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Abstract. Shape is one of the most important visual attributes used to characterize objects, playing
a important role in pattern recognition. There are various approaches to extract relevant information
of a shape. An approach widely used in shape analysis is the complexity, and Fractal Dimension and
Multi-Scale Fractal Dimension are both well-known methodologies to estimate it. This papers presents
a comparative study between Fractal Dimension and Multi-Scale Fractal Dimension in a shape analysis
context. Through experimental comparison using a shape database previously classified, both methods
are compared. Different parameters configuration of each method are considered and a discussion about
the results of each method is also presented.
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1 Introduction

In pattern recognition and image analysis, shape is one
of the most important visual attributes used to charac-
terize objects. It provides the most relevant information
about an object in order to perform its identification and
classification. Shape analysis is a classical problem,
and literature presents a large amount of techniques to
extract information related to shape geometric aspect,
allowing to separate and to label different parts of an
image [11, 8].

An approach widely used in shape analysis appli-
cations is the study of shape through its complexity. In
this analysis, complexity is straight related to the irregu-
larity pattern presented by the shape under analysis and,
respectively, the amount of the space the shape occupies
[6, 1].

An interesting way to estimate the complexity of an

object is using the Fractal Dimension [12]. Different of
topological dimension, which is an integer number, the
Fractal Dimension is a fractionary value that describes
how irregular an object is and how much of the space it
occupies. Bouligand-Minkowski method is one of the
most accurate methods to compute Fractal Dimension.
Is is based on the study of the shape influence area com-
puted by shape dilation [16, 15].

An alternative method for estimating shape com-
plexity is the Multi-Scale Fractal Dimension. It con-
sists in estimating a curve that represents the changes in
shape complexity as we change the visualization scale.
Different of Fractal Dimension, which is a numeric value,
this approach produces a curve which performs a more
accurate shape discrimination [16, 9, 10, 13].

In this paper, we propose to evaluate both Fractal
Dimension and Multi-Scale Fractal Dimension in shape
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analysis context. For this, a shape database is used and
experiments are performed considering different con-
figurations of each method. This paper is organized
as follows: Section 2 describes the Fractal Dimension
method while section 3 shows how to compute the Multi-
Scale Fractal Dimension. In section 4 is showed how to
use the Multi-Scale Fractal Dimension as a shape signa-
ture. The signature making process is based on Fourier
analysis and it is described in section 5. Section 6 de-
scribes the methodology adopted by this work. Results
and conclusion are finally given in sections 7 and 8, re-
spectively.

2 Fractal Dimension

Fractal Dimension is a measure of how fragmented a
fractal object is, and it may be understood as a charac-
terization of its self-similarity [12]. It is a non-integer
number that quantifies the density of fractals in the met-
ric space and it is a way to identify how complex a frac-
tal is, in order to compare it with another. Fractal geom-
etry has various approaches to compute the Fractal Di-
mension of an object. These approaches can be classi-
fied as belonging to the Hausdorff-Besicovitch Dimen-
sion (like the BoxCounting and Dividers methods) or to
the Bouligand-Minkowski Dimension (Minkowski Frac-
tal Dimension method), where the last is the one which
produces the most accurate and consistent results for
Fractal Dimension [16, 15, 7]. Bouligand-Minkowski
Fractal Dimension method is based on the study of the
influence area created by shape dilation using a disc of
radius r (Figure 1). Small modifications on the shape
produce modifications in the computed influence area
[16, 15].

Figure 1: Dilation of a shape with a disc of radius r.

Consider A ∈ R2 the shape under analysis, the di-
lation of A, A(r), is defined as the set of points in R2

such distance from A is smaller than or equal to r:

A(r) =
{
x ∈ R2|∃y ∈ A : |x− y| ≤ r

}
.

This dilation can also be defined as:

A(r) =
⋃

x∈A

Br(x),

where Br(x) is a disc of radius r. The influence
area, A(r), and the radius, r, follows the relation:

A(r) = µr2−D.

So, the Fractal Dimension can be estimated as:

D = 2− lim
r→0

log A(r)
log r

where D is the Fractal Dimension estimated by the
Bouligand-Minkowski method. Through line regres-
sion of log-log curve A(r), it is possible to calculate
a line with α slope, where D = 2−α is the Fractal Di-
mension of the shape using the Bouligand-Minkowski
method [16].

Computing the influence area of an object is a task
of high processing cost. One possibility to optimize this
task is using the Euclidean Distance Transform (EDT ),
which attributes to the pixels of a binary image the min-
imum distance among pixels from the image object to
the pixels from the image background. The distance
function considered during the EDT computing is the
Euclidean distance, due its rotation invariance (Figure
2) [4, 14].

Figure 2: Euclidean Distance Transform (EDT ) applied over an bi-
nary image.

3 Multi-Scale Fractal Dimension

The main problem with Fractal Dimension in nature
shape characterization is that they are not fractals (or
self-similar). All objects have a finite size, and it im-
plies that their complexities go to zero as long as obser-
vation scale increases. An interesting interpretation of
the fractal behavior of a shape is how the dilation, using
the Bouligand-Minkowski method, occurs in different
points of the shape. Some shapes allow their points to
be freely dilated while in other points this dilation is
saturated in some radius values [16, 9].

This behavior gives to the Bouligand-Minkowski log-
log curve a richness of details that can not be expressed
by just a numeric value, as performed using line regres-
sion. Using the derivate, it is possible to find a function



that binds the Fractal Dimension changes to the dilation
radius changes (Figure 3) [9, 10, 13]. This function is
called Multi-Scale Fractal Dimension (MFD), and it is
defined as:

MFD = 2− du(t)
dt

where du(t)/dt is the derivative of log-log curve
u(t) calculated by Bouligand-Minkowski method.

(a)

(b)

Figure 3: (a) Log-log curve from Bouligand-Minkowski method. (b)
Multi-scale Fractal Dimension.

In order to compute the MFD, it is necessary to
calculate the derivative of u(t). This is performed using
the derivative property of the Fourier Transform. This
property allows to compute the derivative curve in the
spectrum and it has a better performance when com-
pared with numeric methods, once it considers all data
points during the derivative computing [9, 13]. An im-
portant detail that requires attention is that derivative
methods have a tendency to emphasize high frequency
noise. So, it is necessary to use a low pass filter, like
Gaussian filter, in order to reduced the this noise [7, 3].
The derivative based on Fourier Transform can be ex-
pressed as:

du(t)
dt

= F−1 {F {u(t)}F {gσ(t)} (j2πf)}

with

gσ(t) =
1

σ
√

2π
exp

(
−t2

2σ2

)
,

where t and u(t) are, respectively, the logarithm
of the radius and the influences area from Bouligand-
Minkowski method, f is the frequency, j is the imag-
inary number and gσ(t) is the Gaussian function with
standard deviation σ [9, 10, 13].

Although the advantages of the derivative property
of the Fourier Transform, some important aspects must
be considered when computing the MFD curve. These
aspects regards to the log-log curve u(t) behavior and
they are necessary to achieve a good shape discrimina-
tion. At first, it is necessary to provide a curve with a
good sampling and uniform interval. This is performed
when the initial points of the curve are not considered,
once they present low sampling (Figure 4), followed by
a linear interpolation, which is performed by filling the
space between each two points of the sampled curve by
its average point.

Figure 4: In light gray: low sampling region where the points are not
considered.

Figure 5: Gibbs phenomenon in the curve limits.

Another problem present in the derivative property
of the Fourier Transform is the discontinuity of the method



Figure 6: Curve duplication and reflexion scheme to provide a con-
tinuous curve.

in the curve limits (Figure 5). This phenomenon is known
in literature as Gibbs phenomenon [3]. This phenomenon
is due to the fact of the Fourier transform do not con-
verge uniformly in discontinuities.

An effective solution for this problem is to use a
scheme of duplication and reflexion of the curve, so
that, it is possible to make it continuous (Figure 6).
This scheme provides a continuous curve for the inter-
val [2N − 1, 3N ], where N is the length of the original
curve.

4 Multi-Scale Fractal Dimension as a shape
signature

Image signature is defined as a simplified function or
matrix that is able to represent or characterize the orig-
inal image. In general, techniques used for this task ap-
ply a T : I2 → R or T : I2 → I transformation, where
the computed feature vector represents the original im-
age in a simplified way. More theory and examples can
be found in [10, 5].

Figure 7: MFD curve as a shape signature.

This paper presents a study about the possibility of
using the MFD technique as a shape complexity signa-

ture. Different of true fractals, images from nature are
not self-similar. They may look different whether we
change the visualization scale and, consequently, their
Fractal Dimension is also dependent on the used scale.
The MFD technique allows to study the shape behav-
ior through scales. As a result, a 1-D function is cal-
culated for a given shape, where this function describes
how the Fractal Dimension of that shape changes as we
change the scale (Figure 7).

5 Fourier Descriptors

The Fourier transform is a useful technique that allows
to study the behavior of a signal through its frequency
spectrum. It is widely used in pattern recognition tasks,
once it presents a great number of advantages, such:
noise tolerance, analysis of a signal into different groups
of frequencies and easy data normalization, yielding
data which is invariant to rotation, translation and scale
[3, 2].

When it is applied over a signal u(t), the Fourier
transform obtains the complex components U(f):

U(f) =
∫ ∞

−∞
u(t)e−j2πtfdt,

which are the signal representation in the frequency
spectrum. This approach allows to split the original sig-
nal into different groups of frequencies, each one with
distinct signal features.

Low frequency coefficients, for example, are asso-
ciated to the portion of the spectrum that describes the
most relevant information about the signal behavior, whereas
high frequency coefficients possess information about
noise and details presented in the signal [7]. For the
MFD, only the low frequency coefficients are consid-
ered. The Fourier descriptors, DU(f), are computed
from the magnitude of the selected low frequency coef-
ficients:

DU(f) = ‖U(f)‖ .

A normalization is also performed in such descrip-
tors, and it is done as follows:

DU(f) = DU(f)/DU(1).

This normalization process increases the tolerance
of the descriptors to disturbances in the original signal,
such as changes in scale, translation and rotation.

6 Experiment

Considering the possibility of using the MFD as a shape
signature, an experiment based on image classification
is performed to evaluate its efficiency.



An image database with 1352 images previously clas-
sified into 26 classes of 52 images is employed. Each
class corresponds to an uppercase letter of the occiden-
tal alphabet (26 letters latin alphabet). Images from
each class are grouped into 4 groups of 13 images, where
each group corresponds to a different random noise level
(Figure 8). This allows to evaluate the noise tolerance
of the method.

(a)

(b)

(c)

(d)

(e)

Figure 8: Example of noise levels: (a) Original Shape; (b) Level 1;
(c) Level 2; (d) Level 3; (e) Level 4.

In order to achieve the best method performance,
various parameters values have been tested. These pa-
rameters refers to the dilation radius r used in Bouligand-
Minkowski method and the smoothing level σ used in
the MFD calculation. For each different configuration,
a new MFD curve is computed for each sample in the
image database. An average MFD curve is also com-
puted for each class using 12 samples of it (3 samples
for each noise level), and these used curves are dis-
carded in order to not affect the classification results.
So, the test database is compound of 1040 image, di-
vided into 26 classes of 40 images. Each class is also
divided into 4 noise levels, each one with 10 images.
Classification process is performed by Euclidean dis-
tance, where it is verified the distance among the re-
mainders curves and the average MFD.

7 Results and Discussion

In this section some properties of MFD curve are dis-
cussed, as well as its performance according to its pa-
rameter. Besides, we also compare the results from
MFD and Fractal Dimension, and the advantages and
disadvantages of using Fourier Descriptors from MFD

curve for shape classification.

7.1 Method parameters analysis

In order to attain the best method performance, var-
ious parameters values have been tested. The tested
parameters values are σ ∈ {10, 15, 20, 25} and r ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175,
200, 225}. The results for each configuration shows the
characteristics and properties present in MFD curve.

Figure 9: MFD success rate as radius increases.

We note an increase in success rate as r increases
(Figure 9). However, the relation between success rate
and the dilation radius presents a log-curve behavior.
So, from an specific radius value, the success rate be-
comes constant. The explanation for this behavior lies
in the fact that as r increases, the dilation produced
by Bouligand-Minkowski method makes the shape as-
pect becomes more similar to a point, whose Fractal
Dimension is equal to zero. This behavior is represent
in MFD curve as its tendency to zero according to r
increase. From an specific r, none relevant information
about the shape is added to MFD curve, except for its
zero-tendency, what keeps the success rate stable. We
also note that this behavior do not depends on σ value
(Figure 10).

Besides r parameter, which refers to dilation radius,
we realize that σ value also carry out some influence
over the success rate. The parameter σ refers to the
smoothing level of MFD curve and it is responsible for
the presence of more or less details in the curve (Figure
11). We note higher values for this parameter produce
a excessive smoothing and it suppresses important de-
tails of the curve. As a consequence, the success rate
decreases, independent of the value of parameter r (Fig-
ure 12).



(a) (b)

(c) (d)

Figure 10: Example of MFD computed for different dilation radius r, using σ = 10: (a) r = 75; (b) r = 100; (c) r = 125; (d) r = 150.

(a) (b)

(c) (d)

Figure 11: Example of MFD computed for different σ values, using r = 100: (a) σ = 10; (b) σ = 15; (c) σ = 20; (d) σ = 25.



In this experiment, the best performance is achieved
when used r = 100 and σ = 10.

Figure 12: MFD success rate for different σ values.

7.2 Fractal Dimension versus Multi-Scale Fractal Di-
mension

As previously discussed, the main problem with Frac-
tal Dimension in shape characterization is that it does
not work properly with real world restrictions. As we
increase the visualization scale, the Fractal Dimension
of the object goes to zero. In the other hand, MFD
curve emphasizes the details present in log-log curve
computed from Bouligand-Minkowski method. It al-
lows to produce a more detailed representation of how
complexity changes according to the scale. This repre-
sentation is much more consistent for analysis and less
dependent on noise interferences than a simple numeric
value as calculated by u(t) line regression.

Figure 13: MFD and FD success rates as dilation radius increases.

Figure 13 shows the classification results for both
methods, Fractal Dimension (FD) and Multi-Scale Frac-
tal Dimension (MFD). For this experiment, various
radius values have been tested and, in MFD case, an
σ = 10 was considered.

We note a higher success rate for MFD when com-
pared with FD, independent of radius values used. In
FD method, only an numeric value is calculated from
u(t) and used for shape characterization. This becomes
the method more sensitive to small variations or noise
in the shape. The results from DF are also more un-
stable than MFD. The explanation for this lies in the
zero-tendency presented in the Bouligand-Minkowski
method. As the dilation radius increases the Fractal Di-
mension of any object goes to zero, what becomes the
classification process more difficult and inaccurate.

Tables 1 and 2 show, respectively, the confusions
matrix for DFM and DF when considered all images
in the test database and r = 100.

7.3 Noise Tolerance

An important characteristic to be evaluated in a method
is its capacity to work properly with samples that present
sort of distortion or noise. In general, images under
analysis may present distortions from measuring errors
(measures from physical world), or noise added to orig-
inal data (e.g., interference added during data transmis-
sion), that difficults the analysis and classification pro-
cesses.

Figure 14: MFD success rate at different noise levels and dilation
radius.

By analysis of the results from MFD curve, we
note this method present a good noise tolerance. This
tolerance comes from using a Gaussian low filter during
the computing of MFD curve. The Gaussian filter acts
reducing the importance of the informations in the high
frequency region of the spectrum. Once noise is a typ-
ical high frequency information, it is removed from the
original data through this data filtering process. We also
note this filtering process presents a better performance
on images that present a intermediate noise level, i.e.,
levels 2 and 3 of the used noise (Figures 8c and 8d, re-



A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 38 2
B 40
C 40
D 40
E 38 1 1
F 39 1
G 40
H 40
I 40
J 36 1 1 2
K 36 4
L 1 35 4
M 40
N 30 10
O 40
P 40
Q 40
R 6 34
S 40
T 11 27 2
U 1 39
V 40
W 40
X 38 2
Y 1 39
Z 4 1 35

Table 1: Confusion Matrix for Multi-Scale Fractal Dimension method, considering r = 100 and σ = 10. Success rate = 94.62 %.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 11 7 19 3
B 14 16 4 6
C 24 6 6 4
D 1 11 3 18 3 2 2
E 1 7 5 4 1 10 12
F 39 1
G 8 1 9 18 2 2
H 4 13 10 6 1 2 2 2
I 40
J 30 5 5
K 3 3 3 3 1 20 6 1
L 19 9 9 3
M 36 4
N 4 4 7 1 8 10 6
O 2 22 2 2 4 4 4
P 13 14 12 1
Q 3 37
R 1 8 1 1 17 5 5 2
S 2 2 17 3 16
T 5 8 19 8
U 4 2 6 20 8
V 6 2 2 30
W 2 38
X 6 1 33
Y 1 9 30
Z 23 3 1 3 10

Table 2: Confusion Matrix for Fractal Dimension method, considering r = 100. Success rate = 47.40 %.

spectively) . In other hand, we also realize a stressed
decrease in the performance of the method as the noise
exceed these noise levels. High noise levels change the
geometric patterns in the shape, what difficults the clas-
sification process and, as a consequence, decreases the
success rate of the method (Figure 14).

7.4 Analysis using Fourier descriptors

As previously discussed, the main advantage of MFD
curve in pattern recognition is its capacity to represent

an object by a curve that binds its complexity along
the visualization scale. Nevertheless, the MFD curve
presents a high cost to be evaluated once its number
of descriptors increase as the radius r increases (Figure
15). Besides that, not all information in the curve is
relevant for shape classification.

In order to simplify the analysis process the Fourier
transform is applied over MFD curve, so descriptors
that represent the main behavior of the curve are com-
puted, as mentioned in Section 5.

One important point to be considered is the num-



Figure 15: Number of descriptors in the MFD curve for the radius
used.

ber of descriptors to be computed. The number of de-
scriptors have been defined through analysis of the Eu-
clidean distance between the original MFD curve and
its respective set of descriptors. Figure 16 shows the
variation of this distance as we increase the number
of Fourier descriptors. We realize as we increase the
number of descriptors smaller becomes the distance be-
tween the MFD curve and its descriptors. However,
this distance becomes stable when the number of de-
scriptors is higher than 50. This shows that most of the
main information lies in the 50 first descriptors.

Figure 16: Distance between MFD and its Fourier descriptors as
the number of computed descriptors increase.

Once it was defined the number of descriptors that
best represent the curve behavior, the performance of
these descriptors was compared with the original curve
in the shape classification experiment. For this, we con-
sidered the MFD curve calculated for different dilation
radius, r, and σ = 10. Figure 17 shows the success rate

for both Fourier descriptors and MFD curve.

Figure 17: MFD and its Fourier descriptors success rate.

Using Fourier descriptors is a way to simplify the
analysis step, once it reduces the amount of informa-
tion to be analyzed. Otherwise, suppressing part of
curve information, specially high frequency informa-
tion, produces a smoothing effect over the MFD curve,
which decreases the distance between classes and, con-
sequently, decrease the success rate. In spite of the large
amount of information discarded during the process of
Fourier descriptors computing, the decrease in success
rate is minimum for r ≥ 50. This range of r values is
where the method has presented its best results, and it
becomes evident the great capacity of MFD curve, in
association with Fourier descriptors, to shape classifi-
cation.

8 Conclusion

This paper have presented an experimental comparison
between Fractal Dimension and Multi-Scale Fractal Di-
mension in a shape analysis context. Fourier descriptors
have also been performed over Multi-Scale Fractal Di-
mension curve in order to simplify the analysis step.
A previously classified shape database was employed
and different configurations of each method have been
tested.

Results have shown that the Multi-Scale Fractal Di-
mension performs a more accurate discrimination of the
shapes. It also presents a "good" noise tolerance, what
is corroborated by experimental results. Experiments
also have shown that Fourier descriptors computed from
Multi-Scale Fractal Dimension curve hold the main in-
formation of a curve, with minimal loss of information,
while it reduces drastically the number of descriptors
necessary to shape classification.
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