
HIDEF: a Data Exchange Format for
Information Collected in Honeypots and Honeynets

CRISTINE HOEPERS1

NANDAMUDI L. VIJAYKUMAR2

ANTONIO MONTES3

1Brazilian Network Information Center - NIC.br
Computer Emergency Response Team Brazil - CERT.br, São Paulo (SP)

cristine@acm.org
2National Institute for Space Research - INPE

Computing and Applied Mathematics Associated Laboratory - LAC, São José dos Campos (SP)
vijay@lac.inpe.br

3Ministry of Science and Technology - MCT
Renato Archer Research Center - CenPRA, Campinas (SP)

antonio.montes@cenpra.gov.br

Abstract. The deployment of honeypots is one of the methods used to collect data about attack trends in
computer networks. The lack of a standard format for data representation makes the exchange and central-
ization of data generated by different technologies difficult. This also restricts the correlation and analysis
of this information. This paper presents the HIDEF (Honeypots Information and Data Exchange Format),
a proposal for a format to enable the representation and exchange of data and information produced by
organizations using honeypots and honeynets.

Keywords: network security, honeypots, honeynets, XML, data exchange format

(Received November 02, 2007 / Accepted February 02, 2008)

1 Introduction

In the past few years the number of computer security in-
cidents on Internet connected networks has continuously
increased [3, 4]. As a result, there is an increasing need
for attack data correlation and tools to help understand
attacks and identify trends.

The deployment of sensors in computer networks to
gather malicious traffic is one of the methods used by re-
searchers and security professionals to collect data for at-
tack trends analysis. One type of sensor that has been
used is a honeypot, a security resource whose value lies in
being probed, attacked or compromised [17, 16]. Another
type of sensor used is a honeynet, a network specifically
designed for the purpose of being compromised, that has
control mechanisms to prevent it from being used as a
base of attacks against other networks [18, 12]. The hon-

eypot technologies have considerably developed in the
past few years, mainly because of the increase in research
activities and the development of new ways to collect data
about attacks [16].

However, it is very important to enable a more robust
and complete analysis of the traffic captured by honey-
pots and honeynets that use different technologies and are
deployed in different locations around the world. This
analysis would make it possible to better understand the
attacks’ distribution and how they interrelate [18]. To al-
low the correlation of information from different honey-
pot and honeynet implementations, it is not only neces-
sary to have a system to collect and analyze these data,
but also to have a format to represent this information.
The existence of a standard format would facilitate the
exchange of data, because it would enable the develop-
ment of tools to automate the generation and retrieval of

cristine@acm.org
vijay@lac.inpe.br
antonio.montes@cenpra.gov.br


information from different sources.
The existing research in the area of honeypot data col-

lection and analysis is concentrated in visualizing and cor-
relating data from a unique honeynet or from a set of
honeypots using similar technologies [18, 16]. However,
none of them considers the interoperability issue of an-
alyzing data generated in different architectures by dif-
ferent technologies. On the other hand, standard formats
to represent data related to attacks and intrusion detec-
tion, such as the Intrusion Detection Message Exchange
Format (IDMEF) [7] and the Incident Object Description
Exchange Format (IODEF) [6], are not adequate to repre-
sent data from honeypots.

To contribute to this research area this work proposes
HIDEF (Honeypots Information and Data Exchange For-
mat), a format to represent and exchange data and infor-
mation produced by organizations using honeypots and
honeynets. This proposed format intends to solve the in-
teroperability issue among different honeypot implemen-
tations, while preserving compatibility with other stan-
dards like IDMEF and IODEF.

The remainder of this paper is organized as follows.
Section 2 describes the different honeypots technologies
and types, the different data analysis approaches and the
different data formats for representing data about attacks
in computer networks. In this Section some limitations of
the approaches and formats shown are also raised. In Sec-
tion 3 the HIDEF format is discussed, along with its struc-
ture and an example of data captured in a low-interaction
honeypot represented in HIDEF format. In Section 4 the
conclusions and future work are presented.

2 Honeypots and Data Formats

This Section initially presents honeypot types and tech-
nologies, as well as the existing approaches to collect and
analyze their data. Then, two data formats for the rep-
resentation of attacks in computer networks will be pre-
sented. Finally, the limitations of the methods presented,
regarding data interoperability for honeypots using differ-
ent technologies, will be discussed.

2.1 Honeypots

Honeypots are security resources specially configured to
collect information about attacks and whose value lies in
being probed, attacked or compromised [17, 16]. In gen-
eral, they are computers specially configured to register
all activities directed to them, such as probes, attacks and
intrusions [15]. Also, as a honeypot is not a production
system, all traffic directed to it is most likely malicious or
anomalous. This makes the data collected in honeypots
really valuable, because there are no false positives and it
is easy to extract signatures for malicious activities [17].

2.1.1 Types of Honeypots

Honeypots can be classified basically into two types: low-
interaction and high-interaction [17, 16].

Low-interaction honeypots are configured just to em-
ulate certain systems and services. When an attacker in-
teracts with one of these honeypots, she is not interacting
directly with the system, but with a program or set of pro-
grams designed to emulate the system’s characteristics,
like operating system (OS), application version, vulnera-
bilities, etc. This way the honeypot is not actually com-
promised, but is still able to capture several pieces of in-
formation about the type of attack being perpetrated, like
scan trends and new malicious code, among others [16,
11].

High-interaction honeypots are real systems, usually
located in a network with malicious traffic control mecha-
nisms, known as honeynet. These systems, once attacked,
can be compromised and the intruder can completely take
over the machine. In this kind of honeypot is possible
to observe the intruder installing tools, attempting attacks
against other networks and modifying the system config-
uration [18, 16].

Nowadays, honeypots and honeynets are high-end se-
curity resources used both to better understand the intrud-
ers actions and to help in activities like intrusion detec-
tion [16]. It is also a consensus that they can capture
valuable information about different attacks on the Inter-
net, as well as help computer security incident handling
activities and provide details about the attackers’ tactics
and motives [17, 18, 12].

2.1.2 Honeypot Technologies

There are several technologies available for the imple-
mentation of low- and high-interaction honeypots. In this
Section we will present the technologies that are more
mature and widely adopted.

The most used programs to implement low-interaction
honeypots are Honeyd and Nepenthes [16]. Honeyd is a
framework that allows the emulation of hundreds of dif-
ferent systems in several different IP (Internet Protocol)
addresses. For each IP address it is possible to specify a
different OS to be emulated, and which applications will
be emulated in each OS. To emulate the applications and
services it is possible to use Honeyd native subsystems
or external programs [16, 15]. Honeyd can run in differ-
ent operating systems, and some logs are generated by
the host system. Nepenthes is a honeypot designed to
collect samples of malware that propagate automatically,
like worms and bots [16, 8]. It emulates the behaviour of
a vulnerable software, decodes the attack and retrieves a
copy of the malware [8].

As high-interaction honeypots are in fact real systems



deployed in a controlled environment or in a honeynet, the
technologies used to implement them have a greater de-
gree of complexity. Each honeypot may have a different
OS and this makes the information available to the anal-
ysis, after a compromise, very diverse. This information
includes OS logs, application logs, process states, kernel
related information, files left by the intruder, among sev-
eral other data. The capture and control mechanisms can
also be implemented through different technologies. One
of the widely adopted technologies is the honeywall, com-
prised of a set of integrated tools that restrict the outgo-
ing traffic generated by intruders, therefore stopping them
from attacking third party networks, but still allowing the
intruder interactions with the honeypot [18, 16]. Honey-
wall also has mechanisms that enable the capture of any
traffic generated by the attackers, and the aggregation and
preliminary analysis of the data collected in a given hon-
eynet.

2.2 Data Collection Performed by Groups Studying
Honeypots

This Section discusses the approach taken by three well
known groups that study and deploy honeypots, to im-
plement a central data collection infrastructure for further
data analysis.

2.2.1 Honeynet Project

The Honeynet Project maintains several honeynets around
the world, whose data are all stored in a central server. To
allow further correlation of the data, a set of requirements
that must be fulfilled during the data capture in all hon-
eynets was defined [18]:
• a record with the configuration of all active honey-

pots in the honeynet must be maintained;
• the data captured by the firewall, router or IDS (In-

trusion Detection System) must be stored in GMT
(Greenwich Mean Time) timezone;

• each honeynet must have a unique identifier, a name
convention and a mapping, that allow to identify its
location and configuration;

Although the description of data collection to a cen-
tral server is available, there is no information about how
this server is structured or which type of correlation is
performed.

2.2.2 Honeynet Research Alliance

The Honeynet Research Alliance is a forum where the
participants are organizations from several countries, that
perform research on honeypots and honeynets [18].

Up to now there is no method available for these insti-
tutions to share data or analysis among them. However,

some organizations send data to a central server main-
tained by the Honeynet Project. This central server can
deal only with data generated by this specific set of cap-
ture and control tools: the libpcap library binary files
and Linux iptables firewall logs [18]. This implies
that only organizations using these technologies can send
data to the central server.

It is also important to notice that this architecture does
not enable the exchange of information directly among
the organizations. There is also no available information
about which kind of data analysis or correlation is being
done with the data.

2.2.3 Brazilian Honeypots Alliance

The Brazilian Honeypots Alliance publishes daily statis-
tics about the activities observed in the distributed hon-
eypots that are part of its infrastructure [11]. The data
used to generate the statistics are logs in libpcap for-
mat generated by the OpenBSD packet filter (pf) [10].

Once all the honeypots’ data are available at the data
collection server, these data are converted into flow for-
mat, which stores a summary about the traffic between
two IPs, taking into account the ports and protocol used.
These flows are processed by ORCA (http://www.
orcaware.com/orca/) and by RRDtool (http://
oss.oetiker.ch/rrdtool/), which are the tools
used to generate the daily statistics and graphics in the
project’s website.

2.3 Other Data Collection and Analysis Initiatives

2.3.1 Honeynet Security Console

The Honeynet Security Console (HSC) is a tool devel-
oped by Jeff Bell, from the Florida Honeynet Project, to
correlate events from a local network or honeynet. This
tool allows storing and querying the following types of
data: libpcap files generated by tcpdump, syslog
logs, firewall logs stored by syslog and logs from the
Sebek tool, which captures all commands executed by an
intruder in a high-interaction honeypot [18].

The HSC authors have chosen to store the data as sim-
ply as possible in a SQL database. This was achieved
by using programs already available to convert data from
each application to a relational database. Each one of
these programs creates its own table structure, with dif-
ferent mapping and data types. Thus similar data created
by different applications will be represented differently.
To solve these inconsistencies HSC needs to perform data
type conversions and correlate some data after it performs
the queries to the database. In some of the cases if the
data were mapped differently, the correlations could be
done directly as queries to the database.

http://www.orcaware.com/orca/
http://www.orcaware.com/orca/
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/


2.3.2 A Statistical View of The Recorded Activity On
a Honeynet – HoneyStats

The Internet Systematics Lab, from the National Center
of Scientific Research “Demokritos” in Greece, maintains
the Greek Honeynet Project. In May 2006 they released
a tool called “HoneyStats 1.0”, which creates statistics
about logs generated by the laboratory’s honeynet fire-
wall. A demo version of this tool is available at http:
//www.honeynet.gr/.

2.3.3 Georgia Tech Honeynet Project Statistics and
Data Visualization

The Georgia Tech Honeynet Project has developed some
tools to generate statistics and data visualization from the
data collected in their honeynet [5].

The tool HoneyReport parses files in libpcap for-
mat and generates flows as output. These flows are then
analysed to generate statistics about the top activities in
the honeynet, like most scanned ports and source of at-
tacks. The tools Rumint and SecVis generate graphics in
parallel coordinates based on the traffic captured by the
honeynet.

2.4 Data Exchange Formats

XML (Extensible Markup Language) is widely adopted to
store and transmit information used by different software
and systems [1, 9]. It is actually becoming a universal
format for data exchange between applications [13].

In the following Sections we are going to present two
XML data formats to represent data captured by IDSs and
data from computer security incidents.

2.4.1 Intrusion Detection Message Exchange Format

The IETF (Internet Engineering Task Force) standard de-
scribed in RFC 4765: “The Intrusion Detection Message
Exchange Format (IDMEF)” [7] defines procedures and
a data format to share information about intrusion detec-
tion. More specifically, it defines a data format to be used
by automated alert notification systems [7]. One of its
objectives is to allow the correlation of information col-
lected by systems from different vendors and from open
source tools.

The IDMEF is an object-oriented representation, im-
plemented in XML, of alert data sent by IDS sensors to
their data analysis systems. The definition of the data
model has these main requirements: allow the interoper-
ability among different IDSs and accommodate different
levels of information provided by different data types, like
network traffic, OS logs and application logs [7, 19].

2.4.2 Incident Object Description Exchange Format

The IODEF (Incident Object Description Exchange For-
mat) is a standard format for the representation of data
and statistics usually required to effectively respond to a
security incident. The IODEF data model is described
in the RFC 5070 “The Incident Object Description Ex-
change Format”, from December 2007 [6]. This doc-
ument also shows an XML implementation of the data
model.

As it is common for an incident to be initially ob-
served in control and monitoring systems like IDSs, the
IODEF kept its definition compatible with the IDMEF
format. This way, data generated in IDMEF format can
be easily imported to an IODEF document.

2.5 Limitations in the Collection, Analysis and Data
Format Areas

As we could see in the previous Sections the existing
studies in the areas of collection and analysis of hon-
eypots’ data are focused in visualization and/or correla-
tion of data in a given honeynet or in a set of honey-
pots that use similar technologies [18]. Although some of
these studies present interesting characteristics and have
promising results, none of them takes into consideration
the issue of interoperability to analyze data generated by
different technologies in different architectures.

On the other hand, the IODEF and IDMEF standards
have a focus in interoperability and a structure that allows
representing network traces and information about IDSs
alerts adequately. However, these models are too focused
on network attack signatures and on mapping relation-
ships among security incidents. From the point of view of
research and data correlation of events observed in a hon-
eypot, it is necessary to also exchange information about
the technology being used. This would allow, for exam-
ple, the comparison between data from low- and high-
interaction honeypots or determining if filters applied to a
network have implicated in differences in the results.

To address the existing limitations of the honeypot re-
search area, this paper proposes the HIDEF, an exchange
format for data collected in honeypots, and information
about the architecture and technologies used by honey-
pots. Section 3 will present HIDEF, its requisites and data
model.

3 HIDEF

As seen in Section 2, honeypot data correlation has been
performed only in data with the same format and among
honeypots using similar technologies. However, it is very
important to enable a more robust and complete analysis
of the traffic captured by honeypots and honeynets that
use different technologies and are deployed in different

http://www.honeynet.gr/
http://www.honeynet.gr/


locations around the world. This analysis would make
possible to better understand the attacks’ distribution and
how they interrelate [18].

This work contributes to this research area in propos-
ing a data format for the exchange of information and data
collected in honeypots. This format is the HIDEF – Hon-
eypots Information and Data Exchange Format.

3.1 Requirements

The HIDEF format takes into account some requirements
for the representation of relevant information to analyze
and correlate activities captured by honeypots.

To perform a correct analysis it is necessary to con-
sider the architecture used and the context were the data
was captured. To enable this, it is necessary that the for-
mat allows representing data about the honeypots config-
uration and the technologies used, such as: what is the
type of the honeypot; if it is connected to a honeynet;
which OS and services are being used or emulated; open
TCP, UDP and ICMP ports in the honeypot; and if there
are filters that prevent certain types of traffic to reach the
honeypot.

It is equally important to be able to represent differ-
ent types of data captured, like intruder activity logs and
attack attempts received by the honeypot. Among these
data it is important to highlight the network traces, ma-
licious codes, artifacts resulting from malicious activities
and the analysis performed. It is also necessary that the
format allows exchanging sanitized information, that is,
information that omits sensitive network details from the
organizations that are interested in exchanging data col-
lected by their honeypots.

Another requirement that needs to be considered is
the compatibility with standard formats already defined
for other sets of data related to network security. This
is important to enable the correlation among data from
honeypots and data from IDSs or from computer and net-
work security incidents. To fulfill this requirement it is
necessary that the HIDEF remains compatible with the
IDMEF [7] and the IODEF [6] formats, discussed in Sec-
tion 2.4.

3.2 Data Types

Whenever possible, XML Schema native data types [2]
are used in the definition of the HIDEF classes and at-
tributes. However, to represent some specific data we de-
fined a few data types. These data types are derived from
IODEF for compatibility reasons. The types defined are
listed below.

ML_STRING – this type is derived from IODEF. It is
used to represent any text related to analysis, gen-
eral descriptions or any other information that may

be written in multiple languages. It is represented
by a string (xs:string [2]) that has a language
(xs:language [2]) as an attribute.

PORTLIST – this type is also derived from IODEF. It
represents a list of network services ports. This for-
mat allows representing ports (N) and port sequences
(N-M) separated by commas. This type is repre-
sented by a string (xs:string [2]) restricted by
the following regular expression:
\d+(\-\d+)?(,\d+(\-\d+)?)*.

ENUM – enumerated data, also derived from IODEF, are
used in several attributes. They are defined as se-
quences of NMTOKEN (xs:NMTOKEN [2]). The
description of each specific enumerated type will be
made together with the description of the class that
uses it for the first time.

3.3 Data Model

The HIDEF is an object-oriented representation of infor-
mation related to the configuration and the technologies
used by honeypots, as well as data captured by them.
The HIDEF classes represent XML elements and their at-
tributes represent XML attributes. Throughout this Sec-
tion the following conventions are used: the classes rep-
resented in gray are derived from the IODEF model; the
names of the attributes and all classes are written in sans-
serif font.

Each HIDEF document is an instance of the HIDEF-
Document class, which is comprised of one or more in-
stances of the Honeypot class, as we can see in Figure 1.
The HIDEF-Document class has three attributes: version,
that represents the version of the HIDEF model being
used; lang, that represents the language of the document
according to the values defined in [14]; and instructions,
a field reserved to contain parsing instructions, whose se-
mantic must be defined by the organizations exchanging
information.

The Honeypot class provides a representation of the
several components related to the data from a given hon-
eypot. It has the following attributes: restriction, type and
ext-type. The restriction attribute, as it is used also in
IODEF, will have the same meaning in HIDEF, as well
as the same possible values. This attribute is inherited by
all classes that are children of Honeypot. Some of these
classes also have a restriction attribute, in which case it is
possible to assign new values to them. The possible val-
ues are: public, need-to-know, private and default. When
the value is default it means that a policy predefined by the
organizations involved should be used. The type attribute
determines which type of honeypot is being represented,
and can have the values low-interaction, high-interaction
or ext-value. The ext-type attribute is optional and was



Description

ML_STRING

EventData

ENUM restriction

Solution ArtifactData

HIDEF−Document

STRING version
ENUM lang
STRING instructions

Honeypot

ENUM restriction
ENUM type
STRING ext−type

1..*

0..1 0..*

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

System

ENUM restriction
ENUM category
STRING ext−category
STRING interface
ENUM spoofed

FilterInfo

ENUM type
STRING ip_version
STRING ip_protocol

Honeynet

ENUM restriction
ENUM type
STRING ext−type

AdministrativeInfo

ENUM restriction

EmulatedSystems

Figure 1: HIDEF-Document and its aggregated classes.

defined as a mean to extend the type attribute. More de-
tails about how to extend this and other similar types is
discussed in Section 3.4.

Each Honeypot class instance may have zero or one
instance of the following classes: System, Administrative-
Info, EmulatedSystems, Description, FilterInfo, Solution
and Honeynet. These classes represent the information
about the technologies used and the context in which the
data was collected. To represent different types of data
captured, the logs of the intruders activities and attack at-
tempts received, each instance of the Honeypot class may
have zero or more instances of the classes EventData, Arti-
factData and AdditionalData. These classes and their rela-
tionship with the Honeypot class can be seen in Figure 1.

The System, Description, EventData and Additional-
Data classes are derived from IODEF and their full de-
scription, including attributes and aggregated classes, is
available in [6]. In the HIDEF context a System class
will hold information about the honeypot system, includ-
ing operating system, services, applications, IP address
version 4 or 6, among others. The Description class may
hold a general description of the honeypot and comments
that the organization creating the document considers rel-
evant. EventData is the class that will store the data about
most of the malicious activities captured by the honeypot.
This class allows representing the start and end time of an
activity, network traces, involved protocols, logs, attack
methods, and assessment about the impact of the attack
registered, among other data. The AdditionalData will be
discussed in Section 3.4.

The AdministrativeInfo class, seen in Figure 2, aggre-
gates the classes Hardware, EmulatedAddress, Sanitiza-
tion, Contact and AdditionalData. It can have zero or more
instances of these aggregated classes, which hold admin-
istrative information about the honeypot. In case of a low-
interaction honeypot the EmulatedAddress class, which
has the same definition of the IODEF Address class [6],
can be used to represent the network range being used by
the honeypot for the emulated systems. Hardware enables
to store relevant text information about the hardware be-

ENUM category
STRING ext−category
STRING vlan−name
INTEGER vlan−num

Sanitization

ENUM type
STRING real
STRING sanitized

Hardware

ML_STRING

Contact

ENUM role
STRING ext−role
ENUM type
STRING ext−type
ENUM restriction

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

0..*

AdministrativeInfo

ENUM restriction

EmulatedAddress

Figure 2: AdministrativeInfo and its aggregated classes.

ing used by the honeypot. The Sanitization class can be
used to reference the relation between the honeypot real
addresses and the sanitized addresses stored in the System
and EventData classes. It is very important to keep this re-
lation because it allows an institution generating the logs
with the addresses already sanitized to share the informa-
tion about the real addresses. The Contact class is derived
from IODEF [6] and permits, for example, that members
of groups studying honeypots or similar projects share in-
formation about who is responsible for a given honeypot.
The AdditionalData class will be discussed in Section 3.4.

INTEGER

0..*

PORTLIST

ANY

FilterInfo

ENUM type
STRING ip_version
STRING ip_protocol

ENUM restriction

PortList

AdditionalData

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

Port

0..1

Figure 3: FilterInfo and its aggregated classes.

The FilterInfo class (Figure 3) maps the information
about filters applied between the Internet traffic and the
honeypot. This information is very important for the cor-
relation of data captured in different honeypots. Without



ML_STRING

URL

0..1

0..*0..1 0..1 0..*

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

0..*

Honeynet

ENUM restriction
ENUM type
STRING ext−type

DataCollection DataControlDescription

ML_STRING

Address

ENUM category
STRING ext−category
STRING vlan−name
INTEGER vlan−num

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

Description

ML_STRING

URL

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

Description

Figure 5: Honeynet and its aggregated classes.

this information it is not possible to know if a given ma-
licious traffic was not seen because the honeypot was not
attacked or the malicious traffic was blocked. If the type
attribute has the value open this means that the traffic to
the ports listed in Port and Portlist is allowed and every-
thing else is denied. If the type attribute is closed, this
means that the traffic to the ports listed in Port and Portlist
is blocked and everything else is allowed. The Port and
Portlist classes are derived from IODEF and their com-
plete description is available in [6]. The AdditionalData
class will be discussed in Section 3.4.

The EmulatedSystems class represents different sys-
tems being emulated in a low-interaction honeypot. It
is formed by one or more instances of the System class,
as we can see in Figure 4. The System class has basi-
cally the same definition as in IODEF [6], but in HIDEF
it has been extended to aggregate one more class: the Em-
ulatedApplication. This class allows storing specific in-
formation about the programs used to emulate the appli-
cations. Each instance is formed by a software descrip-
tion, represented in Description, and an URL (Uniform
Resource Locator) pointing to its web page, represented
in the URL class.

0..1

ENUM restriction

Description

ML_STRING

EmulatedSystems System

URL

ENUM restriction
ENUM category
STRING ext−category
STRING interface
ENUM spoofed

1..*

0..*

EmulatedApplication

Figure 4: EmulatedSystems and its aggregated classes.

The Honeynet class, that we can see in Figure 5, al-
lows representing information about the honeynet where
a high-interaction honeypot may be located. Its type at-
tribute may have three values: physical, virtual and ext-
value. The ext-type attribute permits the extension of the
type attribute, as will be discussed in Section 3.4. The
Honeynet class may have zero or one Description class,
that can contain a general description of the honeynet.
The other classes may occur zero or more times. The Ad-
dress class is derived from IODEF and represents the fol-
lowing types of addresses: IP, MAC (Media Access Con-
trol), AS (Autonomous System), among others related to
a honeynet. The DataCollection and DataControl classes
have similar structures and represent data about the tech-
nologies used in a honeynet to collect data and control the
intruders’ activities [18]. The AdditionalData class will be
discussed in Section 3.4.

URL

Solution

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

0..1 0..*

Description

ML_STRING

Figure 6: Solution and its aggregated classes.

The Solution class represents, in low-interaction hon-
eypots, the solution used to implement the honeypot. As
we can see in Figure 6 an instance of this class is com-
prised of zero or one instances of the Description class,
where we can store a general description of the solution,
and of the URL class, that can hold a URL to the appli-
cation site. The AdditionalData class can hold additional
information needed and will be discussed in Section 3.4.

The ArtifactData, seen in Figure 7, represents artifacts



ArtifactData

Hash

STRING

ENUM type

Description

ML_STRING

ArtifactItem

ANY

ENUM type

DateTime

DATETIME

URL

ENUM restriction

AdditionalData

ANY

ENUM dtype
STRING ext−dtype
STRING meaning
STRING formatid

0..1 0..*

Figure 7: ArtifactData and its aggregated classes.

collected in low- or high-interaction honeypots, together
with their capture and analysis information. An instance
of this class has exactly one ArtifactItem, where the ar-
tifact itself is stored, and the timestamp of the capture,
represented in DateTime. In Description we can store a
general description of the artifact or its analysis. Each Ar-
tifactData instance may also have zero or more instances
of the Hash, URL and AdditionalData classes. The Hash
class may store a cryptographic hash or a digital signature
for the artifact, this data can be used to uniquely identify
each artifact. Its type attribute determines what kind of
hash was used, and may have one of the following values:
md5, sha1, sha256, sha512, rmd160 or pgp-signature.
The URL class can be used in case the artifact is already
in public domain and has a URL associated to it. The
AdditionalData class will be discussed in Section 3.4.

To exemplify the use of HIDEF, Figure 8 presents a
document with the representation of an SSH scan against
a low-interaction honeypot.

3.4 HIDEF Extensions

Taking into account the dynamic nature of the computer
security area, HIDEF has means for the definition of ex-
tensions to the model allowing the inclusion of new char-
acteristics to the data model. As it is an object-oriented
model it is always possible to extend it through inheri-
tance, defining subclasses with attributes not present in
the super-class. As we will see below, it is also possible
to include new classes.

The AdditionalData class, derived from IODEF, acts
as an extension mechanism. It allows including informa-
tion not originally represented in the data model or in-
cluding new classes. This class permits the inclusion of
atomic elements, like integers and strings, or more com-
plex data, like complete XML documents, derived from
other Schemas (like IDMEF or IODEF). Its type attribute
holds the definition of the data type, and its meaning at-
tribute defines which is the meaning of that data in the
HIDEF document context.

<?xml version="1.0" encoding="UTF-8" ?>
<HIDEF-Document version="1.00" lang="en"
xmlns="hidef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Honeypot restriction="public" type="low-interaction">
<System restriction="private" category="target">
<Node>
<Address category="ipv4-addr">192.0.2.1</Address>

</Node>
<OperatingSystem vendor="OpenBSD" version="3.9" />
<Description>
Low-interaction honeypot real OS.

</Description>
</System>
<AdministrativeInfo restriction="private">
<EmulatedAddress category="ipv4-net">
10.0.0.0/26</EmulatedAddress>

<Sanitization type="ipv4-addr" real="10.0.0.1"
sanitized="xxx.xxx.xxx.1" />

</AdministrativeInfo>
<EmulatedSystems>
<System restriction="private" category="target">
<Node>
<Address category="ipv4-addr">10.0.0.1</Address>

</Node>
<Service ip_protocol="6"><Port>22</Port></Service>
<OperatingSystem vendor="Linux" version="2.4.7" />
<EmulatedApplication>
<Description>
SSH emulator derived from the dropbear server.

</Description>
<URL>http://matt.ucc.asn.au/dropbear/dropbear.html
</URL>

</EmulatedApplication>
</System>
</EmulatedSystems>
<Solution>
<Description>Honeyd</Description>
<URL>http://www.honeyd.org/</URL>
</Solution>
<EventData>
<StartTime>2006-11-03T16:12:31Z</StartTime>
<EndTime>2006-11-03T16:12:45Z</EndTime>
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">
192.168.8.2</Address>

</Node>
<Service ip_protocol="6">
<Portlist>2458,2535,2598,2752</Portlist>

</Service>
</System>
<System category="target">
<Node>
<Address category="ipv4-addr">
xxx.xxx.xxx.1</Address>

</Node>
<Service ip_protocol="6"><Port>22</Port></Service>

</System>
</Flow>
<Record>
<RecordData>
<RecordItem dtype="string">
Nov 03 16:12:31 192.168.8.2.2458 > xxx.xxx.xxx.1.22
Nov 03 16:12:34 192.168.8.2.2535 > xxx.xxx.xxx.1.22
Nov 03 16:12:37 192.168.8.2.2598 > xxx.xxx.xxx.1.22
Nov 03 16:12:45 192.168.8.2.2752 > xxx.xxx.xxx.1.22
</RecordItem>

</RecordData>
</Record>
</EventData>

</Honeypot>
</HIDEF-Document>

Figure 8: HIDEF document with data about an SSH scan against a low-
interaction honeypot.

There is another mechanism that enable the extension
of some attributes defined as enumerated data types. All
attributes whose name is of the form “ext-<name>” can
be used to extend the attributes of the same “<name>”.
An example are the attributes type and ext-type from the
Honeypot class (Figure 1). Nowadays the honeypots are



classified in the literature as low- and high-interaction.
However, this classification may be expanded in the fu-
ture. If this happens the type attribute can be extended
by assigning to it the value “ext-value”, and assigning a
“new-value” to the optional attribute ext-type, represent-
ing a new type of honeypot.

4 Conclusions and Future Work

The data collected by honeypots and honeynets, and the
information about their technologies, are complex. This
requires an equally complex data structure to represent
them. In the HIDEF model these data are represented in
a structured way, giving the data appropriate semantics.
This enables quick access to the data and facilitates the
interoperability and the processing automation.

The proposed format is compatible with the IODEF
and IDMEF standards, allowing data collected by hon-
eypots to be more easily correlated with data from IDSs
and network security incidents. Additionally, the data
collected from honeypots and represented in HIDEF for-
mat can easily be exported to the IODEF format, allowing
them to be notified as a security incident. This is possi-
ble mainly because HIDEF uses a class derived from the
IODEF EventData to represent network traces and logs.

The next steps include the development of a client-
server system that will allow the creation and exchange
of HIDEF documents in a secure way. This system will
also validate and import these data into a database system.
A case study will be implemented to exchange and corre-
late data from a low-interaction honeypot network and a
honeynet, both already operational.

References

[1] Extensible Markup Language (XML). http://
www.w3.org/XML/. Access date: Oct 27, 2007.

[2] XML Schema Part 2: Datatypes Second Edition –
W3C Recommendation. http://www.w3.org/
TR/xmlschema-2/, October 2004. Access date:
Oct 27, 2007.

[3] Centro de Estudos, Resposta e Tratamento de In-
cidentes de Segurança no Brasil (CERT.br). Inci-
dentes Reportados ao CERT.br. http://www.
cert.br/stats/incidentes/. Access date:
Oct 27, 2007.

[4] CERT Coordination Center. CERT/CC Statistics
1988-2007. http://www.cert.org/stats/
cert_stats.html. Access date: Oct 27, 2007.

[5] Conti, G. and Abdullah, K. Passive visual fin-
gerprinting of network attack tools. In Proceed-
ings..., pages 45–54. VizSEC/DMSEC ’04: 2004

ACM Workshop on Visualization and Data Mining
for Computer Security, ACM Press, October 2004.

[6] Danyliw, R., Meijer, J., and Demchenko, Y.
RFC 5070: the incident object description ex-
change format. http://www.ietf.org/rfc/
rfc5070.txt, December 2007. Access date: Feb
2, 2008.

[7] Debar, H., Curry, D., and Feinstein, B. RFC
4765: The intrusion detection message exchange
format (IDMEF). http://www.ietf.org/
rfc/rfc4765.txt, March 2007. Access date:
Oct 27, 2007.

[8] Göbel, J., Hektor, J., and Holz, T. Advanced
honeypot-based intrusion detection. ;login: The
USENIX Magazine, 31(6):17–25, December 2006.

[9] Harold, E. R. and Means, W. S. XML in a Nutshell,
A Desktop Quick Reference. O’Reilly and Asso-
ciates, Inc., 2nd edition, June 2002. ISBN-10: 0-
596-00292-0.

[10] Hartmeier, D. Design and Performance of the
OpenBSD Stateful Packet Filter (pf). In Proceed-
ings... FREENIX Track: 2002 USENIX Annual
Technical Conference (FREENIX ’02), June 2002.

[11] Hoepers, C., Steding-Jessen, K., Cordeiro, L. E. R.,
and Chaves, M. H. P. C. A National Early Warning
Capability Based on a Network of Distributed Hon-
eypots. In Proceedings... Annual FIRST Confer-
ence on Computer Security Incident Handling, June
2005.

[12] Hoepers, C., Steding-Jessen, K., and Montes, A.
Honeynets Applied to the CSIRT Scenario. In Pro-
ceedings... Annual FIRST Conference on Computer
Security Incident Handling, June 2003.

[13] Milo, T., Abiteboul, S., Amann, B., Benjelloun, O.,
and Ngoc, F. D. Exchanging intensional XML data.
ACM Trans. Database Syst., 30(1):1–40, 2005.

[14] Phillips, A. and Davis, M. RFC 4646: Tags for iden-
tifying languages. http://www.ietf.org/
rfc/rfc4646.txt, September 2006. Access
date: Oct 27, 2007.

[15] Provos, N. A virtual honeypot framework. In Pro-
ceedings..., pages 1–14. USENIX Security Sympo-
sium, August 2004.

[16] Provos, N. and Holz, T. Virtual Honeypots: From
Botnet Tracking to Intrusion Detection. Addison-
Wesley Professional, 1st edition, July 2007. ISBN-
13: 978-0321336323.

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.cert.br/stats/incidentes/
http://www.cert.br/stats/incidentes/
http://www.cert.org/stats/cert_stats.html
http://www.cert.org/stats/cert_stats.html
http://www.ietf.org/rfc/rfc5070.txt
http://www.ietf.org/rfc/rfc5070.txt
http://www.ietf.org/rfc/rfc4765.txt
http://www.ietf.org/rfc/rfc4765.txt
http://www.ietf.org/rfc/rfc4646.txt
http://www.ietf.org/rfc/rfc4646.txt


[17] Spitzner, L. Honeypots: Tracking Hackers.
Addison-Wesley Professional, 1st edition, Septem-
ber 2002. ISBN-10: 0321108957.

[18] The Honeynet Project. Know your Enemy: Learn-
ing About Security Threats. Addison-Wesley Profes-
sional, 2nd edition, May 2004. ISBN: 0-321-16646-
9.

[19] Wood, M. and Erlinger, M. RFC 4766: Intrusion de-
tection message exchange requirements. http://
www.ietf.org/rfc/rfc4766.txt, March
2007. Access date: Oct 27, 2007.

http://www.ietf.org/rfc/rfc4766.txt
http://www.ietf.org/rfc/rfc4766.txt

	Introduction
	Honeypots and Data Formats
	Honeypots
	Types of Honeypots
	Honeypot Technologies

	Data Collection Performed by Groups Studying Honeypots
	Honeynet Project
	Honeynet Research Alliance
	Brazilian Honeypots Alliance

	Other Data Collection and Analysis Initiatives
	Honeynet Security Console
	A Statistical View of The Recorded Activity On a Honeynet -- HoneyStats
	Georgia Tech Honeynet Project Statistics and Data Visualization

	Data Exchange Formats
	Intrusion Detection Message Exchange Format
	Incident Object Description Exchange Format

	Limitations in the Collection, Analysis and Data Format Areas

	HIDEF
	Requirements
	Data Types
	Data Model
	HIDEF Extensions

	Conclusions and Future Work

