
Dynamic Query Plan for Efficient Query Processing in Peer-to-Peer
Environments

MD MEHEDI MASUD1

M. ANWAR HOSSAIN2

University of Ottawa
School of Information Technology and Engineering (SITE)
800 King Edward St., K1N 6N5, Ottawa, Ontario,Canada

1mmasud@site.uottawa.ca
2anwar@mcrlab.uottawa.ca

Abstract. In the past few years, Peer-to-Peer (P2P) applications have emerged as a popular way of
autonomously sharing data and services in distributed environments. In such environments, peers dy-
namically join/leave a network and do not usually have any global knowledge about the data sources.
This phenomenon demands an efficient query execution strategy in terms of data transmission and re-
sponse time. In this paper, we propose a distributed query processing technique in P2P environments
where each peer possesses partial knowledge of the domain information and collaborates with the partic-
ipating peers to share data. The cornerstone of our approach is to dynamically determine the best query
execution plan in order to execute the different parts of the user query, and propagate the results with
minimized data transmission and response time.

Keywords: Peer-to-peer, Information retrieval, Query processing.

(Received January 24, 2008 / Accepted July 16, 2008)

1 Introduction

In the past few years, the P2P technology has emerged
as a new paradigm for distributed data sharing systems.
In this technology, all participating peers have equiva-
lent capabilities and responsibilities, and exchange re-
sources (e.g. data) and services (e.g. query processing)
through pair-wise communication. From the point of
view of distribution, a P2P system resembles the tra-
ditional distributed system. However, the solutions for
data sharing and access can not be directly applied to
a P2P system. This is mainly due to the three distinct
features of the P2P paradigm: the lack of centralized
control; the transience of the inter-peer connections; the
limited cooperation among the peers. Therefore, from
the point of view of distribution, different techniques
are used for P2P data sharing and query processing.

Today, the popular P2P infrastructure enables us to
store and share data in distributed and decentralized

fashion. Until now, many P2P systems (such as Nap-
ster [4], Gnutella [6], MUTE [1] etc.), and frameworks
(such as JXTA [2], Jabber [3] etc.) have emerged. In the
P2P paradigm, each peer in the network manages their
data autonomously and collaborates with the neighbor-
ing peers to access or share data. However, a peer has
no global knowledge about the resources possessed by
all the peers in the network, it only has the knowledge
about its acquainted neighbors.

The lack of global knowledge about the data poses
challenge for any peer to execute a query over the P2P
network. Unlike the traditional distributed systems, the
P2P model does not employ any centralized coordina-
tor to process user query. However, the basic distributed
query processing strategies [19] such as data shipping
and query shipping are adopted in P2P systems. In data
shipping, all the peers move the data to the query ini-
tiator and all operations are executed at the initiator. In

query shipping, the query is moved to the peers to be
evaluated by them. If a peer’s data satisfies a part of a
query, the peer sends the matching data to the requester
for further processing. This approach avoids unneces-
sary data shipping in the network and reduces network
traffic.

In P2P, a user query is decomposed into sub-queries
according to the execution capabilities of the peers.
Therefore, a query is partially evaluated at one peer,
and is propagated to another peer until it is fully eval-
uated. However, the propagation and execution of a
query/sub-query is influenced by the current acquain-
tances, network traffic, local knowledge about data, ex-
ecution cost, and data transmission cost. These factors
need to be considered for dynamically planning query
execution path and determining whether to use data
shipping, query shipping, or hybrid of the both query
processing techniques.

In some well known approaches [16], [14], [15] that
deal with P2P query processing, a user query is shipped
with the intermediate results from one peer to another
peer. These approaches cause higher network traffic
due to the shipment of intermediate results along with
the query plan. In addition, it incurs increased response
time as the target peer has to wait for a long time to get
the final result depending on the network condition and
the volume of the data. Therefore, we need an efficient
query propagation and execution plan that dynamically
considers the up-to-date cost information in a P2P sys-
tem. In this paper, we contribute in this direction. Our
contribution is mainly twofold:

• First, we present an improved query processing
technique for generating dynamic query plan. The
technique considers network path and processing
cost of intermediate results based on data distribu-
tion on different peers and query operators.

• Second, we performed a comparison in terms of
query execution cost and show the efficiency of the
proposed technique.

The remaining of this paper is organized as follows.
Section 2 comments on some related works. A moti-
vating example is presented in Section 3. The proposed
methodology is described in Section 4. In Section 5, we
state the evaluation results of our approach, and finally,
the paper is concluded in Section 6.

2 Related Study

There are many domain specific P2P systems that have
already been developed. Among these, Gnutella [6] and

KaZaA [5] are two most celebrated file sharing appli-
cations, which use some kind of centralized indexing
techniques for providing search operations. To find data
in more efficient way, a class of P2P systems have been
developed by structuring the data so that it can be found
with far less expenses than traditional flooding-based
approach. This technique is commonly referred to as
Distributed Hash Tables (DHTs) [23, 7, 8, 9]. DHTs are
well-suited for exact match lookups using unique iden-
tifiers, but do not directly support text search. Some
other well-known file sharing systems such as [1], [21],
and [22] use ant-inspired or similar routing protocol for
its search functions.

The above approaches provide simple IR-style
string matching or meta-data matching techniques for
searching files in peers. However, they lack advanced
database-style data management, query processing, and
other functionalities. The database-style data manipu-
lation in P2P is more robust than the conventional file
sharing approach where peers are involved in process-
ing and shipping intermediate query results in order to
produce the final results.

There are some research on P2P systems that deal
with the database management issues [10, 11, 12, 20].
They mainly consider data models for P2P databases,
peer schema mediation methods, coordination mech-
anisms between peer databases, and mapping data
among acquainted peers. Authors in [13], propose a
query translation mechanism between heterogeneous
peers considering instance-level mappings. However,
they did not consider the efficient way of query pro-
cessing that reduces query processing time to produce
the final results.

In this paper, we present a query processing strat-
egy in distributed data sharing P2P systems. Similar
work has been done in Mutant Query Plan (MQP) [16],
[17]. However, unlike ours, MQP does not consider
query decomposition and dynamic execution plan based
on cost of intermediate data processing, cost of data
transmission, and the up-to-date information of the ac-
quaintances among peers. Moreover, MQP always uses
the fixed hybrid techniques (i.e. query shipping and
data shipping), our proposed model dynamically de-
cides whether to use query shipping, data shipping or
the hybrid approach depending on the query and result.
Although our approach introduces some additional (but
minimal) message transfers over the network, it reduces
the overall cost of query processing in the distributed
P2P environments.

Figure 1: A motivating scenario

3 Motivating Example

In this section, we present a simplified real-world sce-
nario to show the applicability of the proposed query
processing technique in a P2P environment. We con-
sider an example from the world-wide travel domain
that helps a tourist to find suitable resort of his/her pref-
erences. The whole scenario is depicted in Figure 1. In
this scenario, peers create a virtual network with their
acquaintances, exchange data among them, and take
part to execute a query or part of a query posed on any
peer.

Consider that the peer A is a portal site
travelWorld.com, which provides access of informa-
tion about the various resorts over the world. Peer
B stores the information of hotels, which can be ac-
cessed through the site hotelWorld.com. Peer C is
the site rankingHotel.com that provides the ranking
of different hotels. Finally, peer D provides informa-
tion about meals of different hotels which is accessed
via hotelMeals.com. In the context of our system,
we assume a peer offers some web services to deliver
its query functionality and contains data in XML doc-
uments. Each peer consists of an XML search engine
which support XQuery-based queries.

Now, consider a case where a user wants to travel
to a country for his summer vacation. He wants to find
hotels which best matches his preferences. Assume
that the user visits his favorite portal, travelWorld.com,
where he asks the query service to get best hotel
information. Consider the user submits the following
query.

FOR $h in document ("hotel"),
$p in document("preference"),
$m in document("meals") [meal="vegetarian"],
$r in document("hotel ranking") [rank>=1 AND

Figure 2: Initial query plan

rank<=10] WHERE $h = $p AND $h/name =
$r/name;

AND $h/name = $m/name;
RETURN < hotel > {$h/name} {$h/address}

{$r/ranking} < /hotel >

The query processor at the portal site translates
the query into a logical query plan as shown in Fig-
ure 2. From the query plan, it is obvious that the query
needs to access four peers to get the final results. In this
scenario, we need an efficient query processing strategy
among peers that gives the minimized execution cost of
the query in terms of the data transmission cost and the
response time. In the next section, we describe such a
strategy.

4 Proposed query processing method

The basic distributed query processing strategies are
data shipping and query shipping. In this work, we
are motivated by a strategy called Mutant Query Plan
(MQP) [16], which uses a combination of data shipping
and query shipping mechanism. In MQP, first a regular
query operator tree is formed at the query initiator and
then the trees is passed to the next peer. During passing
of the query operator tree, the peers accumulate partial
results. The passing of the query with partial results
continues from one peer to another peer until it is fully
evaluated into a constant piece of XML data and re-
turned to the query initiator. This approach shows inef-
ficiency when we have large number of peers and those
peers are involved in processing the query. One of the

Figure 3: The execution plan of the query

reasons is that the size of the MQP may be too large
and hence, shipping the MQP with data from one peer
to another becomes expensive.

In our approach, we provide a dynamic query execu-
tion strategy that may involve data shipping, the query
shipping, or the query with data like in MQP, which
completely depends on the intermediate results of the
query in a peer. When a query is initiated, the local
peer generates a query execution plan based on the local
information of its acquaintances. The local peer then
evaluates the query and cache the partial results. Be-
fore passing the query to its acquaintances for further
execution, a peer exchanges some messages with its ac-
quaintances, and takes decision about the prospective
execution plan. There are three types of messages a peer
uses to communicate with its acquaintances. Before de-
scribing different message primitives, we first shortly
describe different notations that are used to represent a
message.

• Qi, a query initiated at peer Pi

• CPi
Qi , cardinality of the intermediate results of

query Qi at peer Pi. This defines the number of
rows in the result.

• RPi
Qi, intermediate result of the query Qi at peer Pi

• Ni, the network address of a peer Pi

Using the above notations, the different message primi-
tives are described as follows:

1. Push query < Qi, C
Pi
Qi , Ni > - A peer Pi which

receives a query Qi, first executes the part of the query
that satisfies its data and the results are stored in a
temporary cache. Then it forwards the query Qi to its
acquaintances Pj , where the query needs to execute
further. On forwarding the query, the peer also attaches
the network address Ni and the cardinality CPi

Qi of the
intermediate result processed at the peer locally.

Figure 4: State diagram for the flow of query and data

2. Pull data < Qi, Nj > - A peer Pj which receives
a message < Qi, C

Pi
Qi , Ni >, first executes the part

of the query which satisfies its data. After evaluating
local result, the peer performs two tasks. First it checks
whether it requires to process the query further with
the result of the peer Pi. If it needs to perform further
processing, then it compares the cardinality CPj

Qi with
cardinality CPi

Qi . If CPj
Qi > CPi

Qi , then it sends the
message Pull data < Qi, Nj > to peer Pi. Otherwise,
it sends Push data < Qi, R

Pj

Qi
, Nj , Nk >. If there is

no operator involved to process results of Pi and Pj ,
then Pj sends Push query < Qi, C

Pj
Qi , Nj > to its

acquaintance Pk for further processing of the query.

3. Push data < Qi, R
Pj

Qi
, Nj , Nk > - When a peer

Pi receives a Push data < Qi, R
Pj

Qi
, Nj , Nk > message

from Pj , it then realizes that results of R
Pj

Qi
and RPi

Qi

needs to be processed further. This scenario happens
when the volume of intermediate results of Pj is larger
than Pi. After processing the intermediated results, Pi

then sends a Push query < Qi, C
Pi
Qi , Ni > to peer Pk

where the query should be executed further. Note that
the Pk is not an acquaintance of Pi, but an acquaintance
of Pj . Pi knows the address of Pk through the message
Push data < Qi, R

Pj

Qi
, Nj , Nk >.

Instead of shipping both data and query, our ap-
proach ships data from one peer to another. The car-
dinality of the message is used for the optimization pur-
pose to take decision which peer will send data. To
illustrate, suppose a peer A evaluates a sub-plan of a
query. Instead of attaching data like MQP, in our ap-
proach, peer A sends push query message to its ac-
quaintance which includes the network address of peer
A and the cardinality of the intermediate results. When
peer B receives the message, it then evaluates the sub-
plan which satisfies the query. If the results of B need
to process with the results of peer A, then either B re-

Query Transmission Cost Descriptions
execution (Data + (Data +
sequence Query) Message)
A → B 200 + MQP 200 A sends MQP

1 with data to B
B → C 200+100+ 300 B sends MQP

MQP 1 with data to C
C → D 100x10+200= 300 C process

300 + MQP 1 the operation
and sends MQP
with data to D

D → A 200x100x200= 100 D process the
100 whole query

and send
result to A

Total 900
4

Table 1: Query execution cost with MQP

quests A with pull message to send its result or B sends
its result with push data message to A for further pro-
cessing of the query. In this way, the strategy reduces
the overall data transmission cost.

In the following, we present a small example in or-
der to illustrate the procedure of query processing and
routing, by considering the scenario described in Sec-
tion 3. For ease of presentation, we denote peer trav-
elWorld.com as A, hotelWorld.com as B, hotelRank-
ing.com as C, and hotelMeals.com as D. Suppose a
query QA is submitted to the portal site of A. Peer A
then produces a constant XML fragment RA

QA
of user’s

preference. The XML document is temporarily is stored
in the local cache. Now, A is unable to do any fur-
ther evaluation of the query because it has no informa-
tion about hotels, ranking of hotels, and meal prefer-
ences of hotels in its local database. But A knows that
the acquaintance peer B can provide detail information
about hotels. So A forwards a push query message
< QA, CA

QA
, NA > to B. Peer B then evaluates the

query partially that satisfies its data, and produces re-
sults RB

QA
as another XML fragment which is stored in

the cache. Peer B has no ranking information. There-
fore it sends a push query message < QA, CB

QA
, NB >

to C, where peer C is an acquaintance of B.
At this moment, C realizes that the query needs to

be processed further which involves join operation of
RB

QA
and RC

QA
. Therefore, C determines the cost of ef-

ficient execution of the operator. Fortunately, C knows
the cardinality of RB

QA
which C receives as a push

query message < QA, CB
QA

, NB > from B. There-
fore, C compares the cardinality of RB

QA
and RC

QA
.

In this case, we assume that CB
QA

> CC
QA

. Hence,

Query Transmission Cost Descriptions
execution (Data + (Data +
sequence Query) Message)
A → B 0 + 0 A sends

Push Query 1 query to C
B → C 0 + 0 B sends

Push Query 1 query to C
C → B 0 + 0 C request

Pull Data 1 B for Data
B → C 100+ 100 B sends

Push Data 1 data to C
C → D 0+ 0 C process

Push query 1 operation and
sends Query

to D
D → C 0+ 0 D request
D → A Pull Data 1 data from

A and C
C → D 200 300 A and C
A → D 100 2 send data

Push Data to D
D → A 100 100 D sends

Push Data 1 data to A
Total Cost 500

7

Table 2: Query execution cost with the proposed approach

C sends a pull data message < QA, NC >. After
receiving the message, B sends a push data message
< QA, RB

QA
, NB , null >. Peer C now process the op-

eration and stores the result in the cache. Peer C notices
that the query QA requires further processing, but it has
no information of meal preference of different hotels.
It knows that D has the information, thus sends a push
query message < QA, CC

QA
, NC > to D.

After receiving the message from C, D then evalu-
ates the query and makes a plan to evaluate the query
further. We assume that CD

QA
> CC

QA
and CD

QA
>

CA
QA

. Therefore, D sends two pull data message to
peer A and C respectively to retrieve their intermediate
results. Finally, D evaluates the query QA and sends
result to A. The query execution plan is shown in Fig-
ure 3, and we depict the whole query processing with
the data flow diagram as shown in Figure 4.

5 Evaluation

In order to evaluate the benefits of the dynamic query
processing plan, we did some analytical analysis with
different settings of acquaintances of peers. The exper-
iments show significant improvements of query execu-
tion cost in terms of data transmission which is our pri-
mary goal to achieve. We mentioned that our strategy

involves more message passing between peers during
execution of a query. However, this does not affect the
processing cost severely because the size of each mes-
sage is very small compared to the shipped data along
with the query. In the worst case, we need n extra mes-
sages if a query involves n peers.

In Table 4. we show our improvements compared to
MQP . In this case, we consider the scenario that we
described in Section 5. Table 1 shows the query execu-
tion cost as proposed by MQP. Table 2 shows the query
execution cost of our proposed strategy. Note that literal
values 100, 200, etc. represent the volume the data. For
example, entry (200) at column 3 of table 1 shows that
volume of data shipped from peer A to B is 200. There-
fore, the cost is 200 plus the number of query message,
which is 1. We assume that unit time required per data
transmission. It is obvious from the two tables that our
approach shows significant improvements in terms of
data transmission although with some increased num-
ber of messages.

6 Conclusion

In this paper, we discussed a dynamic query plan for
efficient query processing in P2P environments. The
dynamic query plan is generated prior to propagating
a query or a part of a query to the participating peers.
We mainly focus on minimizing data transmission cost
that reduces network traffic. Our proposed methodol-
ogy shows the improvements over other query process-
ing techniques in terms of query execution cost. We
evaluated our technique with a small scale P2P and plan
to show performance of the approach with large-scale
P2P networks along with efficient routing techniques.

References
[1] MUTE. http://mute-net.sourceforge.net.

[2] JXAT. http://www.jxta.org.

[3] Jabber. http://www.jabber.org.

[4] Napster. http://www.napster.com.

[5] Kazaa. http://www.kazza.com.

[6] Gnutella. http://gnutella.wego.com.

[7] Ratnasamy S., Francis P., Handley M., Karp R., and
Shenker S., A Scalable Content Addressable Net-
work. In Proceedings of the ACM SIGCOM Confer-
ence, 2001.

[8] Rowstron A. and P. Druschel. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. Lecture Notes in Com-
puter Science, Vol. 2218, 2001.

[9] Zhao B. Y., Kubiatowicz J. D., and Joseph A.
D. Tapestry: An Infrastructure for Fault-tolerant
Widearea Location and Routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April. 2001.

[10] Kementsietsidis A., Arenas M., and Miller R.J. Map-
ping data in peer-to-peer systems: Semantics and al-
gorithmic issues. In SIGMOD, 2003.

[11] Bernstein P., Giunchiglia F., Kementsietsidis A., and
Mylopulos J. Data management for peer-to-peer com-
puting: A vision. In WebDB, 2002.

[12] Rodriguez-Gianolli P., Garzetti M., Jiang L., Ke-
mentsietsidis A., Kiringa I., Masud M., Miller R., and
Mylopoulos J. Data Sharing in the Hyperion Peer
Database System. In VLDB, 2005.

[13] Masud M., Kiringa I., and Kementsietsidis A. Don’t
Mind Your Vocabulary: Data Sharing Across Hetero-
geneous Peers. In CoopIS, 2005.

[14] Karnstedt M., Hose K., and Sattler K. Query Rout-
ing and Processing in Schema-Based P2P System. In
DEXA, 2004.

[15] Papadimos V., Maier D. and Tufte K. Distributed
Query Processing and Catalogs for Peer-to-Peer Sys-
tems. In CIDR, 2003.

[16] Papadimos V. and Maier D. Mutant Query Plans. In
OOPSLA, 2001.

[17] Papadimos V. and Maier D. Distributed Queries with-
out Distributed State. In WebDB, 2002.

[18] Jim T. and Suciu D. Dynamically Distributed Query
Evaluation. In ACM PODS Symposium, 2001.

[19] Kossmann D. The State of the Art in Distributed
Query Processing. ACM Computing Surveys, Vol. 32,
No. 4, pp. 422-469, 2000.

[20] Halevy A. Y., Ives Z. G., Madhavan J., Mork P., Suciu
D., and Tatarinov I. The piazza peer-data management
system. In IEEE Transactions on Knowledge and Data
Engineering, Vol. 16, no. 7, 2004.

[21] Ciglari M. Towards More Effective Message Rout-
ing in Unstructured Peer-to-Peer Overlays. IEE Proc.
Communications, Vol. 152, No. 5, pp. 673-678, 2005.

[22] Michlmayr E. Ant Algorithms for Search in Unstruc-
tured Peer-to-Peer Networks. In ICDEW, 2006

[23] Stoica I., Morris R., Karger D., Kaashoek F., and Bal-
akrishnan H. Chord: Scalable Peer-To-Peer Lookup
Service for Internet Applications. In Proceedings of
ACM SIGCOMM Conference, pp. 149-160, 2001.

