-
lem. While other tested functions performed better when
the population size is increased and dimension problem
is decreased.

Figure 3 shows the average best fitness for each gen-
eration (Gmax=1000) for multimodal function (Camel-
back not included). The graphs illustrate a representa-
tive set of experiments for functions using 50 particles
with a dimension set to 30.

7 Conclusion and Future Work

In this paper a hybrid model of PSO based on the multi
types of neighbourhood topologies was introduced. The
hybrid model was basically the standard PSO working
on multi types of neighbourhood topologies. In stan-
dard model the follow of information between parti-
cles depend on one type of topology. The global best
model uses the Star topology, and the local model uses
either the ring or the Von Neumann topologies. The
hybrid model presented in this paper has the ability to
work with three types of topologies, star, ring and Von
Neumann. The purpose of that was to get the benefit
of strength of using global best and local best models.
The performance of the proposed algorithm was com-
pared to other standard types of PSO with a set of uni-
modal functions and multimodal functions. The results
showed that, the new algorithm almost performed bet-
ter fitness and has faster convergence speed comparing
to other strategies.

However by recording the selected topology for some
particles through 1000 generation - find Figure 4 to 7-,
the results showed that, the particle prefers to use the
star topology -gbest model- most of the time, partic-

ularly within first iterations. Unfortunately this may
weak the new strategy, especially if the particles trapped
in local minimum in first iterations. Future works will
investigate this problem and will attempt to solve it. Fu-
ture work would be built on sequential hybring. For
example, the hybrid algorithm might be improved by
imposing the particles to use the lbest model in first it-
erations. Hence more search area will be investigated
to not trap in local minimum. Furthermore, other val-
ues of C1, C2, w, population size and dimensional prob-
lems should be investigated and compared to other al-
gorithms.
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Figure 3: Comparison between the different versions of PSO on the Multimodal functions. The vertical axis represents the function value and
the horizontal axis represents the number of generations.

Figure 4: Represented the preferred topology for some particles (x) in last run for Rosenbrock function. The vertical axis represents the
selected topology 1 represents ’Star’, 2 represents ‘Ring’, 3 represents ‘VN’ and the horizontal axis represents the number of generations

Figure 5: Represented the preferred topology for some particles (x) in last run for Rastrigin function. The vertical axis represents the selected
topology (1 represents ‘Star’, 2 represents ‘Ring’, 3 represents ‘VN’) and the horizontal axis represents the number of generations.



Figure 6: Represented the preferred topology for some particles (x) in last run for Ackley function. The vertical axis represents the selected
topology (1 represents ‘Star’, 2 represents ’Ring’, 3 represents ’VN’) and the horizontal axis represents the number of generations.

Figure 7: Represented the preferred topology for some particles(x) in last run using Schwefel’s Problem 2.26 function. The vertical axis
represents the selected topology (1 represents ’Star’, 2 represents ’Ring’, 3 represents ’VN’) and the horizontal axis represents the number of
generations.
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