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Abstract. In high-performance computing, selecting the appropriate thread count has a significant im-
pact on execution time and energy consumption. On multi-core processor systems, it is widely believed
that for maximal speedup, the total number of threads should match the number of cores. Thread migra-
tion rate, cache miss rate, thread synchronisation, and context switching rate are all impacted by changes
in thread count at the hardware and OS levels. As a result, it is extremely difficult to analyse these
factors for relatively complex multi-threaded programs and determine the optimal number of threads.
The method put forward in this study is an enhancement of the conventional Manta-Ray Foraging Opti-
mization, a bio-inspired approach that has been applied to a number of numerical engineering problems.
The proposed approach makes use of three foraging steps: chain, cyclone, and somersault. Using the
well-known benchmark suite PARSEC (The Princeton Application Repository for Shared-Memory Com-
puters), the suggested work is simulated on an NVIDIA-DGX Intel Xeon-E5 2698-v4 processor. The
findings demonstrate that the new modified AMRFO-based prediction model can choose the appropriate

number of threads with fairly minimal overheads when compared to the current method.
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1 Introduction

Since engineering and scientific applications are now
more data-intensive, it has become necessary to build
new high-performance computer systems as well as ap-
proaches that are able to efficiently execute a large num-
ber of tasks using the processors that are already avail-
able.The term "multi-threading" refers to the practice of
employing parallel programming techniques on a multi-
core processor that uses shared memory. It is the abil-
ity of the Central Processing Unit (CPU) and the op-
erating system to carry out several threads at the same
time[35]]. The basic objective of multi-threading is to
enable the concurrent execution of two or more sec-
tions of code in order to increase the amount of work
that can be done by a single CPU. In the context of this

discussion, every component of a program is referred
to as a thread. Programming nowadays makes exten-
sive use of a technique known as multi-threading, which
is a relatively recent development in the field of infor-
mation technology.Programmers employ many threads
for a variety of purposes, including designing respon-
sive servers that can connect with several clients, doing
complex calculations simultaneously on a multiproces-
sor for improved performance, and constructing sophis-
ticated user interfaces[29]]. It is essential to have High-
Performance Computing (HPC) development tools in
order to simplify the process of programming on HPC
computers. Programmers have access to a wide variety
of tools that are designed to assist them in the creation
of effective parallel programs [5]. Because of this, mul-

INFOCOMP, v. 21, no. 2, p. pp-pp, December, 2022.


shmalave@apsit.edu.in, skshinde@rediffmail.com

Malave et al.

Adaptive Manta Ray Foraging Optimizer for Determining Optimal Thread Count in Multi-threaded Applications 2

tiprocessors have become standard in every variety of
computer system, ranging from desktop computers to
supercomputers, throughout the course of the last few
decades.

The OpenMP programming language has recently
been updated to provide a more extensive collection of
directives, which cover a wider range of parallelisation
choices than merely shared memory. When we exam-
ine the future of OpenMP, we envision a further exten-
sion of support for a range of parallelisation techniques,
as well as the introduction of support for performance
monitoring and debugging tools. This is something that
we are looking forward to seeing[7]. HPC has expe-
rienced a huge increase in its computing capability as
a direct result of the relatively recent development of
general-purpose graphics processing units (GPGPU) as
a low-cost processor architecture. Nvidia has recently
introduced CUDA for programming GPGPUs, which
will significantly reduce the amount of pressure placed
on programs. C/C++ application programming inter-
faces (APIs), tools, and a hardware abstraction tech-
nique are all part of CUDA, which is designed to let
programmers run parallel programs on GPGPUs[10].
When it comes to distributed computing, there are a lot
of different strategies and methods that are developed to
help increase the performance of the systems. It is vital
to conduct an analysis of the environment of network-
based distributed computing in order to determine the
performance of the systems[12].

A thread is also referred to be a lightweight sub-
process that can collaborate with other threads of the
concurrent operation[39]. Since parallelism is executed
on a variety of levels, pinpointing its precise nature can
be challenging. In addition, the speed of execution is
increased by doing multiple computations at the same
time[18]. In addition, the process of parallelising code
might result in other problems within the program such
as deadlocks, race situations, bugs, and so on. A few
different modes of communication are required for sep-
arate works[16]][[1]. This communication creates an ad-
ditional burden, which may result in a decrease of per-
formance. When a great number of threads make simul-
taneous use of the CPU cache, it can lead to overflow
and a high cache miss rate. [43]].

The major part of the bandwidth utilisation, thread
migration rate, number of threads, cache miss rate, and
context transition rate are dominated by factors related
to the design of the hardware and the operating system.
Because changing the number of threads affects how
other parameters behave, it may be said that the num-
ber of threads is the most important element. The higher
the total number of threads, the higher the cache miss

rate will be since more threads will be able to utilise the
shared cache. Additionally, a greater number of threads
are able to interact with the shared bandwidth; as a re-
sult, there are more transmission delays.

There are some programs that require a significant
amount of work, and increasing the number of threads
in those programs can help achieve good performance.
There are some applications that are designed to be
extremely memory intensive, and because of a short-
age of storage bandwidth and shared storage capac-
ity, creating additional threads does not improve the
performance of these programs. Certain computer ap-
plications have stringent communication requirements,
which need constant data exchange between different
threads. In addition, enabling more threads results in
a significant increase in the overhead required for lock
synchronisation, which in turn significantly hinders per-
formance. Therefore, in order to achieve good perfor-
mance, the approach that has been suggested obtains
the thread count dynamically. This is done based on the
characteristics of the application.

Even if parallel processing on multi-core processors
is a more developed technology, it is still important to
determine the exact level of concurrency that should
be utilised for a certain work in order to enhance the
average CPU utilisation of multi-core processors for a
particular amount of time[21] [26]. This can be ac-
complished by determining the optimal level of paral-
lelism that should be utilised for the task in question.
It is impossible to accurately forecast the performance
of a program that contains a large number of software
threads without first carrying out the tasks with many
threads in their entirety; this is an essential compo-
nent that enables efficient CPU use[20] [3]. The ever-
increasing complexity of the system architecture makes
it an extremely challenging endeavor to build programs
and make accurate projections on their expected perfor-
mance. Estimating the thread count using traditional
logical performance methods is the most accurate way
to do so because they are based on the characteristics of
both the hardware and the software[25]]. However, they
are not perfect by any means and require at least some
implementation details of the target processor in order
to gather hardware-specific indications or implementa-
tion statistical data such as memory traces and instruc-
tion counts, both of which have the potential to influ-
ence the forecasting time[17]. Researchers have been
able to solve problems with credit card authorization
systems with the assistance of parallel programs that
make use of many threads, which has also allowed them
to parallelise existing serial applications in order to im-
prove their performance[13]].
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Figure 1: Execution time taken by the PARSEC benchmarks streamcluster(left), swaptions(middle) and ferret (right) for sample input data
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Figure 2: Zoomed in area of Figureshowing regions where benchmarks were unable to scale with the number of threads

To compute the performance of applications run-
ning on specific hardware and with varying degrees of
parallelism, a variety of different methodologies have
been devised[36]. In order to achieve this goal, charac-
teristics of applications that correlate to a single thread
are mined in order to predict speedups for a variety of
different numbers of threads[27]]. These features are ob-
tained after the program of interest has been run on the
target machine for a single thread for a certain amount
of time. The varied multi-threaded performance of the
application is evaluated on the desired hardware, and
the speedups are calculated based on the attributes that
are derived from it[11]. Following the completion of a
single-threaded version of the task at hand, this enables
multi-threaded application programs to determine the
optimum number of threads that should be utilised in
order to complete the task. This is not supported for all
programs that are envisioned to be implemented only
once or twice over the course of their lifetime since
the application needs to be implemented just once on
a single thread in order to mine features for determin-
ing the best possible number of threads[19]]. Therefore,
the most difficult challenge for applications that are in-
tended to be executed a great number of times is to de-
termine the appropriate number of threads to use.

In order to find a solution to such an optimization
problems, bio-inspired algorithms may be utilised. The

way that live things function served as a model for the
development of these algorithms. These methods can
also be used to the field of wireless sensor networks
in order to make more effective use of the available
energy[24]. The Partical Swarm algorithm is very fa-
mous for solving the optimization problem. A study by
Deep et al.[8] shows the use this bio-inspired algorithm
in the field of Lennard-Jones Problem.

2 Motivation & Problem Statement

Since computers are now used in every facet of our life,
the tasks that may be carried out by mainframes and
PCs are becoming extraordinarily complicated. Addi-
tionally, there has been a considerable growth in the
volume of data that can be successfully managed by to-
day’s computers [31} 32133} 23} 140, 138 [15} 130, 16} 22,
34]. Personal computers of today often include any-
thing from two to eight cores, which enables a large
number of tasks, or threads, to be carried out all at once.
Additionally, if an application has an excessive number
of threads, this can lead to contention risks with other
application threads, such as poor cache locality, thread
migrations, and stealing CPU time from other threads.
On the other hand, if the application has an inade-
quate number of threads, the resources will be wasted.
Also because number of threads that are formed by a
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program at the time of execution is always increasing,
managing threads is becoming an increasingly difficult
task. Synchronisation, Task Granularity, Load Balanc-
ing, Data sharing, Resource sharing, Data Locality, and
Input or Output are the seven categories that are used
to classify the parallel programming issues that arise
in multi-core systems. It is necessary for the operating
system to solve all of these issues in order to ensure that
tasks are carried out correctly. In the context of thread
management, these issues are sometimes referred to as
overheads. When the number of threads increases, the
overhead costs do as well, and it’s possible that the costs
of overhead will end up being higher than the profits.
Therefore, determining the ideal number of threads for
the situation at hand is a difficult task to undertake.

The figure [I] displays the amount of time that
streamcluster, swaptions, and ferrets required to com-
plete their respective tasks when given sample input
data on a computer system that contained 40 cores of
Xeon processors. The X-axis indicates the number of
threads that are now being utilised, and the Y-axis in-
dicates the amount of time required by the program to
finish executing itself at the thread count that has been
specified. It has been demonstrated that the streamclus-
ter scales well up to a count of 10 threads, but that af-
ter that point it begins to operate in an ineffective man-
ner. The performance of swaptions and ferret is satis-
factory up to 20 and 12 threads, respectively, but does
not greatly improve after that. The region of Figure
[2] depicted in Figure [I] shows the point at which these
benchmarks stopped being able to grow as the number
of processors rose. It is a commonly held belief that the
number of threads in multi-threaded applications should
correspond to the number of cores on multi-core pro-
cessing systems in order to achieve the highest possi-
ble level of performance. However, this is not the case
with the standards that are being used here. Because
the execution time varies at random as shown in Fig-
ure |2} it is not possible to use any method or method-
ology to determine the thread count that results in the
least amount of time spent executing code. In order
to solve this problem, a one-of-a-kind searching opti-
mization strategy has been presented for estimating the
number of threads used in multi-threaded programs.

The following is a summary of the significant con-
tributions that the paper makes:

e To investigate the usage of searching algorithms
that are influenced by bio-inspired algorithms in
order to find the optimal thread count.

e To determine the best possible number of threads
and to speed up the processing time by employ-

ing an adaptive version of the Manta-Ray foraging
optimization technique.

The remaining portions of the paper are organised as
follows: There is a list of recent papers in section 3, and
a discussion of the suggested method for determining
an ideal number of threads based on the AMRFO can
be found in section 4. In the fifth section, we analyse
the results of the simulation, and in the last section, we
address the conclusion as well as the possible uses of
this research in the future.

3 Related Works

A learning-based technique was proposed by Agar-
wal et al. as an additional method for estimating
application-related performance. This method was pro-
posed in addition to varying degrees of parallelism. In
order to evaluate the performance of the software when
used in parallel applications, a p-threads library was
utilised. In addition, low-level characteristics that sig-
nify a significant part of the work for the prediction of
speed-ups were investigated. For multi-threaded Pro-
grams, the suggested method was carried out utilising
the SPLASH-3.0 and PARSEC-3.0 programming lan-
guages. The Gaussian process regression and the linear
regression both obtained higher levels of success after
being compared to a number of different ML (machine
learning) methodologies[2].

On multi-core CPUs, Sander et al. proposed a
method known as RPPM, which stands for rapid per-
formance prediction of multi-threaded workloads. On
multi-core hardware, an automatic logical performance
design was designed specifically for use with multi-
threaded applications. Gathering microarchitecture-
independent characteristics of a multi-threaded work-
load was one of the tasks that the RPPM performed
in order to determine how well a previous concealed
multi-core structure performed[27].

Tao Ju et al. came up with the idea of energy-
effective thread mapping for heterogeneous multi-core
systems and proposed that it could be accomplished
by dynamically altering the count of the threads.
The TCPM, which stands for "thread count prediction
model," was used in the regression technique to deter-
mine the appropriate number of threads to use in light
of the characteristics of heterogeneous multi-core struc-
tures and the behaviours of programs when they are exe-
cuting. In addition, the dynamic predictive thread map-
ping (DPTM) algorithm was used. This algorithm uses
a model of prediction to find the ideal count of threads
and vigorously alters the number of energetic hardware
threads based on the phase change of the program that
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is being executed in order to achieve the ideal energy
effectiveness[37]].

Jihyun Park et al. proposed using a method known
as dynamic analysis (DA) to investigate the factors
that lead to concurrency flaws in multi-process envi-
ronments as well as the many types of bugs that can
result from them. The hooking theory presents a poten-
tial method for lowering the percentage of false posi-
tives produced by the proposed system. The error that
occurred between processes and threads was analysed
with the help of the analysis of shared memory calls.
The established system was carried out in an environ-
ment running Linux by utilising the Ewha COncurrency
Detector, or ECO for short[[14].

A multi-core and multi-thread-based optimization
was presented by Xin Wei et al. in order to tackle the
extremely large-scale version of the traveling salesman
problem (TSP). The recommended method was carried
out using the Delphi programming language in order
to resolve the average and large-scale TSP occurrences
from TSPLIB. This strategy has the potential to signif-
icantly speed up the penetration procedure without tak-
ing into account the loss in data quality[42].

A model-based optimization method that was effec-
tive in terms of the amount of energy it consumed was
reported by Rauber et al. for use in multi-threaded ap-
plications. This method is mainly focused on the DVES,
also known as dynamic voltage and frequency scaling,
which is a technique that may be utilised across a range
of platforms. In order to gain an understanding of the
energy efficiency, we made use of the deliberative mod-
els of analysis, in addition to performing the study it-
self. In addition to this, the potential impact that the
number of threads simultaneously attempting to com-
plete a multi-threaded program might have was also
taken into consideration. In addition, the energy-delay
product was covered, which enabled the power to be
covered in relation to the square of the implementation
time[28].

Demetrios et al. presented an energy consumption
and performance trade-off for the parallel application
on heterogeneous multi-processing systems in their ar-
ticle. The performance and energy trade-offs for the
parallel application were suggested, in addition to a
single instruction set. A whole new analytical design
was designed in order to analyse the performance and
power utilisation of the system. In this case, the param-
eters were closely matched by using some offline data
that were properly sampled. These models were used
over the entirety of the configuration space in order to
compute the performance of the application as well as
the energy utilisation. These offline predictions, which

could be used to update the choice of the outline, were
used to indicate the decision that was made regarding
how the Pareto-optimal outlines of the model should be
assessed[9].

Saez et al. made a suggestion regarding the loop-
based OpenMP applications that were utilised in the
logical and industrial areas. These applications were
responsible for the development of the parallel bench-
mark suites, which were then utilised in the process
of estimating the performance of many-core architec-
tures. The traditional OpenMP approaches were un-
able of successfully handling load imbalance due to
the scheduling of the loop in the program. In order to
overcome these challenges, the method known as AID
(Asymmetric Iteration Distribution) was conceived of
over the course of this research and implemented on two
distinct AM platforms in libgomp[4].

4 Proposed Methodology

There has been a lot of interest in developing ways for
attaining maximum performance on multi-core archi-
tectures as a result of the widespread availability of
multi-core computers. This interest is due to the fact
that multi-core processors are now widely available.
The performance of a multi-threaded program is deter-
mined by the total number of threads that are allowed
to run on a multi-core structure. As a result, estimat-
ing the ideal thread count that will result in satisfac-
tory performance is a considerable challenge. When it
comes to multi-threaded applications running on multi-
core computer systems, there have been established a
lot of different approaches for forecasting the minimal
count of threads. These techniques suffer from limited
computer performance and poor accuracy in their pre-
dictions, which are two of their shortcomings. As a re-
sult, the purpose of this research is to present an opti-
mal number of threads prediction model by making use
of the MRFO[41]] in order to boost the performance of
computing while simultaneously reducing the amount
of energy used.

The cognitive processes of manta rays served as a
source of motivation for the development of the MRFO
algorithm. Foraging techniques such as the chain, cy-
clone, and somersault are included in its three stages.
Somersault foraging is given a fresh look with the in-
troduction of a new algorithm based on Cauchy muta-
tion in this work. The new AMRFO algorithm, which
was created to boost exploitation and exploration ca-
pabilities, is the result of combining cyclone foraging,
somersault foraging, and the chain foraging of MRFO.

The purpose of this exercise is to determine how
long it takes for the multi-threaded apps to run by run-
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ning them numerous times with a limited amount of
data. Before it can be used, the programs need to be
run on the hardware of your choice. The user and the
algorithm work together to determine the total num-
ber of times that this procedure will be carried out.
The AMRFO is a searching method that locates a new
thread count with each iteration by using the positions
of Manta Rays within the provided search space to de-
termine the new count. After that, the application is
executed using the newly produced number of threads,
and the time it takes to complete is compared to the time
it took during earlier runs. In the end, it will return the
thread count that can be executed in the shortest amount
of time.

The amount of data that is used in the experiments
is extremely important because if there is too little data,
then not all of the processors will be utilised, but if there
is too much data, then the algorithm will take longer to
process. The executions take a relatively short amount
of time because the amount of data that is being inputted
is so insignificant in contrast to its initial size. When se-
lecting the amount of data to keep all processors active
during the entirety of the operation, it is imperative that
the number of cores that are present in the computer
system be taken into consideration at all times.

4.1 Mathematical Models Representing Cognitive
Activities of Manta Rays

At first, the Manta Ray population is initialized ran-
domly as given by

x4 L+ r(UE — LY (1)

rand —

Here,d is the dimension and the arbitrary location is de-
fined as X in the hunt space, the lower and upper limit
of the d dimension is defined as L and U respectively
and a random number is denoted as r in the range of [0,

1].

4.1.1 Chain Foraging

During this stage, manta rays are able to determine the
location of the plankton, allowing them to navigate in
that general direction. Despite the fact that the AM-
RFO excellent solution is not defined, the algorithm de-
termines that a high concentration indicates the good
solution. Manta Rays migrate from their heads to their
tails in order to construct a chain of foragers. The fol-

lowing constitutes the accurate model of chain foraging:

X)) + 1 x (Xfge (1) — X{(1))
+ox (X, (1) — X{(t)),i = 1
X (t+1) =
X(t) +r x (XL (1) — X))
tax (XL, @) — X3#t),i=2,....N
(2)
Here, in d'" dimension the location of (i — 1)t*
Manta Ray is denoted as X Eii—l)(t) at time ¢ and also
the location of i'h Manta Ray is denoted as X¢(¢). A
high concentration plankton is denoted as X _, () and
the constant is denoted as « that can be given as:

a=2xr x+/log 3)

4.1.2 Cyclone Foraging

This behaviour is scientifically designed by the subse-
quent expressions.

X))+ x (Xpeg () — X))
8 % (X (1) = X{(1)),i = 1
XH(t+1) =
X)) +rx (XL, (1) — X))
+8 x (X2 (1) — X4(t),i =2,... N
4
B=2exp(r1 x (T —t+1)/T)) x sin(27r) (5)

The maximum amount of iterations that can be per-
formed is indicated here as T, the weight factor is indi-
cated as beta, and the random value that can fall any-
where between 0 and 1 is indicated as ;. The searchers
search in an arbitrary manner because they choose the
locations of the prey as their reference points. This pro-
cedure provides an appropriate means of exploitation
for the area where the good solution exists. In addition,
the exploration process can be built in such a way as to
improve its effectiveness by selecting any arbitrary site
as the process’s reference point.

4.1.3 Somersault Foraging

During this procedure, the individual position can be
improved by being brought up to date in order to boost
the local ability, which can be described as follows:

X{(t+1) = X7 () +8 % (ra x (X —13 x X['(1)),

i=1,2,..,N (6)

In this context, the somersault coefficient is referred
to as S, and its value in this scenario is equal to 2. 7
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and ry are the definitions of the arbitrary numbers, and
they are defined as being in the range of [0, 1]. Be-
cause the symbol S is a constant throughout this pro-
cess, it does not improve upon itself and instead con-
tributes to the formation of a local optimal point. As
a result, the Cauchy mutation process has been imple-
mented in order to enhance the capability of exploration
while avoiding the use of the local search space.
The 1D Cauchy function can be defined as:

fX) =1/ x1/(X*+1),~c0c< X <0 (7)

The PDF (probability density function) of Cauchy
function is described as:

F(X)=1/2+ (1/7) arctan(X) (8)

Cauchy’s function can be thought of as the step
size of mutation being developed. Once the individual
reaches the point where the local optimality is reached,
a higher step size facilitates the distinct jump out of the
local optimality point. When an individual is looking
for the optimal solution and is getting close to conver-
gence, the speed of convergence can be increased by
taking lower step sizes. The new scientific model of
this process is defined as:

X3t+1) = XEt)+C x (ro x XL, (1) =73 x X())

i=1,2,...N 9)

In this context, the Cauchy distribution’s arbitrary
number is denoted by the letter C. The final step in
completing MRFO and achieving AMRFO is to com-
bine the new somersault foraging method with the chain
and cyclone foraging strategies.

4.2 AMRFO Algorithm

The most important factor that has a major impact on
the running performance of the program is determin-
ing the correct number of threads. In this part, the new
and improved AMRFO algorithm for predicting the best
number of threads to use in parallel processing is pre-
sented. The model demonstrates that there is a corre-
lation between the amount of threads and the perfor-
mance of the program. Chain foraging, cyclone forag-
ing and somersault foraging based on the Cauchy muta-
tion technique are the three stages that make up this al-
gorithm. Because the present position of the Manta Ray
determines the number of threads, the fitness function
is evaluated for each of these positions, and the position
that yields the best results is recorded as the optimal so-
lution. The proposed optimal threads prediction model
contains the following steps:

1. Set N, which stands for the number of Manta Rays,
to a positive number.

2. Use the eq. (1) to figure out where is the posi-
tion of each Manta Ray. Here, the positions of the
Manta Rays are integers that represent the number
of threads

3. Set the starting best position to the number of cores
or processors that can be used to do calculations.

4. Do the next steps again and again until you reach
the maximum number of iterations or find the an-
swer you want.

(a) For every Manta-Ray

i. Determine a random number r between
[0,1]; if it is less than 0.5, execute Cy-
clone foraging using Eq. (4) and update
the new position.

ii. Otherwise, execute chain foraging using
Eq. (2) and update the new position.

iii. Calculate the fitness value for the new
position determined in the preceding
steps.

iv. If the current fitness value is smaller
than the fitness value of the previously
determined best position, make the new
position of the Manta Ray the optimal
position.

(b) For each Manta-Ray, execute the somersault
foraging eq. (9). Calculate the fitness value
and identify the optimal place.

5. The optimal number of threads is represented by
the best position attained in the preceding steps.

Figure [3| illustrates the AMRFO flowchart with all
pertinent information. In this procedure, all Manta Rays
are subjected to either Chain or Cyclone foraging, and
the optimal position is chosen from among them. Then,
utilising somersault foraging, a position that is supe-
rior to the previous best location is selected. This is
repeated until the maximum number of iterations has
been reached or an exit condition has been satisfied.

In this instance, the fitness value is the amount of
time required to execute the program with the provided
number of threads. following steps are performed to
obtain fitness value for Manta Rays

1. Determine the present location of the Manta Ray.

2. Obtain the multi-threaded application and sam-
ple input data from which to ascertain the thread
count.
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Initialize Manta Ray Ecosystem
Number of Manta Rays (N), Maximum Iterations (T'),
Best Position (Xpes: = number_of _cores), Maximum threads(M ax),
Minimum threads(Min), Random No.(r0),7 = 0,t = 0
Intialize positions of all Manta Rays: X [i][0] = (ro * (Max — Min)) + Min)

1\4|

Generate random numbers rand, r,ry, ro

}7

Perform Cyclone Foraging
B = 2xexp(r* (T —
t+ 1)/T)) *sin(2 * w % )
|[E4+1] = (Xpest +r1*(X[i—1][t] —
il[t]) + B+ (X[i —1][t] — X))

XT[i
X[

e w —

itness(X[i][t + 1]) < fitness(Xpest

Perform Chain Foraging

a = 2 r x sgrt(log(r)):
X[E)[t4+1] = (Xvest +r1#(X[z—1][t] —
X[EJ[t]) + e = (X[i — 1][t] — X[3][]));

ETE X[z'][t+ Ji=i+1 |

i< N?

yes

Perform Somersault Foraging
Generate random nos. 7 and r3; S = 0.5 + arctan(X [¢][t] — Xpest)/3.14);
X[t + 1] = X[R] + (S = ((r2 * Xpest) — (rs x X[][t])))

Jitness(X[i][t + 1]) < fitness(Xpest

s X[z'][t+ Yi=i+1 |

1

/(‘l\ yes

< N?

yes
@

‘ ThreadCount = Xpest |

Figure 3: AMRFO flowchart

3. Execute the program with the same thread count as
represented by the current location of Manta Ray.

4. The fitness value is the time required to complete
a task.

5 Results and Discussions

The AMRFO approach is modelled around the widely
used PARSEC benchmark suite. The PARSEC suite’s
six benchmarks blackscholest, ferret, radiosity,

swaptions, water_nsquared, and water_spatial are
utilised. Our experimental system is a 2.2 GHz In-
tel Xeon E5-2698-v4 server, as shown in the table [T] .
This system has 256GB of main memory and 40 log-
ical cores. We chose to perform our study on Linux
since it provides numerous resources for profiling and
analysing software. We repeated each test ten times
and averaged the data. There are six different types of
datasets that each software must process in order to pass
the PARSEC benchmark. AMRFO’s fitness function
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Table 1: Experimental Setup

Server NVIDIA DGX Station
Processor Intel Xeon-E5-2698v4 2.2 GHz
PhysicalCores 20
LogicalCores 40
PrimaryMemory 256GB
OperatingSystem Linux

uses the smaller "simsmall" input dataset to determine
the runtime.

Table [2] displays the results that were achieved for
the streamcluster benchmark after each iteration that
was run. The experiment uses a total of four Manta
Rays across its four different iterations. The initial best
position, denoted by Xp.s¢, is predetermined to be an
integer number equal to the total number of processor
cores present in the system, which for the purpose of
this study is 40. The Behaviour column displays the
type of foraging strategy utilised by Manta Rays for
computation, while the Iteration column displays the
number of times the calculation was performed. In or-
der to determine the next location for the Manta Rays,
the Cyclone and Chain foraging strategies employ the
random values 7; and 2, while the Somersault forag-
ing strategy uses the random number 3. The value of
Xpest in each iteration is the best position that was de-
termined by comparing the fitness values of all Manta
Rays’ prior best positions with their present positions.
The columns labeled "Manta Ray," "Position," and "Fit-
ness," respectively, provide information on the identifi-
cation number, the number of threads, and the amount
of time it took to execute. Following the completion
of the cyclone foraging in the first iteration, which ini-
tialises the positions of all four manta rays in relation to
the currently determined X best position, the somersault
foraging is carried out. In later rounds, the Chain for-
aging takes the place of the Cyclone foraging that was
previously done. The findings make it abundantly evi-
dent that the optimum number of threads is 12, which
is a far lower value than the number of cores present in
the system.

In order to evaluate the effectiveness of a parallel
program, its speedup is a great metric to use. if a se-
quential program on a single core takes T(1) seconds
to finish, and a parallel program on P number of proces-
sors will take T}, (P) seconds then the speedup, S, (P),

is defined as follows:
Sp(P) = Ts(1)/T,(P) (10)

The speedup is computed for the same benchmark
programs in order to measure the prediction accuracy

of the AMRFO-based prediction method that was de-
scribed before. As can be seen in Table[3] the projected
speedup is evaluated in comparison to the system’s best
thread count for benchmark programs. The thread count
acquired by utilising AMRFO is denoted as N here.
The following is a definition of the improvement that
the AMRFO offers over the conventional method:A

o= (SP(N) _Sp(40))/sp(40) (1)

It is clearly evident that the outcomes attained
through the utilisation of AMRFO are noticeably su-
perior than the outcomes attained through the utilisa-
tion of the assumption that the number of threads in
a system is exactly the number of cores in the sys-
tem. Figure [] displays, in graphical form, the com-
parisons of accelerated times that were found in Ta-
ble E[ When the number of threads is lower than forty,
the blackscholes, radiosity, and water_nsquared al-
gorithms provide more accurate results. On the other
hand, the ferret, swaptions and water_spatial had
better outcomes with a thread count is more than 40.
The water_spatial demonstrated a speedup gain of
300% as compared to when it was operating with 40
threads. The ferret and water_nsquared benchmarks
all exhibit considerable speedups, which demonstrates
the usefulness of the approach.

The difference in execution durations between us-
ing a single thread and the optimal number of threads
is displayed in Figure 5] The amount of time needed
to complete the water_spatial and water_nsquared
algorithms have been elongated so that it will appropri-
ately fit within the graph. Every single one of the bench-
marks demonstrates a considerable increase in speed.

Speedup

bs ft rs sw wn ws

Benchmarks

Figure 4: S(40) vs S(N)
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Table 2: Streamcluster benchmark: Calculations of positions and fitness values

[ Sr. [ Iteration [ Behaviour [ rl r2 r3 MantaRay | Position | Fitness | Xpest
0 init 40 0.521 40
1 1 Cyclone 0.707228722 1 55 10.888
2 Cyclone 0.169801442 2 39 1.605
3 Cyclone 0.066163426 3 38 1.775
4 Cyclone 0.902467464 4 26 1.1
5 somersault 0.762858734 | 0.13506918 1 73 15.207
6 somersault 0.88273134 | 0.425764812 2 45 8.332
7 somersault 0.611535392 | 0.025749147 3 39 2.074
8 somersault 0.058743301 | 0.685183239 4 12 0.691 12
9 2 Chain 8.52E-04 1 12 0.711
10 Chain 0.945285619 2 51 10.434
11 Chain 0.788572721 3 21 0.955
12 Chain 0.104572951 4 23 1.135
13 somersault 0.802563399 | 0.577423679 1 41 6.335
14 somersault 0.781250609 | 0.886794933 2 15 0.774
15 somersault 0.433626861 | 0.701207178 3 17 0.784
16 somersault 0.996348733 | 0.872226209 4 13 0.725 12
17 3 Chain 0.008204582 1 11 0.71
18 Chain 0.668251891 2 51 10.086
19 Chain 0.139353127 3 11 0.707
20 Chain 0.811923842 4 18 0.867
21 somersault 0.666769548 | 0.075264064 1 46 8.742
22 somersault 0.424714497 | 0.73875491 2 12 0.691
23 somersault 0.764504423 | 0.938892559 3 12 0.691
24 somersault 0.299860293 | 0.930062153 4 12 0.691 12
25 4 Chain 0.003367132 1 11 0.707
26 Chain 0.230433012 2 39 1.605
27 Chain 0.113401663 3 12 0.691
28 Chain 0.479832443 4 12 0.691
29 somersault 0.65248563 | 0.975373003 1 12 0.691
30 somersault 0.987842571 | 0.102818573 2 22 0.945
31 somersault 0.90180858 0.762232542 3 14 0.706
32 somersault 0.011032869 | 0.87732143 4 12 0.691 12

5 r . . . r . ble speedups. The findings from the simulation demon-
L T(1) w— . .
45 T(N) — strate that the proposed algorithm makes effective use

Execution time(s)
N
(9,
T
1

bs ft rs sw wn ws

Benchmarks

Figure 5: T(1) vs T(N)

6 Conclusion and Future Scope

In this article, an effective model for predicting threads
is constructed by making use of the AMRFO algorithm.
The prediction model makes it simple to ascertain the
ideal number of threads for achieving the greatest possi-

of the limited search space and soon arrives at a solution
that is optimal. With the Cauchy mutation included, the
algorithm was able to investigate a larger search space
without becoming mired in a series of local optimum
solutions. The approach that is given in this paper for
determining the number of threads is an easy one to use,
but it does have some downsides. For example, the user
must first test the program with a very little amount of
data before testing it with the actual input data. These
overhead costs become negligible if the actual amount
of data being inputted is a very large quantity. As a
consequence of this, it is essential to make an informed
decision regarding the data size prior to applying AM-
RFO to do an evaluation of an application. In the future,
it will be possible to extend this method by making use
of the various deep learning structures and also apply-
ing the method to mixed-mode workloads in order to
improve its overall performance.
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Table 3: Comparison of speedups between optimal thread count obtained with AMRFO and the system best thread count i.e. 40

[ Benchmark [ Ts(1) [ Tp(40) [ Sp(40) =Ts(1)/Tp(40) [ N [ T,(N) [ S,(N) =T ()/T,(N) [ & |
blackscholes (bs) 0.636 0.198 3.21 39 0.183 5.17 8.27%
ferret (ft) 3.239 0.547 59 49 0.505 6.414 30%
radiosity (rs) 3.407 0.283 12.04 39 0.251 13.573 12.7%
swaptions (Sw) 4.636 0.383 12.104 46 0.331 14.0 16.5%
water_nsquared (wn) | 0.104 0.032 3.25 13 0.025 4.16 28%
water_spatial (ws) 0.09 0.024 3.75 72 0.005 18 300%
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