
A novel Task Scheduling in Multiprocessor Systems with
Genetic Algorithm by using Elitism stepping method

AMIR MASOUD RAHMANI1, MOHAMMAD ALI VAHEDI2

1 Computer Engineering Department, Islamic Azad University, Science and Research branch, Tehran, Iran.
2 Payame nour university, Iran.

1 rahmani@sr.iau.ac.ir
2 pnu_sis@gmail.com

Abstract. Task scheduling is essential for the suitable operation of multiprocessor systems. The aim of
task scheduling is to determine an assignment of tasks to processors for shortening the length of
schedules. The problem of task scheduling on multiprocessor systems is known to be NP-complete in
general. Solving this problem using by conventional techniques needs reasonable amounts of time.
Therefore, many heuristic techniques were introduced for solving it. This paper presents a new heuristic
algorithm for task scheduling, based on evolutionary method which embeds a new fast technique named
Elitism Stepping into Genetic Algorithm (GA). By comparing the proposed algorithm with an existing
GA-based algorithm, it is found that the computation time of the new algorithm to find a sub-optimal
schedule is decreased; however, the length of schedule or the finish time is decreased too.

Keywords: Task scheduling, Multiprocessor Systems, Genetic Algorithm, Elitism Stepping.

(Received December 10, 2007 / Accepted May 26, 2008)

1 Introduction

The problem of scheduling parallel tasks onto
multiprocessors is to simply allocate a set of tasks to
processors such that the optimal usage of processors
and accepted computation time for scheduling
algorithm are obtained. The assumption of this paper
is based on the deterministic model, that is, the
number of processors, the execution time of tasks, the
relationship among tasks and precedence constraints
are known beforehand. The precedence constraints
between tasks are represented by a Directed Acyclic
Graph (DAG). In addition, the communication cost
between two tasks is negligible and the multiprocessor
system is uniform and non-preemptive, that is, the
processors are identical, and each processor completes
the current task before the new one starts its
execution.
The complexity of the scheduling problem is very
depended to the DAG, the number of processors, the
execution time of tasks and also the performance
criteria which would to be optimized. To date, many
heuristic methods have been presented to schedule
tasks on multiprocessor systems [1, 2, 3, 4, 6, 10].
Also, there are many studies have been used for task
scheduling based on GAs [5, 8, 9, 11, 12, 13, 14]. GAs
are a problem solving strategy, based on Darwinian
evolution, which has been successfully used for
optimization problems [7].

The aim of this paper is to present a GA which uses a
novel proposed method, named Elitism Stepping to
decrease the computation time for finding a sub-
optimal schedule. However, this new method is
general and could be applied to any GA.
The remainder of this paper is organized as follows:
The task graph model or DAG is described in section
2. The previous scheduling algorithm named, Basic
Genetic Algorithm (BGA) is explained in section 3. In
section 4, the proposed scheduling algorithm is
described. The results of the simulation studies are
presented in section 5. The paper concludes with
section 6.

2 Task Graph Model

A set of tasks could be represented by a DAG. The
task graph G=(V,E) is a DAG which has a set of nodes
V and a set of directed edges E which connect the
nodes to each other. The V is a set of m tasks to be
executed, so V={T1,T2,…Tm}. The directed edges are
represented by E={eij} which eij is an edge between
two tasks Ti and Tj specifies that Ti must be completed
before Tj can start; the notation of Ti ≥ Tj is used for
this purpose and Ti is a predecessor of Tj and Tj is a
successor of Ti.
If there is a path of the directed edges from Ti to Tj
then Ti is an ancestor of Tj and Tj is a successor of Ti.
A set of predecessors of task Ti is denoted by
PRED(Ti).

A set of successors of task Ti is denoted by SUCC(Ti).
The height of a task is defined as Equation 1 [8]:

⎪
⎩

⎪
⎨

⎧

∈+

=
=

)(|)(max1

)(0
)(

ijj

i

i

TPREDTTheight
otherwise

TPREDIf
Theight

φ
(1)

By definition, for any two tasks Ti and Tj, if Ti is an
ancestor of Tj, then Ti has larger value of height than
Tj. If there is no relationship between two tasks, then
they could execute in any arbitrary order. A DAG
which has eight tasks according to their height and
their execution time (the time needed for a task to
execute) is shown in Figure 1.

Figure 1- An example of a DAG.

Figure 2 shows a legal schedule on two processors for
a DAG as shown in Figure 1, which precedence
constraints are considered. The length of schedule or
the total finish time is 11.

P1 T1 T5 T4 T7
P2 T2 T3 T6 T8
time 0 2 3 5 8 10 11

Figure 2- A legal schedule for a DAG of Figure 1

3 Basic Genetic Algorithm (BGA)

The genetic algorithms GAs have been widely and
successfully used for many optimization problems [7].
GAs are probabilistic techniques that start from an
initial population of generated potential solutions to a
problem, and regularly evolve towards better solutions
through a repetitive application of genetic operators
such as crossover, mutation, selection and
reproduction [8].
In this paper, the presented algorithm by Hou et al. [8]
in multiprocessor task scheduling is chosen as a Basic
Genetic Algorithm (BGA) which is discussed here.

3.1 Condition of Height-ordering

The height of tasks criterion is used for generating the
first population. Therefore, the tasks are ordered in
ascending order of their heights. Then, according to
this order, the tasks are assigned to processors. For
example, As shown in Figure 2 that height(T1) ≤
height(T5) ≤ height(T4) ≤ height(T7).
If there is no relationship between two tasks, then the
height-ordering condition will not be used. For
example the tasks T5 and T6 could be executed in any
arbitrary order. The optimal or sub-optimal schedule
may not satisfy the height-ordering condition. So, the
definition of height could be modified as Equation (2).
height(Tj) is a random integer X which could be
obtained from Equation 2.

(2))(),(for
 ; 1)(Max 1)(min

jkji

ik

TSUCCTTPREDT
ThightXThight

∈∈∀
+≤≤−

3.2 Fitness Value

The GA uses multiple search nodes simultaneously.
Each of the search nodes corresponds to one of the
current solutions (schedules) and is represented by a
chromosome. Each chromosome contains a string,
called genes (tasks) and has an associated value called
a fitness value, which is evaluated by a fitness
function. The fitness function used for the genetic
algorithm is based on the total finish time of the
schedule which is obtained by Equation 3.

(3)
P

j

Nj
PFTFitness

,...,2,1for
 ;)}({max

=

=

Where Np is the number of processors and FT(Pj) is
the finish time of the final task in the processor Pj.

3.3 Initial Population Generating

In a GA, only chromosomes with better fitness values
are likely to survive in the next generations. By
evolving the chromosomes continuously, the solutions
corresponding to the search nodes are improved
gradually. A set of chromosomes at a given stage of a
GA is called a population. The number of
chromosomes in a population is called the population
size. The following steps randomly create an initial
population of a task graph for a multiprocessor with
Np processors.

1- Put the tasks in a list according to their height
in ascending order.

2- Repeat step 3 until all the tasks would be
finished.

3- Generate an integer number, r, between 1 and
Np, then select the first task in the list and
assign it to processor r and then delete it from
the list.

(Execution Time, Height)

(3, 1)

(3, 2)

(1, 3)

(2, 2)

(2, 1)

(3, 0) T1 T2

T3 T4 T5

T6 T7

T8

(2, 0)

(2, 1)

4- By repeatedly applying the above steps (for
the number of population size), initial
population would be generated.

3.4 Crossover operation

The crossover starts with two parent chromosomes to
exchange subparts of them to create two new children
chromosomes as shown in Figure 3 like following
steps.

1- Select the crossover points where the list

could be cut into two halves, according to the
two next conditions.

2- Exchange the bottom halves of processor P1
in chromosome A and chromosome B.

3- Exchange the bottom halves of processor P2
in chromosome A and chromosome B.

The crossover is applied with a certain crossover rate
(Xr).

Figure 3- Applying crossover to two chromosomes.

If the crossover points satisfy two following
conditions then, the new chromosomes will be legal.

1- The height of the tasks next to the crossover
points should be different.

2- The height of all the tasks immediately in
front of the crossover points should be equal.

The crossover could be easily extended for Np

processors.

3.5 Mutation Operation

The mutation selects a chromosome and then
randomly exchanges the two tasks with the same
height. The mutation is applied with a certain
mutation rate (Mr) which is used to prevent the search
process from converging to the local optima
prematurely.

3.6 Selection and Reproduction

The selection is implemented by a biased roulette
wheel [7] where each chromosome in the population
occupies a slot size in proportion to its fitness value.
Each time a generation is required, a simple spin of
the biased roulette wheel yields a parent chromosome.
Because chromosomes with higher fitness values will
have larger slots, they are more likely to be selected
and to be prepared for crossover and mutation.
Elitism, the property of guaranteeing the best solution
passes in the next generation, is used here to improve
the selection method.

4 The Proposed Algorithm

We can make several modifications to improve the
BGA which is described here.

4.1 The new Initial Population Generating

The bottom-level of a task is the length of the longest
path from the task to an exit task (the task has no
child). The bottom-level is obtained by two
conditions:

• If a task has no child, its bottom-level is
equal to its execution time.

• If a task has child, its bottom-level is equal to
the maximum bottom-level of its children.

Step 2 and step 4 of the proposed algorithm are new
compared to the BGA.

1- Sort the tasks according to their heights in
ascending order.

2- Sort the tasks with the same height according
to their bottom-level in descending order.

3- Repeat step 4 and step 5 until finish of all the
tasks.

4- Generate a permutation of processors.
5- Assign tasks to processors in order.
6- The above steps are repeated for the number

of population size.
A decrease in the computation time for the new
algorithm is realized for the following reason: Step 2
is not present in the GBA which means there is no
priority between tasks with the same height. The
bottom-level prioritization orders tasks with equal
height in the new algorithm.

Chromosome B

Chromosome A

P2

P1

P2

P1 T1 T3

T2 T4

T5 T8

T6 T7

T1 T4 T3 T7 T8

T2 T5 T5

FT=12

FT=11

Crossover
points

For example, Figure 4 shows a DAG and Table 1
represent the priority of tasks’ execution based on
their height and their bottom-level too.

T1 T2 T3 T4

T5 T6 T7

T8 T9 T10 T11

Figure 4- An example of a DAG.

Finally, Figure 5 shows two schedules for three
processors based on the different policies.

Table 1- priority of execution of tasks based on their height and their bottom-level.

Order of execution
according to bottom-level

Order of execution
according to height Bottom-level Height Execution

time
Task

number
1 1 72 0 50 1
4 2 41 0 1 2
3 3 50 0 10 3
2 4 60 0 20 4
7 5 21 1 20 5
6 6 22 1 2 6
5 7 40 1 20 7

11 8 1 2 1 8
9 9 20 2 20 9

10 10 19 2 19 10
8 11 20 2 20 11

 time 0 50 70 90 109
P1 T1 T4 T7 T10

 time 0 1 50 70 71 90 110
P2 T2 T5 T8 T11

 time 0 10 50 52 72
P3 T3 T6 T9
 b)

 time 0 50 51 71 90

P1 T1 T2 T5 T10
 time 0 1 51 70 90 91

P2 T4 T7 T11 T8
 time 0 10 50 52 72

P3 T3 T6 T9
 a)

Figure 5- Two schedules for three processors based
on the different policies. a) Order of execution

according to the bottom-level. b) Order of
execution according to the height.

As it seen, by changing the policy (priority) of task
assignment, the total finish time based on the priority
of the tasks’ bottom-level is 91 while that, the total
finish time based on the priority of the tasks’ height is
110, which is significantly longer. Now, using the
tasks’ bottom-level is considerably better than using
the tasks' height when the number of tasks increases.

In step 4, instead of choosing processors randomly, a
permutation of processors is performed. Using of
permutation has the following three advantages:

• There are no idle processors after task
assignment.

• The tasks are distributed and are balanced
across the processors.

• The tasks with the same height are distributed
as far as possible.

Considering that, the tasks with the equal height can
execute in parallel, so if there are several tasks with
the same height for executing in a processor then, the
parallel execution will become the sequential
execution and the founded schedule will be not
optimal or sub-optimal solution.
On the other hand, if the tasks with the same height
which is assigned to a processor have some successors
then, their successors will start lately and these delays
propagate to the task graph and generate a non optimal
schedule. This question maybe asked that a load
imbalance across processors will occurred only in the
initial population and it will disappear in the further
generations. But, it can be noticed that it takes some
time for the several generations until balancing load
among processors to distribute the tasks with the same
height to the different processors. This means that, the
BGA takes some time to distribute the tasks with
equal height to the different processors.

Figure 6 shows a schedule of eleven tasks of Figure 4
on three processors, which the tasks with the same
height are not distributed to the different processors.
The total finish time of this schedule is 131, which is
not good however, the processors are load balanced.

 time 0 50 70 90 92 112
P1 T1 T4 T5 T9

 time 0 1 11 92 111 131
P2 T2 T3 T10 T11

 time 70 90 92 93
P3 T7 T6 T8

Figure 6- A schedule of tasks of Figure 4 on three
processors, which the tasks with the same height are not

distributed to the different processors.

4.2 New Selection and Reproduction

1- Sort the chromosomes according to their
fitness value in ascending order.

2- Copy the NElite best chromosomes with the
best fitness values to the new generation (the
number of NElite will be discussed later in
elitism stepping technique).

3- Use a biased roulette wheel for the current
generation.

4- For (the number of population size – NElite)/2
do step 5, 6 and 7.

5- Select two chromosomes by using the biased
roulette wheel and prepare them for
crossover.

6- With probability Xr apply the crossover to the
chromosomes and move the children to the
next generation; otherwise, prepare them for
mutation.

7- With probability Mr apply the mutation to the
two chromosomes and move the generated
chromosomes to the next generation;
otherwise, they go into the next generation
with no change.

Typically, above steps would be terminated after a
certain number of generations or if a convergence
would be reached.
It can be noticed that the population size of each
generation stays fixed by applying the above steps.

4.3 The Elitism Stepping Technique

It is obvious that a fixed elitism with a few elites has a
low convergence rate (a high computation time) but it
can find a sub-optimal schedule. On the other hand,
the fixed elitism with a lot of elites has fewer solutions
in the search nodes and can not find a sub-optimal
schedule, however it converges fast. Therefore, a new
method, named elitism stepping is introduced here
which uses the advantages of two mentioned fixed
elitism. The aim of this technique is to decrease the
computation time of the algorithm to find an
acceptable sub-optimal schedule.

In this technique, the number of elites in the first
generation is two and after that, by increasing the
number of generations, the number of elites increases
too, until they reach to the population size. So, the
convergence is happened and a sub-optimal schedule
is founded.
By performing some simulation of a GA for the
different DAGs and by studying diagrams of the
average finish time of schedules in different
generations, it is seen that the stepping elite has
suitable behavior according to the nature of task
scheduling problem. Figure 7 shows the average finish
time of a GA for a set of 15 random DAGs consist of
20 to 90 tasks for scheduling in 3 to 6 processors
where, each simulation has 200 generations.
The average finish time for the first generation is
883.18, for the 100th generation is 747.64 and for 200th
generation is 732.28. If the number of generation is
divided to three parts then, the first one-third has the
most effectiveness to improve the solutions. The
second part improves the solution slowly and in the
last one-third, the average finish time usually
converges to one value.
It is obvious that by using the elitism stepping
technique, there are more areas in the search nodes at
first because the first solutions has more ability of
improvement. Then, as the number of generations
increases, the ratio of improvement decreases, so this
technique causes fewer areas exist in the search nodes
and all solutions converge to a sub-optimal schedule.

700

750

800

850

900

0 50 100 150 200
Numer of generations

T
he

 F
in

is
hi

ng
 ti

m
e

(s
)

Figure 7- The average finish time for 200

generations.

5 Experimental Results

A set of simulation is performed under one set of
common assumptions by MATLAB7 for comparison
of the proposed algorithm and the previous BGA. A
Pentium IV-2.8MHz with RAM 512M based
computer is used to implement both algorithms. A
random-graph-generating program is written by C++
language, which is capable of making random graphs
that meet initial constraints. For this purpose a set of
15 graphs consists of 20 to 90 tasks with random
execution time are generated. These tasks would be
scheduled on a multiprocessor system with 3 to 6
processors as shown in Table 2.

Table 2- Specifications of the tasks and the
multiprocessors would be scheduled.

Number of
processors

Number
of tasks

Graph
number

3 20 1
3 25 2
3 30 3
4 35 4
4 40 5
4 45 6
5 50 7
5 55 8
5 60 9
5 65 10
5 70 11
5 75 12
6 80 13
6 85 14
6 90 15

After generating the data, the parameters of the both
algorithms need to be determined. The number of
generation is set to 200, so stop condition is 200
iterations. In order to achieve a proper search nodes
and whereas the number of generation is fixed then,
the population size is chosen proportionate to the
number of tasks and it is set to 1.6 times the number
of tasks. The crossover and mutation rates are set to
0.8 and 0.06 respectively.
Each graph in Table 2 is scheduled for both
algorithms three times. The average computation time
of two algorithms for finding a sub-optimal schedule
and their average finish time (fitness values) are
calculated for each graph and then, the total average
time are obtained for 15 graphs.
The average computation time of two algorithms for
200 generations is shown in Figure 8. The average
computation time varies linearly according to the
increas in the number of generations in the BGA.
Since, the average computation time of generation 200
(a sub-optimal schedule) is 18.45s for BGA and is
10.06s for the proposed algorithm. Therefore, the
speed up of the new algorithm is almost 1.85 times of
the GBA.

0

5

10

15

20

0 50 100 150 200
Number of generations

T
he

 a
ve

ra
ge

co

m
pu

ta
tio

n.
 t

im
e

(s
)

The BGA The Proposed model

Figure 8- The average computation time of two

algorithms for 200 generations.

The average finish time (the average fitness values of
schedules) of two algorithms for 200 generations is
shown in Figure 9. As it seen, the average finish time
of generation 200 in the proposed algorithm is better
than GBA.

700

750

800

850

900

0 50 100 150 200
Number of generations

Th
e

Fi
ni

sh
 ti

m
e

(s
)

The BGA The Proposed model

Figure 9- The average finish of two algorithms for

200 generations.

6 Conclusions
In this paper, we presented a genetic algorithm which
uses a new method, named elitism stepping technique
for the task scheduling problem in multiprocessor
systems, with the objective to reduce the schedule
length within an acceptable computation time. In order
to show the effectiveness of the proposed algorithm,
we performed experimental simulations by applying
the algorithm to various kinds of task graphs.
Additionally, we compared the new algorithm with the
previous genetic algorithm, BGA proposed by Hou.
As a result, under the same conditions, the proposed
algorithm obtains better schedule length or finish time
than the BGA. Moreover, the results show that the
computation time of the new algorithm is much
smaller than the previous one.

References
[1] Andersson B., Baruah S. and Jonsson J., ”Static-

Priority Scheduling on Multiprocessors”, In
Proc. of the 22nd IEEE Real-Time Systems
Symposium, London, England, 2001.

[2] Auyeung, A., Gondra, I. and Dai, H.K. "Multi-
heuristic List Scheduling Genetic Algorithm for
Task Scheduling", Proceedings of the Eighteenth
Annual ACM Symposium on Applied
Computing, ACM Press, pp. 721-724, 2003.

[3] Bouffard V., Ferland J. A.: Improving simulated
annealing with variable neighborhood search to
solve the resource-constrained scheduling
problem. Journal of Scheduling, Vol. 10(4), pp.
375-386, 2007.

[4] Chandra A., Adler M. and Shenoy P., ”Deadline
fair scheduling: Bridging the theory and practice
of proportionate fair scheduling in
multiprocessor systems”, In Proc. of the 7th
IEEE Real-Time Technology and Applications
Symposium, May 2001.

[5] Dandass, Y. S., “A Genetic Algorithm for
Scheduling Acyclic Digraph in the presence of
Communication Contention”, In Proc. of the
17th Annual International Symposium on High
Performance Computing Systems and
Applications, pp. 223-230, 2003.

[6] Davidovic T. and Crainic T.G. , “Benchmark-
Problem Instances for Static Scheduling of Task
Graphs with Communication Delays on
Homogeneous Multiprocessor Systems”,
C.R.T.'s publications, 2004.

[7] Haupt, R.L., Haupt, S.E., Parallel genetic
algorithms, John Wiley & Sons, 2004.

[8] Hou E. S. H, Ansari N. and H. Ren, ”A Genetic
Algorithm for Multiprocessor Scheduling”,
IEEE trans. on parallel and distributed systems.
vol. 5, no. 2, pp. 113-120, Feb. 1994.

[9] Lee, Y.H., Chen, C., "A Modified Genetic
Algorithm for Task Scheduling in
Multiprocessor Systems", the 9th workshop on
compiler techniques for high-performance
computing, 2003.

[10] Ramamurthy S. and Moir M., “Static-priority
periodic scheduling on multiprocessors”, In
Proc. of the IEEE Real-Time Systems
Symposium, pp. 69-78, Orlando, November,
2000.

[11] Shenassa, M. H. and Mahmoodi, M., "A Novel
Intelligent Method for Task Scheduling in
Multiprocessor Systems Using Genetic
Algorithm", journal of Franklin Institute,
Elsevier, pp. 1-11, 2006.

[12] Srinivasan, A., Anderson, J.H. “Efficient
Scheduling of Soft Real-Time Applications on
Multiprocessors”, 15th Euromicro Conference
on Real-Time Systems (ECRTS'03), Porto,
Portugal, 2003.

[13] Yoo M. and Gen M.: Scheduling algorithm for
real-time tasks using multiobjective hybrid
genetic algorithm in heterogeneous
multiprocessors system. Computers and
Operations Research, Vol. 34(10), P. 3084-3098,
2007.

[14] Zafarani Moattar E., Rahmani A.M., Feizi
Derakhshi M.R. "Job Scheduling in Multi
Processor Architecture Using Genetic
Algorithm", 4th IEEE International conference
on Innovations in Information Technology,
dubai, pp. 248-251, 2007.

