An Efficient On-Line Algorithm for Edge-Ranking of Trees
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Abstract. An edge-ranking of a graph G is a labeling of the edges of G with positive integers such that
every path between two edges with the same label v contains an edge with label A > . In the on-line
edge-ranking model the edges ej, e . .., e, arrive one at a time in any order, where m is the number of

edges in the graph. Only the partial information in the induced subgraph G[{eq, ea, .

.., €e;}] is available

when the algorithm must choose a rank for e;. In this paper, we present an on-line algorithm for ranking
the edges of a tree in time O(n?), where n is the number of vertices in the tree.
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1 Introduction

An edge-ranking of a graph G = (V, E) is an edge-
labeling ¢ : £ — N such that every path in G between
two edges with the same label v contains an internal
edge with label > v + 1. The integer label ¢(e) of
an edge e is called the rank of the edge. Clearly an
edge-labeling is an edge-ranking if and only if, for any
label ~y, deletion of all edges with labels > ~y leaves
connected components, each having at most one edge
with label . Figure 1/ shows an edge-ranking of a tree
T using 5 ranks.

An edge-ranking of GG using the minimum number
of ranks(labels) is called an optimal edge-ranking of G.
The edge-ranking problem is to find an optimal edge-
ranking of a given graph GG. The optimal edge-ranking
problem has important applications in scheduling the
assembly steps in manufacturing a complex multi-part
product [3]]. Since the constraints for the edge-ranking

problem imply that two adjacent edges cannot have the
same rank, the edge-ranking problem is a restriction of
the edge-coloring problem.

Figure 1: An edge-ranking of a tree T'.

The edge-ranking problem is N"P-Complete in gen-
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eral [9], although polynomial-time algorithms have been
found for trees. Iyer er al. [3] gave an O(n log, n) time
sequential approximation algorithm for finding an edge-
ranking of a tree 7" using at most twice the minimum
number of ranks, where n is the number of vertices in 7.
Later Torre et al. [14] gave an exact algorithm to solve
the edge-ranking problem on trees in time O(n? log, n)
by means of a two-layered greedy method. Recently
Lam et al. have given a linear-time algorithm for solv-
ing the edge-ranking problem on trees [10]. In [14]
Torre et al. have given a parallel algorithm for solving
the edge-ranking problem on trees in O(A*log® n) par-
allel time using O(24n2+1) operations on the CREW
PRAM model.

Generalization of the edge-ranking problem was in-
troduced in [15]. For a positive integer c, a c-edge-
ranking of a graph G is a labeling of the edges of G
with positive integers such that, for any label -y, deletion
of all edges with labels >  leaves (connected) compo-
nents, each having at most ¢ edges with label v [15].
Clearly an ordinary edge-ranking is a 1-edge-ranking.
The c-edge-ranking problem is to find an optimal c-
edge-ranking of a given graph G. Zhou et al. gave an
algorithm to find an optimal c-edge-ranking of a given
tree T' for any positive integer c in time O(n?log A),
where A is the maximum vertex-degree of 7" [15]. A
polynomial-time sequential algorithm and an O(logn)
time parallel algorithm for solving the c-edge-ranking
problem on partial k-trees with small treewidth for any
positive integer ¢ was given by Kashem et al. [3].

The vertex-ranking problem [2] and the c-vertex-
ranking problem [16] for a graph G are defined simi-
larly. Iyer et al. presented an O(n log n) time algorithm
to solve the vertex-ranking problem on trees [2]. Then
Schiffer obtained a linear-time algorithm by refining
their algorithm and its analysis [12]. On the other hand,
Zhou et al. have obtained an O(c-n) time sequential al-
gorithm to solve the c-vertex-ranking problem for trees
[16]. Kashem et al. gave a polynomial-time sequen-
tial algorithm and O(logn) time parallel algorithm for
solving the c-vertex-ranking problem on partial k-trees
[6]. Recently, Kashem ef al. gave an O(logn) time op-
timal parallel algorithm for solving the c-vertex-ranking
problem on trees [4].

An algorithm is called off-line if all input data must
be accessed before the output is produced. Most re-
search done in graph theory concentrates on off-line al-
gorithms. The edge-ranking and vertex-ranking algo-
rithms mentioned above are all off-line algorithms. On
the contrary, an on-line algorithm has to make (partial)
decisions after seeing only a subset of the input. For
example, for ranking (coloring) problems, there are two

natural on-line models: the input is given either vertex-
by-vertex or edge-by-edge. The algorithm assigns a
rank (color) to the current vertex or edge based only
on past history and a rank (color) assigned to a vertex
or edge cannot be changed later.

In this paper we are concerned with on-line rankings
of graphs. Schiermeyer et al. characterized the class of
graphs for which on-line vertex-ranking can be found
using only three ranks [13]. They also proved that for
n > 2, the greedy first-fit coloring heuristic can rank an
n-vertex path using a maximum of 3 log, n ranks, inde-
pendently from the arriving order of vertices. Bruoth et
al. [1] improved this result by showing that the maxi-
mum number of ranks required for on-line ranking the
vertices of an n-vertex path is 2|log, n|+1, where n >
2. They also obtained a similar bound for cycles. How-
ever none of these two papers provide efficient on-line
algorithms for vertex-ranking of graphs. Recently Lee
et al. gave the first on-line vertex-ranking algorithm for
trees that runs in O(n?) time [7]. They also presented
an on-line parallel algorithm for ranking the vertices of
a tree in time O(n log® n) using O(n?/log? n) proces-
sors on the CREW PRAM model [8].

In this paper we provide an O(n?) time on-line al-
gorithm for ranking the edges of a tree, where n is the
number of vertices in the tree. In an on-line setting,
since the edges arrive one at a time in each iteration,
only partial or incomplete information about the input
graph is available at each step. So it is not possible to
guarantee that an on-line algorithm can rank the edges
of a graph with the minimum number of ranks. There-
fore we use a greedy strategy in our algorithm to rank
the newly arrived edge in each iteration with the least
possible rank.

2 Preliminaries

LetT = (V, E) be atree. We denote V(T') and E(T') as
the set of vertices and the set of edges in 7', respectively.
Let |V(T)| = n and |E(T)| = m. When u and v are
the endpoints of an edge e = (u,v), they are adjacent
and are neighbors. In that case, e is said to be incident
to v and v. Two edges are adjacent if they have a com-
mon endpoint. We denote the degree of any vertex v €
V(T) by d(v). Also for any two edges e, e’ € E(T),
we denote the unique path from e to e’ by P(e, e’). The
unique path from a vertex v to an edge e is denoted by
P(v,e).

Let e; be the newly arrived edge at the ith iteration
of an on-line algorithm. We denote 7; as the subgraph
of T'induced by {ey, ea,...,e;}. Let T(e;) be the (con-
nected) component of 7; which contains e;, the newly
arrived edge. Only T'(e;) will be considered while rank-



ing e;, since the edges in other components will not af-
fect the ranks of edges in 7'(e;).

Let ¢ be an edge-labeling of a graph G with pos-
itive integers. We denote the rank(label) of an edge e
by ¢(e). The concepts of visible rank and visibility list
were introduced by Iyer et al. [2]. Consider any edge
e € E(T(e;)) \ {ei}. The rank ¢(e) of e is said to be
visible from a vertex v € V' (T'(e;)) under ¢, if all the
edges on P(v,e) are labeled and have ranks < ¢(e).
Such an edge e is then called a visible edge. The list
of all ranks visible from a vertex v under ¢ is called
the visibility list of v, and is denoted by L(v). Let
e; = (u,v), and let L(e;) = L(u) U L(v). Then we say
that L(e;) is the visibility list of e;. The list L(e;) will
generally be a multi-set, where an element +y in L(e;)
can appear more than once. A rank that is not visible
from an endpoint of e; under ¢ is called an invisible
rank. For any integer v we denote by count(L(e;), ")
the number of +’s contained in L(e;) [16].

3 On-Line Edge-Ranking of Trees
The following theorem is the main result of this paper.

Theorem 1 The edges of a tree T can be ranked
using an on-line algorithm in O(n?) time, where n is
the number of vertices in T

In the remainder of this section we prove Theorem
1 by giving an on-line algorithm for ranking the edges
of a tree T in time O(n?). It is based on the greedy
first-fit coloring heuristic. At the ith iteration, the al-
gorithm takes as input the newly arrived edge e;. We
then rank e; with the least possible rank without violat-
ing the edge-ranking property. To rank e;, we construct
the visibility list L(e;) by searching in T'(e;) to find all
visible ranks. The search is carried out by a recursive
depth first search traversal. During the search, we keep
track of the largest rank of an edge on a path starting
from endpoints of e; seen so far. As the traversal con-
tinues along a path, if an edge is traversed that has a
rank greater than the current maximum, then that rank
is added to L(e;) and the largest rank is updated. Since
any edge adjacent to e; is trivially visible from an end-
point of e; under ¢, its rank must belong to L(e;). To
incorporate this case into the algorithm, the largest rank
is set to O at the beginning of the search. As a result
when an edge e adjacent e; is traversed, its rank ¢(e)
will be trivially greater than 0 and added to L(e;). The
pseudo-code of the algorithm is given below.

Algorithm On_line_Edge_Ranking_Tree
begin
1 fori=1tomdo {m=|E(T)|}

read a new edge e;;
3 let B = {e},eh,...,¢e,} be the set of
edges adjacent to e; in {e1,ea,...,€;-1};
4 L :=0; {Currently L is the visibility
list of e;, thatis L = L(e;)}
5 RankEdge(e;, E');
end

Procedure RankEdge(e, E')
begin

1 forj=1topdo {p=|E'|}

BVL(e, e;-, 0);

3 find minimum « such that o ¢ L and
count(L, 3) < 1, for each ( satisfying
a+1<8<max{L};

4 p(e) := a; {rank e with '}

end

[\

Procedure BVL(e, €/, 7rnaz)
begin
1 ifp(e') > rmas then

2 L:=Lu{pl)}
3 let E(e’) be the set of

edges adjacent to e’ in T'(e; );
4 if (E(¢)) \ {e}) # 0 then

s foreachedge e’ € (E(¢) \ {e}) do
BVL(e/, e’, maz{rmaz, ¢(€')});

=)}

end

We now prove the correctness of the algorithm.

When ¢ = 1, that is, when the first edge e; arrives, it
does not have any adjacent edges, and so it can be triv-
ially ranked with 1 without violating the edge-ranking
property. When 7 > 1, we inductively assume that
the edges eq, . . ., e,_1 have been properly ranked in the
previous ¢ — 1 iterations. We now prove that e; is prop-
erly ranked at the ith iteration. At first we show that the
visibility list is correctly constructed at the ith iteration
of the algorithm. We have the following lemma.

Lemma 1 Let ¢; € E(T) be the newly arrived edge
at the ith iteration, and let L be the list constructed
by On_line_Edge_Ranking_Tree for the edge e;. Then
L = L(e;), that is,

(i) L contains all the ranks visible from an endpoint
of e; under p; and

(i) L does not contain any rank invisible from both
endpoints of e; under .

Proof. (i) For a contradiction, assume that ~ is a
rank visible from an endpoint v of e; under ¢ but v ¢ L.
Let e be a visible edge with rank ¢(e) = v, where e €
E(T(e;)) \ {e;}. Since - is visible from the endpoint v



of e;, all the edges on P(v, €) have ranks < . Let e’ be
the edge incident to v on P(v, €) and e” be the edge ad-
jacent to e on P(v,e). Since ¢ is a vertex-ranking, we
have p(e’") < vy foralledges ¢’”’ € E(P(¢’,€")). Thus
the largest rank seen so far from ¢’ to ¢” on P(v,e) is
< 7. So when e will be traversed on P (v, e), we have
p(e) = v > rmaz. So 7y must be added to L. This
contradicts y ¢ L. Thus L contains all the ranks visible
from an endpoint of e;.

(ii) For a contradiction, assume that L contains a
rank +y that is invisible from both endpoints u and v of
e; under . Let e be a vertex with ¢(e) = v. Let e’ be
the edge incident to v on P(v,e). Since + is invisible
from the endpoint v of e;, there must be an edge e” €
E(P(v,e)) \ {e} such that p(e) > 7. At any edge
on P(v,e) traversed after ¢”, we have 7,4, > (e”).
Since e is traversed after ¢’ on P(v,e), at e, we have
Tmaz > @(€”) and ¢(e’) > ~. Therefore at e, we have
Tmaz > @(€). So ¢(e) = ~ cannot be added to L. So
L cannot contain any invisible rank. Q.E.D.

Next we show that the rank chosen for ¢;, the current
new edge, does not violate the edge-ranking property in
T(ez)

Lemma 2 The rank « properly ranks the newly ar-
rived edge e; € E(T') at the ith iteration.

Proof. For a contradiction, assume that o does not
properly rank e;. So T'(e;) will contain a path P(e’, e”)
forsome ¢, ¢’ € E(T'(e;)) such thate; € E(P(e’,e")),
p(e) = ¢(e") = ~, and p(e) < v for all edges e
€ E(P(¢,e")). Lete; = (u,v). Then p(e;) = «
< v and @(¢') is visible from u and @(e”) is visible
from v under . So count(L(e;),y) > 2. Since by
On_line_Edge_Ranking_Tree o ¢ L(e;), @ = +y is not
possible. Thus v > a+ 1. But count(L(e;), 8) < 1, for
each [ satisfying o + 1 < 8 < max{L(e;)}, according
to On_line_Edge_Ranking_Tree. So « properly ranks

Proof of Theorem 1: For each execution of the
RankEdge procedure, the visibility list is constructed by
the BVL procedure using a recursive depth first search
(DFS) traversal. For a tree, the complexity of DFS is
O(|E]) = O(|V]) = O(n), so it takes O(n) time to
build the visibility list. Since the size of the visibility
listis O(|E(T(e,)]) = O(E]) = O(V]) = O(n),
searching in L(e;) to find the rank « in Line 4 of proce-
dure RankEdge takes O(n) time. So we can say that the
RankEdge procedure takes time O(n). Since the proce-
dure RankEdge is called for each newly arrived edge,
and the m edges ej, ez ..., ey, arrive one at a time, the
total time complexity of On_line_Edge_Ranking_Tree

is>°;~1 O(n) = O(m)-O(n) = O(n)-O(n) :QO(n2),

since for a tree m = n — 1. .D.

4 Conclusion

In this paper, for the first time, we have presented an
O(n?) time on-line algorithm for ranking the edges of
a tree. Since only a subset of the input graph(tree) is
available in each iteration, and an assigned rank can-
not be changed later, an on-line edge-ranking algorithm
cannot guarantee optimality. Therefore we use a greedy
strategy for our on-line algorithm to find the least pos-
sible rank for each new edge. Experimental simulation
results have shown that the algorithm properly ranks the
edges of a tree in quadratic time. It is interesting to note
that the corresponding problem on vertices, that is, the
on-line vertex-ranking problem for trees can be solved
in O(n?) time [7]. Rahman et al. improved the run-time
by showing that the vertices of a tree can be ranked in
O(n?) time [11]. Thus the on-line edge-ranking prob-
lem, which is more complex than the vertex counter-
part, runs in the same time complexity.
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