
Bringing Semantics to Web Services: Model driven approach

DJAMEL AMAR BENSABER1

DJAMAL BENSLIMANE2

MIMOUN MALKI1

SIDI MOHAMED BENSLIMANE1

1Evolutionary Engineering and Distributed Information Systems Laboratory
Computer science Department, University of Sidi Bel Abbes

B.P 89 Sidi Bel Abbes, 22000 Algeria
2LIRIS Laboratory, University of Claude Bernard Lyon 69000, France

1(Amarbensaber,Malki,Benslimane)@univ-sba.dz
2djamal.benslimane@liris.cnrs.fr

Abstract. The semantic web promises automates invocation, discovery and composition of web services
by enhancing services with semantic descriptions. This paper describes a model driven approach to
facilitate the construction of OWL-S specifications. The methodology is divided into three main steps.
In the first step we reverse engineered WSDL documents into UML profile models that enable the use
of high-level graphical models as an integration platform for semantic web services. In the second step,
suitable domain ontologies are used for the semantic annotation of the UML models. Finally, in the third
step a conversion tool will generate automatically the OWL-S description from these UML models. The
UML profile provides flexibility as it can expresses multiple semantic web service concepts.

Keywords: WSDL, UML, MDA, OWL-S, Reverse engineering, Semantic web service.

(Received January 16, 2008 / Accepted May 26, 2008)

1 Introduction

Web services are gaining momentum as a new breed of
distributed Web applications. Based on standard inter-
net protocols such as SOAP , WSDL [2], and UDDI,
Web services have become a key technology of B2B
integration and service-oriented architecture. However,
as the number of Web services increases and different
people may describe similar or identical things differ-
ently, how to automatically process services at runtime
is becoming an important issue. To make Web ser-
vices more accessible to automated processes, there is
a growing interest in bringing semantics into Web ser-
vices. As a de facto standard, OWL-S [11, 12] defines
a core set of markup language constructs for describ-
ing the properties and capabilities of Web services in
unambiguous, computer-interpretable forms. OWL-S
facilitates the automation of Web service tasks includ-

ing discovery, execution, composition, and interopera-
tion. However, the complexity of the OWL-S grammar
makes it difficult to construct an OWL-S ontology man-
ually and unfortunately, for the common developer, the
learning curve for such languages can be steep, consti-
tuting a barrier to widespread adoption. Model Driven
Architecture (MDA) recommended by the MDA initia-
tive of the OMG [13, 14] is an approach to software de-
velopment that is based on the creation of models rather
than program code. The primary goals of MDA are
portability, interoperability, and reusability through an
architectural separation of concerns between the spec-
ification and implementation of software. MDA is de-
pendent on and makes use of several other OMG stan-
dards, including UML, Meta-Object Facility (MOF),
XML, Meta-Data Interchange (XMI) [17] and Com-
mon Warehouse Meta-model (CWM). In MDA based
approaches, the focus is upon creation of software via

the development of Unified Modelling Language (UML)
models. UML [16] can be used as a convenient inte-
gration platform for modelling semantic web services
since those corresponding UML models of web services
haves the features :

1. Expressiveness. They contain sufficient semantic
annotations to be transformed to and from com-
plete semantic Web service documents.

2. Independence. They are independent of the lexical
semantic Web service languages.

3. Readability. They are easier to understand, inter-
pret and specify for modellers.

In this paper we propose an approach to facilitate and
raise the degree of automation in the semantic associa-
tion process for the web services, we reverse engineer
WSDL files into UML, annotate the generated mod-
els with relevant domain ontologies, and then we use
a conversion tool to generate OWL-S descriptions from
UML models. Our approach features the use of MDA
concepts and strategies which enable the separation of
the application design (or business logic) from the im-
plementation platform. Specifically, these concepts al-
low us to translate XMI specifications (e.g., XML en-
codings of UML) into OWL-S via the eXtensible Style-
sheet Language Transformations (XSLT) transformations
[3]. We demonstrate our approach using CongoBuy ex-
ample [11], and validate the correctness of our transfor-
mations using the OWL-S API [7]. The rest of the pa-
per is organized as follows: In section 2, we describe
the architecture and the main steps of our approach.
Section 3 introduces the UML profile for semantic web
service; where section 4 detail the reverse engineering
process to generate UML model from WSDL files; sec-
tion 5 shows the transformation rules between UML
and OWL-S; Section 6 covers related work; and finally
section 7 concludes the paper.

2 Our approach

This section describes our approach for using MDA tech-
niques to synthesise OWL-S specification. The pro-
posed methodology is broken up into three main steps
(see Fig.1)

2.1 Reverse engineering process

The developer imports web service description into UML
by a reverse engineering transformation. This activity
consists of two sub activities: interface modelling and
workflow modelling. Interface modelling specifies the
service’s interface and its operations, whereas workflow

Figure 1: Main steps of our approach

modelling focuses on the internal behaviour of web ser-
vice operation. Two UML diagrams will be generated
from reverse engineering process; UML class diagram
which describes the interface of service and UML ac-
tivity diagrams of which the main part is obtained auto-
matically when the order in which the activities will be
performed is expressed by the developer by using data
flow capabilities. The UML activity diagram is useful
to describe the composite process of OWL-S process
model. In this process, the WSDL file will be parsed
and the information are extracted using JWSDL API
combined with DOMSAX API to parse XML schema,
then a set of transformation rules (see section 4) are ap-
plied to generate the corresponding elements in UML,
these one will be exported in XMI format.

2.2 Annotation process

The generated activity UML models constitute the skele-
ton UML Models. The remainder of information will be
enriched by as set of information from: UDDI, ontolo-
gies and the developer. Information in UDDI is useful
to fill UML profiles part relating to owl-s profiles (cat-
egory name, taxonomy, etc.). The "category" of ser-
vice helps the designer to identify appropriate domain
ontologies to semantically annotate the UML models.
Domain ontologies may be fetched from organisations
or business interest communities, e.g. the North Ameri-
can industry classification system represents such an ef-
fort and provides an ontology of products and services.
After the modeller has determined one or more candi-
date ontologies, he imports these into the UML models.

Such a technique has already been proposed by Duric
to bring OWL ontologies into UML modelling environ-
ment [4]. Ontology is visualized as UML interfaces, the
XSD complex types presented as classes in UML are
mapped to ontology concepts, the parameters, the op-
erations, the pre-conditions, the post-conditions and the
effects are also linked and annotated. The category is
filled from the UDDI. Once UML profiles for semantic
web services is completed with a little additional effort
on behalf of the developer, the third stage of transfor-
mation to OWL-S descriptions can be launched.

2.3 Conversion tool

Conversion tool implements a forward transformation
from UML models obtained in step 2 to OWL-S. The
transformation process is based on the XSLT which is
used in this project to convert an XML representation
of an UML model into OWL-S description. The trans-
formation rules rely on the UML profile we have cre-
ated for OWL-S. The annotated UML models are used
to generate a semantic web service description. This
description can be automatically generated by the trans-
formation which we have explained further in section 5.
The UML diagrams are exported in XMI format. The
conversion tool is invoked to run multiple transforma-
tions on the input file to produce the corresponding Ser-
vice, ServiceProfile, ServiceModel and ServiceGround-
ing OWL-S documents. The transformations come in
the form of XSLT transformations which automatically
convert XMI input into OWL-S specifications. From
the standpoint of MDA terminology, the process of cre-
ating a UML diagram from WSDL description can be
considered equivalent to reversely engineering a PSM
to PIM. The XSLT transformations correspond to "Other
Information" necessary to generate a second-level PIM
in the form of an OWL-S specification. The act of spec-
ifying groundings, which is part of the framework we
are developing, corresponds to creating a PSM in the
sense that the mapping provides information specific to
create a specific executable implementation of a seman-
tic service.

3 UML profile for Semantic Web Services

A UML profile is a collection of stereotypes, tagged
values and custom data types used to extend the capa-
bilities of the UML modelling language. We use a UML
profile to model various OWL-S constructs in conjunc-
tion with the UML static structure diagram. In our ap-
proach, the stereotypes, tagged values, and data types
serve to mark-up the platform-independent model, or
PIM, in order to facilitate transformation to an OWL-S

specification. Stereotypes work well to distinguish dif-
ferent types of classes and create a meta-language on
top of the standard UML class modelling constructs.
Tagged values allow the developer to attach a set of
name/value pairs to the model. A set of name/value
pairs is also a convenient way to attach information to
the model which is needed in the transformation process.
Fig.2 shows a meta-model of UML profile [6] where a
group of UML extensions are introduced. UML pro-
file is build on top of two existing metamodels which
are shown as packages in Fig.2. The first reused meta-

Figure 2: The meta-model of the UML profile

model is the UML Ontology Profile (UOP) that is more
relevant when defining associations to our UML pro-
file. UOP which is defined by Duric [4] is an extension
to UML 1.5 class models which have been upgraded to
UML 2.0 in [6]. UOP captures ontology concepts with
properties and relationships. The UOP package con-
tains the two elements (Ontology and OntClass). An
OntClass element extends a UML class and represents
a semantic concept. The OntClasses are semantically
defined types which are grouped into Ontology pack-
ages. The second meta-model represents standard UML
2.0 activity model elements. The most central concept
in the profile is WebService which extends the UML
Activity element. A WebService represents a single
callable Web service operation as opposed to a collec-
tion of operations. A WebService has four tagged val-
ues (wsdl, service, port, operation) which uniquely iden-
tify a Web service operation within a WSDL file, and
four other tagged values to specify access URIs nec-
essary in grounding generating process like a URI for
(wsdl service, wsdl port, wsdl version and wsdl docu-
ment) . A WebService can have an arbitrary number
of Input and Output parameters. The Input and Output
elements are minor extensions to the inputPin and out-
putPin of a UML Activity. The type of each of the para-

meters can be a syntactic type as previously for standard
UML 2.0 Pins, but preferably now it will be a seman-
tic type given as a UOP OntClass. A tagged value in-
dicates the access URI for WsdlInputMessage or Ws-
dlOutputMessage is attached to each Input and Out-
put parameters. The binding element extends the UML
comment element, it is linked to WebService. This later
defines the transport protocol to be used with its four as-
sociated tagged values (binding name, transport proto-
cols, type and style). A semantic categorization of the
WebService is given by a link to a Category element
which extends the UML Comment element and it has
four tagged values which identify a category concept
defined within ontology. The pre- and post-conditions
are linked to all of the included parameters in its expres-
sion. If the pre- or post-condition does not refer to any
parameter, then it must be linked directly to the Web-
Service. These new pre- and post-conditions are now
clearly linked to the Pins it concerns for improving the
visualisation of the UML diagrams. Finally, the Effect
element extends the UML Constraint. It is linked to a
WebService to indicate the result of a successful execu-
tion of the WebService. The contents of Pre-condition,
Post-condition and Effect should all be Boolean expres-
sions where the Object Constraint Language (OCL) is
a natural candidate. Table 1 contains a summary of all
the new elements in UML profile. Now that we have de-
fined how to model single semantically annotated Web
services in UML, we can use UML 2.0 activity models
to model compositions of semantically annotated Web
services. The built-in control and data flow capabilities
allow us to define how single semantic Web services
interoperate in order to accomplish larger tasks. The re-
sulting composition model can expose itself as a new
Web service.

4 From WSDL to UML

Several authors have proposed WSDL-dependent UML
profiles. Provost [20] has defined a UML profile for
WSDL, introducing WSDL-dependent stereotypes. Gard-
ner [5] takes a similar approach to workflow modelling,
introducing a UML profile for BPEL4WS and conver-
sion to BPEL4WS. Kollman in [10] give an overview
of state of the art in reverse engineering, in which all
the referred tools use platform-dependent models. The
Hypermodel tool of Dave Carlson [1] has the ability to
import XML Schema (part of WSDL) into UML, but
the resulting UML model will have extensions specific
to XML Schema. Conversely, Thöne et al. [23] present
platform-independent service and workflow modelling,
but have not defined the conversion rules to any target
platform. In our approach, we have defined and imple-

Table 1: Summary Of the UML Profile.
Stereotype Extending UML

meta model ele-
ment

Tagged values Usage

Web service Activity Wsdl, Service, Port,
Operation, URI
WSDL document,
URI version WSDL,
URI WSDL port,
URI WSDL service

Used to model a single web ser-
vice operation. Its tagged values
are sufficient to identify a web
service operation and his bind-
ing.

Input Activity inputpin Name Input URI
WSDL Input mes-
sage

The stereotype is added to visu-
alize if a pin is an input or an out-
put

Output Activity output-
pin

Name Output,URI
WSDL Output
message

Same as for <input>

Category Comment Taxonomy, Taxono-
myURI, Value, Code

This item links the web ser-
vice to a category defined by
a Semantically defined concept
within an ontology

Text-
description

Comment Provides a brief description of
the service

Pre-condition Constraint A precondition is of constraint
type and is visualised by a note
in the diagram.

Post-
condition

Constraint Same as pre condition with re-
spect to output parameters

Effect Constraint An effect statement defines the
result of executing the web ser-
vice

Binding oper-
ation

Comment Binding name, style,
type, transport

Used to identify binding opera-
tion

mented conversion rules from WSDL to UML to auto-
mate the reverse engineering process. We will inves-
tigate how to produce UML from WSDL by looking
at an example web service with WSDL representation.
The well-known "ExpressCongoBuy" provides a web
service that allows customer to buy books. This sec-
tion identifies two diagrams to modelling the WSDL
content within UML: it’s expresses a UML class dia-
gram which describes the interface of web service and
its operations, and UML activity diagrams which spec-
ifies the internal behaviour of web service operation.
Notice that binding information can be left out at the
modelling level of UML class diagram. However we
introduce bindings and access URIs in UML activity di-
agram useful in the transformation process from UML
to OWL-S grounding.

4.1 UML class diagram

Fig. 3 shows a WSDL-UML class diagram of "Express-
CongoBuy" service. The example has been modelled
according to the WSDL independent model. The Ex-
pressCongoBuy_service is mapped to UML class with
stereotype "BusinessService". The service realizes one
interface "ExpressCongoBuy_PortType". This interface
has one operation which takes parameters as input and
gives a boolean response indicate if the book is success-
fully purchased and shipped or not. These parameters
refer to the two classes "CreditCard" and "SignInData".
We briefly explain the main conversion rules for trans-
forming a WSDL file into WSDL-UML class diagram.

• A WSDL service is converted to a BusinessSer-
vice.

• Each WSDL port within service is converted to re-
alized relationship of the BusinessService.

• Each portType is converted to a UML interface.

• All operations contained in each port type are mod-
elled as operations of the port type interface class,
the parts name of input message become parame-
ters of operation.

• Finally, all XML Schema defined types in the WSDL
file are converted to UML classes.

Figure 3: WSDL- UML class Diagram

4.2 UML activity diagram

UML activity diagram specifies the internal behaviour
of web service operation. In our approach each opera-
tion in port type is transformed to an activity. The built-
in control and data flow capabilities allows developer
to define the order in which the activities will be per-
formed. The UML activity diagram is obtained from
WSDL file by applying the following rules:

• Each operation in port type is converted to sin-
gle web service operation stereotyped "WebSer-
vice" with eight tagged values (WSDL, Service,
Port, Operation, URI_WSDL_document, URI ver-
sion WSDL, URI WSDL port, URI WSDL ser-
vice) which uniquely identify a web service op-
eration within a WSDL file.

• The part messages of input and output messages
for operation are transformed to input and output
parameters respectively stereotyped "Input" and "Out-
put",

• The Access URIs for input and output message are
modelled with tagged values associated to stereo-
typed "Input" and "Output".

• The binding operation information is presented as
stereotyped note attached to WebService operation
which extends the UML Comment element with
four tagged values (BindingName, transport-protocols,
style and type).

The UML activity diagram obtained after reverse en-
gineering process represents a part of the diagram pre-
sented in Fig. 4. This diagram consists of a WebSer-
viceOperation, the inputs and outputs parameters, stereo-
typed note for binding operation and three classes stem-
ming from UML class diagram. These classes are mapped
on existing OWL concepts during the annotation process
of UML diagram. The rest of elements appearing in
the diagram like category, pre-conditions, post- condi-
tions and effects are defined and added in the annotation
process.

Figure 4: ExpressCongoBuy service represented in our UML profile

4.3 Expresscongobuyexample expressed in the UML
profile

The model instance in Fig. 4 is used to explain our
proposed UML profile by showing the OWL-S refer-
ence example ExpressCongoBuy in UML. ExpressCon-
goBuy is a Web service that allows a customer to buy
books. In the ExpressCongoBuy example, there are five

input parameters to identify the customer information
(SignInInfo), Credit Card(creditCardNumber, creditCard-
Type and creditCardExpirationDate) and the book (book-
ISBN). There are two mutually exclusive output pa-
rameters in the example. The first output parameter
indicates that the book is successfully purchased and
shipped to the buyer’s address, while the second out-
put provides a message informing that the book was
out of stock. The parameter types are linked to syn-
tactic and semantic types. In the ExpressCongoBuy
example the parameters CreditCardNumber and Credit-
CardExpirationDate are syntactically defined by refer-
ring to standard XML Schema data types. The other pa-
rameters are defined with semantic types as UOP Ont-
Classes and grouped inside UOP Ontology packages.
Notice that the model in Figure 4 has only pseudo-
logical expressions as the content of the pre-conditions,
post-conditions and effect elements. The post-conditions
are attached to the output pins which state that there is
a conditional output parameter. Only one of the two
output parameters is returned, depending on which of
the two post-conditions evaluates to true. A stereotyped
note is attached to web service indicating the binding
operation with tagged values (binding name, style and
transport). The tagged values represented binding and
access URI for input and output parameters are not pre-
sented in schema for lack of space, theses information
are used in the transformation process for generating
grounding.

5 Transformations between OWL-S and our
UML profile

Fig. 5 shows a schematic view of the transformation el-
ements. The figure consists of two parts: the left side
shows the UML representation of the service. And the
right side outlines fragments of the OWL-S description
using a simplified non-XML-notation which is less ver-
bose than the true XML. Between the two parts, arrows
indicate which part of the model corresponds to which
part in OWL-S. The service is represented in the UML
model according to our UML profile as an activity with
the stereotype WebService. Parameters of this activity
element represent the inputs and outputs. The Web ser-
vice has got five inputs and two (conditional) outputs.
The figure also shows that properties of the service -
such as the pre- and postcondition - are visualised with
stereotyped notes. On the OWL-S side such an activity
corresponds to the frame of one OWL-S document (in-
dicated by the box labelled 1 in the figure). The inputs
and outputs of an activity correspond to hasInput and
hasOutput elements in OWL-S accordingly (labelled 5
and 6). In OWL-S it is proposed to use the Seman-

tic Web Rule Language (SWRL [8]) for representing
the hasPrecondition, hasPostcondition and hasEffect el-
ements (labelled 4 and 7, please note that the figure does
not show the post-condition due to space limitations).

In UML, our proposal uses stereotyped notes con-
taining an expression using OCL. However, the trans-
formations of logical expressions would significantly
extend the scope of the paper and thus is not handled
by our transformations. Inputs, outputs, pre- and post-
conditions, and effects are generated at two places in
the OWL-S document: Process section and Profile sec-
tion. The transformation generates the elements in the
Process part first. Then, these elements are basically
duplicated for the Profile part. In fact, the referring ele-
ments found in the Profile section can be seen as a sum-
mary. Reused ontologies are modelled in UML as sepa-
rate packages with a URI as tagged value to identify the
ontology. All such ontologies result in an import state-
ment in the produced OWL-S document. Then the on-
tology concepts belonging to an imported ontology can
be used at the adequate places (such as parameterType)
by combining a short name of the imported ontology
and the full name of the ontology concept. For each
new ontology concept a new owl: class is created. We
do not further explain how to facilitate this part of the
transformation, which is outlined with the box labelled
8, as this is covered by Duric’s work about representing
OWL ontologies in UML [4].

The transformation can be extended to also handle
conversations of Web services. A conversation occurs
when several operations have to be called in a specific
order before the service is completed.

5.1 Grounding

A Service-Grounding consists of a number of Atom-
icProcessGroundings. These AtomicProcess Ground-
ings contain mappings from Process types in an OWL-
S specification to Port-Types in a WSDL specification.
The AtomicProcessGrounding also contains mappings
from parameters in an OWL-S specification to parame-
ters in a WSDL specification. In our approach, the bind-
ings and access URIs are transported from WSDL doc-
ument into UML activity diagrams in the form of ex-
tensible elements (stereotypes and tagged values). So
the process of generating the grounding is automatic by
applying the following rules:

R1. Each AtomicProcess corresponds to one WSDL
operation.

R2. As a consequence of the first rule, each in-
put of an AtomicProcess is mapped to a corresponding
message-part in the input message of the WSDL opera-
tion.

Figure 5: Schematic view of transformations between UML and OWL-S

Similarly for outputs, each output of an AtomicProcess
is mapped to corresponding message-part in the output
message of the WSDL operation.

R3. The type of each WSDL message part can be
specified in terms of an OWL-S parameter (i.e., an XML
Schema data type or an OWL concept). An excerpt of
generated grounding is presented in Fig. 6.

Figure 6: Excerpt of generated grounding

6 Related work

The OWL-S editor is a good standalone tool but is pro-
prietary in nature and requires that the user become fa-
miliar with its user interface. Our approach leverages
existing skills in UML modelling, which can greatly
improve the efficiency of the semantic web service de-

velopment workflow. Paolucci and al. developed the
WSDL2OWLS system for automatically generating a
one-shot OWL-S specification for a given WSDL file
in [18]. As such, their approach is bottom-up tech-
nique and generates a complete grounding and incom-
plete profiles and process models. Our approach differs
in that we use a hybrid approach, which combines be-
tween reverse engineering WSDL files into UML mod-
els and develop high- level OWL-S specifications. A
similar method for creating a one-shot OWL-S specifi-
cation is taken by Shen, Yang, Zhu and Wan in [22]. In
their approach, a BPEL4WS specification is translated
into an OWL-S specification. This technique generates
a complete grounding and a complete process model us-
ing the BPEL composition operations as guidance. As a
result, only the profile is incomplete, since no semantic
information is used. The shortcoming of this approach
is that it is limited to a single process instance and a
single set of groundings. That is, it takes a bottom-
up approach. Our approach takes a hybrid approach
and thus supports development of more abstract OWL-
S specifications. Jaeger, Engel and Geihs in [9] pro-
posed a methodology for developing semantic descrip-
tions of Web services using OWL-S. They recognize the
lack of tool support for the development of semantic de-
scriptions. A three-step process is introduced in which
their tools will create a template using existing soft-
ware artefacts (e.g, software models, WSDL), automate
the identification of relevant ontologies and perform a
classification based on those ontologies. The difference
with our approach is that we discuss the development
of OWL-S description in the context of an MDA en-
vironment. Gannod and Timm [24] have introduced
a top-down approach, preferring to develop high-level
OWL-S specifications and then using the flexibility of
OWL-S groundings to map the OWL-S services to any
number of potential WSDL realizations of an OWL-S
process. The difference is that we reverse engineered
WSDL files and we don’t maps abstract OWL-S por-
tions on concrete WSDL realizations, but we generate
grounding form UML models built on imported WSDL
descriptions. The Object Management Group (OMG) is
creating a standard UML profile to support ontological
development within UML tools via ontology definition
metamodel [15]. The OWL profile for OMG supports
generic OWL constructs but does not address the issue
of OWL-S-specific constructs. For our work, creating
a semantic web service specific UML profile turned out
to be the only option to obtain the desired level of mod-
elling granularity.

7 Conclusion and futures investigations

OWL-S provides an ontology for Web services that can
be used to describe the semantics of a Web service. Un-
fortunately, adopting a language like OWL-S can be
difficult because of the learning curve and current state
of tool support. The recommended approach facilitates
the specification of semantic web services using model
driven development. By importing WSDL descriptions
of existing web services into UML diagrams, we show
that UML can be used as a common integration plat-
form. The ability to generate semantic web service de-
scriptions from a graphical model represents a valuable
gain to the service developers, who otherwise have to
write a lot of low-level XML code. Our UML profile is
expressive enough to capture and generate the needed
semantic information of OWL-S and also can be reused
towards different semantic web languages such WSML
or WSDL-S [21] which extends WSDL2.0 with seman-
tic descriptions, so OWL-S is just one candidate. It is
worth mentioning that in our current approach, the an-
notation of UML profile with real world ontologies (e.g
the world-fact-book ontology contains more than 1100
concepts) can be very tedious task. To alleviate this
problem (which has a major impact on the scalability
of our system), we intend to automate further the an-
notation process by making usage of some matchmak-
ing algorithms [19]. Some issues that will be resolved
in future work include enhancing the transformations
between UML and OWL-S by also handling the log-
ical expressions to cover the pre- and post-conditions
and the effects. This could be achieved by defining and
implementing transformations between the logical lan-
guages used by OWL-S and the Object Constraint Lan-
guage in UML. We see this as the next step towards
providing a user-friendly environment to interpret and
define the logical expressions. The research issue of
particular interest is that of automated composition of
services. Currently, service composition is performed
at design time. With semantic descriptions in place, au-
tomated composition is possible.

References

[1] Carlson, D. Hypermodel, www.ontogenics.com.

[2] Chinnici, M. J. R. C., E.R and Weerawarana, S.
Web service description language 1.1. w3c note
[online] available http://www.w3.org/tr/2007/rec-
wsdl20-20070626.

[3] Clark, J. Xslt transformations v1.0.
w3c recommendation [online] available
http://www.w3c.org/tr/xslt (1999).

[4] Djuric, D. Mda-based ontology infrastructure.
Computer Science Information Systems, 1(1):91–
116, 2004.

[5] Gardner, T. Uml modelling of automated busi-
ness processes with a mapping to bpel4ws. In
Proceedings of the 17th European Conference on
Object-Oriented Programming (ECOOP), Darm-
stadt, Germany, 2003.

[6] Gronmo, J. M., R. and Hoff, H. Transformations
between uml and owl-s. In The European Confer-
ence on Model Driven Architecture -Foundations
and Applications (ECMDA-FA), Nuremberg, Ger-
many, 2005. Springer-Verlag.

[7] Group, T. M. Owl-s api. [online] available
http://www.mindswap.org/2004/owl-s/api.

[8] Horrocks, I. e. a. Swrl: A semantic web rule
language combining owl and ruleml. technical re-
port, http://www.w3.org/submission/2004/subm-
swrl-20040521.

[9] Jaeger, E. L., M.C and Geihs, K. A methodology
for developing owl-s descriptions. In Proceedings
of the First International Conference on Interop-
erability of Enterprise Software and Applications
Workshop on Web Services and Interoperability,
2005.

[10] Kollman, S. P. S. E. S. T., R. and Zundorf, A. A
study on the current state of the art in tool- sup-
ported uml-based static reverse engineering. In
Proceedings of the Ninth Working Conference on
Reverse Engineering (WCRE’02), pages 22–32,
Richmond, Virginia, 2002.

[11] Martin, e. a., D. Owl services coalition. owl-s:
Semantic markup for web services, [online] avail-
able http://www.daml.org/services/owl-s/1.0/owl-
s.pdf , 2003.

[12] Martin, e. a., D. Bringing semantics to web ser-
vices with owl-s. In World Wide Web, pages 243–
277, 2007.

[13] Miller, J. e. a. Mda guide version 1.0.1 (tech.
rep. omg/2003-06-01). object management group,
2003.

[14] (OMG), O. M. G. Object management group’s
model driven architecture [online] available
www.omg.org/mda.

[15] (OMG), O. M. G. Ontology definition metamodel
(tech.rep. www.omg.org/docs/ad/05-01-01.pdf.

[16] (OMG), O. M. G. Uml 2.0 superstructure speci-
fication, omg adopted specification ptc/03-08-02.
technical report, 2003.

[17] (OMG), O. M. G. Xml metadata interchange
(tech. rep. formal/07-12-01), omg, 2007.

[18] Paolucci, S. N. S. K. . N. T., M. Towards a seman-
tic choreography of web services: From wsdl to
daml-s. In Proceedings of the International Con-
ference on Web Services. IEEE, 2003.

[19] Patil, O. S. S. A. V. K., A. Meteor-s web ser-
vice annotation framework. In Proceedings of
the 13th International world wide web conference,
WWW2004, pages 553–562, New York, USA,
2004.

[20] Provost, W. Uml for web services,
http://www.xml.com/lpt/a/ws/2003/08/05/uml.html.

[21] Rajasekaran, M. J. V. K., P. and Sheth, P. En-
hancing web services description and discovery to
facilitate composition. in semantic web services
and web process composition. In Proceedings of
the First International Workshop, volume 3387 of
Lecture Notes in Computer Science, San Diego,
California, USA, 2004. Springer.

[22] Shen, Y. Y. Z. C. . W. C., J. From bpel4ws to owl-
s: Integrating e-business process descriptions. In
Proceedings of 2nd IEEE international confer-
ence on services computing(SCC 2005), pages
181–188, Orlando, USA, July 2005.

[23] Thöne, D. R., S. and Engels, G. Process-Oriented
Flexible Composition of Web Services with UML.
LNCS Book chapter "Advanced conceptual mod-
elling techniques", vol. 2784/2003, ISBN: 978-3-
540-20255-4, 2003.

[24] Timm, J. and Gannod, G. A model-driven ap-
proach for specifying semantic web services. In
Proceedings of the 3rd IEEE International Con-
ference on Web Services (ICWS 2005), pages 356–
361, July 2005.

