
Class Inheritance Metrics-An Analytical and Empirical Approach

KUMAR RAJNISH 1, VANDANA BHATTACHERJEE2

1Department of Computer Science & Engineering, Birla Institute of Technology, Ranchi-01, India
kumar_rajnish_in@yahoo.com

2Department of Computer Science & Engineering, Birla Institute of Technology, Ranchi-01, India
vbhattacharya@bitmesra.ac.in

Abstract-Inheritance is a powerful mechanism in Object-Oriented (OO) programming. This
mechanism supports the class hierarchy design and captures the IS-A relationship between a super
class and its subclass. Several OO metrics have been proposed and their reviews are available in the
literature. Among the various measurements of OO characteristics, this paper focuses on the metrics of
class inheritance hierarchies. In this paper first a class inheritance metric DITC (Depth of Inheritance
Tree of a Class) metric based on finding the depth of inheritance tree of a class (DITC) metric for class
inheritance hierarchy in terms of sum of the attributes (private, protected, public and inherited) and
methods (private, protected, public and inherited) at each level is proposed, then an analytical
evaluation of DITC metric against Weyuker’s axioms [18] is given in discussion part and then attempt
has been made to define an empirical relation between development time with respect to its
dependence on classes in class inheritance hierarchy at each level. Attempt has also been made to
analyze the various dependencies of development time of class in class inheritance hierarchy at each
level upon its different class inheritance metric values. Data for several class inheritance hierarchies
has been collected from various resources [23].

Keywords- Object-Oriented Design, Classes, Class Inheritance Hierarchy, Cohesion, Object-Oriented Metrics, Class
Inheritance Metrics.

(Received June 08, 2007 / Accepted September 13, 2007)

1. Introduction
It is clear that measurement of any process or product is
necessary for its success. Software engineering metrics
are units of measurement, which are used to characterize
software engineering products, processes and people. If
used properly they can allow us to identify and quantify
improvement and make meaningful estimates.
The recent drive towards Object-Oriented (OO)
technology forces the growth of OO software metrics
[6]. Several such metrics have been proposed and their
reviews are available [5] [7] [9-10] [14] [21] [22] [27].
The metrics suite proposed by C&K (Chidamber &
Kemerer) is one of the best-known OO metrics [12-13].
Various researchers have conducted empirical studies to
validate the OO metrics for their effects upon program
attributes and quality factors such as development or
maintenance effort [8] [24]. Alshayeb and Li predict
that OO metrics are effective (at lease in some cases) in
predicting design efforts [1]. Chae, Kwon and Bae

investigated the effects of dependence variables on
cohesion metrics for OO programs [11]. Several other
researchers have validated OO metrics for effects of
class size and with the change proneness of classes [2]
[16-17]. Li [26] theoretically validated C&K metrics
using a metric evaluation framework proposed by
Kitchenham et al [25] and discovered some of the
deficiencies of C&K metrics in the evaluation process
and proposed a new suite of OO metrics that overcome
these deficiencies.
Rajnish and Bhattacherjee have studied the effect of
class complexity (measured in terms of lines of codes,
distinct variables names and function) on development
time of various C++ classes [4] [32] [37]. Rajnish and
Bhattacherjee have also studied on cohesion metrics for
OO programs on various C++ and Java classes by
accessing a common variable by a pair of methods in a
class as in [33] [28] [34] [35]. Among the various
measurements, we focus on the metrics of class

inheritance hierarchies. Class design is central to the
development of OO systems. Because class design deals
with functional requirements of the system, it is the
highest priority in OOD (Object-Oriented Design).
Inheritance is a key feature of the OO paradigm. The
use of inheritance is claimed to reduce the amount of
software maintenance necessary and ease the burden of
testing [13] and the reuse of software through
inheritance is claimed to produce more maintainable,
understandable and reliable software [3]. However,
industrial adoption of academic metrics research has
been slow due to, for example, a lack of perceived need.
The results of such research are not typically applied to
industrial software [19], which makes validation a
daunting and difficult task. For example, the
experimental research of Harrison et al. [20] indicates
that a system not using inheritance is better for
understandability or maintainability than a system with
inheritance. However, Daly’s experiment [15] indicates
that a system with three levels of inheritance is easier to
modify than a system with no inheritance. Research has
also been conducted regarding class inheritance metrics
by Rajnish and Bhattacherjee in [30] [31] [36] [38].
However, it is agreed that the deeper the inheritance
hierarchy, the better the reusability of classes, making it
harder to maintain the system. The designers may tend
to keep the inheritance hierarchies shallow, discarding
reusability through inheritance for simplicity of
understanding [13]. So it is necessary to measure the
complexity of the inheritance hierarchy to resolve
differences between the depth and shallowness of it. In
this paper we propose a new metric for the class
inheritance hierarchy.
In this paper first overview of Chidamber and Kemerer
metrics [13] for class inheritance hierarchy is discussed,
and then a proposal for a new class inheritance metric is
made. The paper is organized as follows–Section 2 lists
out Weyuker’s nine properties and why analytical
evaluation required. Section 3 provides an overview of
C&K inheritance metrics. Section 4 presents a proposed
metric on inheritance. Section 5 presents a statistical
analysis that how closely the DITC metric of a class in
class inheritance hierarchy at each level were correlated
to the development time of various C++ classes in the
class inheritance hierarchy. Section 6 presents the
discussion and section 7 presents the conclusion and
future scope.

2. Weyuker’s Properties
The basic nine properties proposed by Weyuker’s [18]
are listed below. The notations used are as follows: P,
Q, and R denote classes, P+Q denotes combination of
classes P and Q, µ denotes the chosen metrics, µ (P)
denotes the value of the metric for class P, and P≡Q (P
is equivalent to Q) means that two class designs, P and
Q, provide the same functionality. The definition of
combination of two classes is taken here to be the same
as suggested by [1], i.e., the combination of two classes
results in another class whose properties (methods and
instance variables) are the union of the properties of the
component classes. Also, “combination” stands for
Weyuker’s notion of “concatenation”.
Property 1. Non-coarseness: Given a class P and a
metric μ, another class Q can always be found such that,
μ (P) ≠ μ (Q).
Property 2. Granularity: There is a finite number of
cases having the same metric value. This property will
be met by any metric measured at the class level.
Property 3. Non-uniqueness (notion of equivalence):
There can exist distinct classes P and Q such that, μ (P)
= μ (Q).
Property 4. Design details are important: For two class
designs, P and Q, which provide the same functionality,
it does not imply that the metric values for P and Q will
be the same.
Property 5. Monotonicity: For all classes P and Q the
following must hold: μ (P) ≤ μ (P + Q) and μ (Q) ≤ μ (P
+ Q) where P + Q implies combination of P and Q.
Property 6. Non-equivalence of interaction:
∃ P, ∃ Q, ∃ R such that μ (P) = μ (Q) does not imply that
μ(P+R) = μ (Q+R).
Property 7. Permutation of elements within the item
being measured can change the metric value.
Property 8. When the name of the measured entity
changes, the metric should remain unchanged.
Property 9. Interaction increases complexity:
∃ P and ∃ Q such that:
μ (P) + μ (Q) < μ (P + Q)
Weyuker’s list of properties has been criticized by some
researchers; however, it is a widely known formal
approach and serves as an important measure to
evaluate metrics. In the above list however, properties 2
and 8 will be trivially satisfied by any metric that is
defined for a class. Weyuker’s second property
“granularity” only requires that there be a finite number
of cases having the same metric value. This metric will
be met by any metric measured at the class level.

Property 8 will also be satisfied by all metrics measured
at the class level since they will not be affected by the
names of class or the methods and instance variables.
Property 7 requires that permutation of program
statements can change the metric value. This metric is
meaningful in traditional program design where the
ordering of if-then-else blocks could alter the program
logic and hence the metric. In OOD (Object-Oriented
Design) a class is an abstraction of a real world problem
and the ordering of the statements within the class will
have no effect in eventual execution. Hence, it has been
suggested that property 7 is not appropriate for Object-
Oriented Design (OOD) metrics.
Analytical evaluation is required so as to
mathematically validate the correctness of a measure as
an acceptable metric. For example Properties 1, 2 and 3
namely Non-Coarseness, Granularity, and Non-
Uniqueness are general properties to be satisfied by any
metric. By evaluating the metric against any property
one can analyze the nature of the metric. For example,
property 9 of Weyuker will not normally be satisfied by
any metric for which high values are an indicator of bad
design measured at the class level. In case it does, this
would imply that it is a case of bad composition, and the
classes, if combined, need to be restructured. Having
analytically evaluated a metric, one can proceed to
validate it against data.
Assumptions. Some basic assumptions used in section
6.1 under section 6 have been taken from Chidamber
and Kemerer [13] regarding the distribution of methods
and instance variables in the discussions for each of the
metric properties.
Assumption 1:
Let Xi= the number of methods in a given class i
 Yi= the number of methods called from a given
method i
 Zi= the number of instance variables used by a
method i
Xi, Yi, Zi are discrete random variables each
characterized by some general distribution functions.
Further, all the Xis are independent and identically
distributed. The same is true for all the Yis, and Zis. This
suggests that the number of methods and variables
follow a statistical distribution that is not apparent to an
observer of the system. Further, that observer cannot
predict the variables and methods of one class based on
the knowledge of the variables and methods of another
class in the system.

Assumption 2: In general, two classes can have a finite
number of “identical” methods in the sense that a
combination of the two classes into one class would
result in one class’s version of the identical methods
becoming redundant. For example, a class “foo_one”
has a method “draw” that is responsible for drawing an
icon on a screen; another class “foo_two”also has a
“draw” method. Now a designer decides to have a
single class “foo” and combines the two classes. Instead
of having two different “draw” methods the designer
can decide to just have one “draw” method.
Assumption 3: The inheritance tree is “full”, i.e. there is
a root, intermediate nodes and leaves. This assumption
merely states that an application does not consist only of
stand alone classes; there is some use of sub classing.

3. Chidamber and Kemerer Inheritance
Metrics

3.1 DIT Metric
Chidamber and Kemerer proposed the Depth Of
Inheritance of a class is the DIT metric for the class
[13]. In cases involving multiple inheritance, the DIT
will be the maximum length from the node to the root of
the tree. The DIT metric is a measure of how many
ancestor classes can potentially affect this class. The
deeper a class is in the hierarchy, the higher the degree
of methods inheritance, making it more complex to
predict its behavior. Deeper trees constitute greater
design complexity, since more methods and classes are
involved. The deeper a particular class is in the
hierarchy, the greater the potential reuse of inherited
methods.

3.2 NOC Metric
Chidamber and Kemerer proposed the Number Of
Children of a class as the NOC metric for the class,
which is the number of immediate subclasses
subordinate to a class in the class hierarchy [13]. NOC
is a measure of how many subclasses are going to
inherit the methods of the parent class. The greater the
number of children, the greater the potential for reuse,
since inheritance is a form of reuse. The greater the
number of children, the greater the likelihood of
improper abstraction of the parent class. The number of
children gives an idea of the potential influence a class
has on the over all design.

4. Proposed Inheritance Metric
A class is composed of attributes and methods. In this
proposal the Depth of Inheritance Tree of a Class
(DITC) metric for class inheritance hierarchy is
measured in terms of sum of the attributes (Private,
Protected, public and inherited) and Methods (Private,
Protected, public and inherited) at each level. The DITC
metric of a class is calculated as:

 ∑
=

=
L

i
ii iLEVCDITC

1
*)(

Where,
LEVi = Attribute (Ci) + Method (Ci)
Ci = A class in the ith level of class inheritance
hierarchy.
Attribute (Ci) = Count the total number of protected,
private, public and inherited attributes within a class in
the class inheritance hierarchy at each level.
Method (Ci) = Count the total number of protected,
private, public and inherited methods within a class in
the class inheritance hierarchy at each level.
L = Total height in the class inheritance hierarchy i.e.
the maximum distance from the last node (last level in
the class inheritance hierarchy) to the root node (first
level in the class inheritance hierarchy), ignoring any
shorter paths in case of multiple inheritance is used.
Viewpoints:
DITC Metric is based on the following assumptions:
• Deeper a particular class is in the class inheritance

hierarchy at any level, greater the possibility of
reusing inherited methods or attributes or both. This
implies greater DITC and difficulty to maintain that
class in class inheritance hierarchy. More
development time will be required to analyze the class
at this level in terms of design and coding.

• For classes at any level in class inheritance hierarchy
absence of attributes (or inherited attributes) and
methods (or inherited methods) will imply that
DITC=0. Software developer requires some amount
of time to analyze even for more classes and
development time.

• High DITC indicates that more methods and attributes
may be inherited at this level, thus making it more
complex to predict the behavior of the class.

• A Deeper inheritance tree implies, greater DITC in
the design. Development time increases in terms of
design and coding as the level of class inheritance
hierarchy increases, since more methods, attributes
and classes are involved.

Consider the class inheritance tree in Figure 1 where,
Rounded Rectangle represents class wise information
i.e. first part contains class name, second part contains
attributes (or instance variables of a class), and third
part contains methods. From Figure 1, pt represents
protected, pr represents private, pu represents public and
Ir represents inherited methods (or attributes) in a class.
Development Time for Class A will be 3 minutes at
level 1, Development Time for Classes B and C will be
4 minutes each at level 2 and Development Time for
class D at level 3 will be 12 minutes. DITC Metric is
calculated at each level are as follows:
At Level 1, DITC (A) = 1
At Level 2, DITC (B) = 2 DITC(C) =2
At Level 3, DITC (D) = 18
All the above values represent the DITC Metric of a
class for the class inheritance hierarchy of Figure 1.For
the above values, high values of the DITC (D) implies
that more methods and attributes may be inherited
making it more complex to predict the behavior of the
class D and more development time will be required in
terms of design and coding at Level 3.

 A

pu : a1

B

pt : a2

C

pt : a3

D

pt: a4 Ir : a1,a2.a3

get (), put ()

5. Results
Statistical analysis on a small set of data of ten (10)
class inheritance hierarchies from various sources [23].
Correlation coefficients for different class inheritance
metric were calculated for a class inheritance hierarchy
at each level with respect to the Development time
(DEV) in minutes. The statistical analysis of the data in
the tables has been generated with the aid of MATLAB
[29], shown in Appendix (Table I and Table II). The
statistical distribution of Table I data set is given in
Appendix (shown in Figure 11 and Figure 12).

 Figure.1 Class Inheritance Tree

6. Discussion

6.1 Analytical Evaluation of DITC metric
against Weyuker’s properties
Let XP =DITC for class P and XQ =DITC for class Q. XP

and XQ are the functions of the number of methods
(public, private, protected, inherited) and number of
instance variables (public, private, protected, inherited)
at any level in the class inheritance hierarchy of class P
and class Q.
It follows from assumption 1 [as shown in section 2]
(since functions of independent and identically
distributed, instance variables are also independent and
identically distributed) that XP and XQ are independent
and identically distributed. Therefore, property 1 (Non-
Coarseness) and property 3(Non-Uniqueness) is
satisfied because a statistical distribution of methods
(public, private, protected, inherited) and number of
instance variables (public, private, protected, inherited)
among classes at any level in the class inheritance
hierarchy is assumed. So at any level in class
inheritance hierarchy
DITC (P) =DITC (Q) and DITC (P) ≠ DITC (Q).
Property 4 (Design details are important) is satisfied
because design of class at any level in class hierarchy
involves choosing what properties the class must inherit
in order to perform its functions. Its means that the
classes at the same level may have the same
functionality but it does not guarantee that they have the
same DITC metric value. In others words DITC metric
is design implementation dependent.
When any two classes P and Q are combined there are
three possible cases:
Case 1: class P and class Q are siblings
Case 2: class P and class Q are neither children nor
siblings of each other.
Case 3: One is the child of other.
Case 1: class P and class Q are siblings. See Figure 2
and Figure 3.

P Q

B C D E

A

Figure 2 Class Inheritance tree when class P and class Q
are at the same level

P+Q

B C D E

A

From Figure 2, suppose Class A has two attributes (say
a, b), one method (say f ()). Class P has one attribute
(say c), one method (say f1 ()) and two inherited
attributes from class A, so DITC (P) = 8 at level 2, and
class Q has one attribute (say d), one method (say f2 ())
and two inherited attributes from class A, then DITC
(Q) =8 at level 2. From Figure 3, when P and Q are
combined the P+Q will contain two attributes (say c, d),
two methods (f1 (), f2 ()) and two inherited attributes
(say a, b) which is common both in P and Q, then DITC
(P+Q) at level 2 is 12. So DITC (P) ≤ DITC (P+Q) and
DITC (Q) ≤ DITC (P+Q). Property 5 is satisfied, which
is also satisfied in DIT and NOC metric of Chidamber
and Kemerer [13].
Case 2: when class P and class Q are neither children
nor siblings of each other. See Figure 4 and figure 5.

P X

B C Z Q

A

Figure 4 Class Inheritance tree when class P and class Q
are at different level

X

B C

Z P+Q

A

Figure.3 Class Inheritance tree when class P+Q is combined

Figure.5 Class Inheritance tree when P+Q is combined

If P+Q is located as the immediate ancestor to class B
and class C (P’s location) in the class inheritance tree,
the combined class cannot inherits methods and
attributes from X, however if class P+Q is located as an
intermediate child of class X (Q’s location), the
combined class can still inherit methods and attributes
from all ancestors of class P and class Q. Therefore,
class P+Q will be located in Q’s location.
From Figure 4, suppose class A has two attributes (say
a, b), class P has one attribute (say c) and two inherited
attributes from class A. class X has one attribute (say d)
and two inherited attributes from class A, class Q has
two attributes (say e,f) and one inherited attributes from
class X and two inherited attributes from class A. So
DITC (P) =6 at level 2 and DITC (Q) =15 at level 3.
From Figure 5, when class P and class Q are combined,
then DITC (P+Q) =18 at level 2. So, DITC (P) ≤ DITC
(P+Q) and DITC (Q) ≤ DITC (P+Q). Property 5
(Monotonicity) is satisfied, which is also satisfied in
DIT and NOC metric of Chidamber and Kemerer [13].
Case 3: one is the child of other. See Figure 6 and
Figure 7.

P

C

D

B Q

A

P+Q

C D B

A

From Figure 6, suppose class A has one attribute (say
a), class P has one attribute (say b) and one inherited
attribute from class A then, DITC (P) = 4 at level 2,
class Q has one attribute (say c) and two inherited
attributes one from class P and one from class A then,
DITC (Q) =9 at level 3. From Figure 7, When class P

and class Q are combined, DITC (P+Q) = 6 at level 2.
So, DITC (P+Q) ≤ DITC (Q) that violates the property
5. Hence, Property 5 (Monotonicity) is not satisfied,
which is not satisfied in DIT metric but satisfied in
NOC metric of Chidamber and Kemerer [13].
See Figure 8, Figure 9 and Figure 10.

P Q

R B C D

A

P+R Q

B C D

A

P

B

C D

Q+R

A

From Figure 8, let class P and class Q be the siblings of
class A and class R be child of class P. suppose class A
has one attribute (say a), class P has one attribute (say
b) and inherited attribute from class A, class Q has one
attribute (say c) and inherited attribute from class A. So,
DITC (P) = 4 and DITC (Q) = 4 at level 2. Suppose,
class R has one attribute (say d) and two inherited
attributes one from class P and one from class A. From
Figure 9, when class P and class R is combined then,
DITC (P+R) = 6 at level 2. When class Q and class R is
combined then, from Figure10, DITC (Q+R) = 12.
Therefore, DITC (P) = DITC (Q) from Figure 8 at level
2, it does not imply that, DITC (P+R) = DITC (Q+R).
Hence, Property 6 (non-equivalence of interaction) is
satisfied. Property 7 requires that permutation of
program statements can change the metric value. This

Figure.6 Class Inheritance tree when class P and class Q are at
different level and one is a child of another

Figure.8 Class Inheritance tree when class P and class Q are
at same level and class R is a child of class P

Figure.7 Class Inheritance tree when class P+Q is combined

Figure.9 Class Inheritance tree when class P +R is combined

Figure.10 Class Inheritance tree when class Q +R is combined

metric is meaningful in traditional program design. In
object-oriented design the ordering of statements within
the class in class inheritance hierarchy at any chosen
level will have no effect in eventual execution. Hence,
property 7 is satisfied. But, it has been suggested that
property 7 is not appropriate for OOD (Object-Oriented
Design) metrics. Property 8 will be satisfied by all
metrics measured at the class level, since they will not
be affected by the names of classes in the class
inheritance hierarchy or the methods or the instance
variables. For any two classes P and Q, such that from
Figure 6 and Figure 7 in case 3 as stated in property 5,
DITC (P) = 4 at level 2 and DITC (Q) = 9 at level 3
(from Figure 6). DITC (P+Q) =6 at level 2 (from Figure
7). Therefore, DITC (P) + DITC (Q) = 13. So, DITC (P)
+ DITC (Q) is not less than DITC (P+Q), it violates the
property 9 (Interaction increases complexity) condition
(DITC (P) + DITC (Q) < DITC (P+Q)). Hence, property
9 is not satisfied, which is also not satisfied in DIT and
NOC metric of Chidamber and Kemerer [13].

6.2 Differences among the inheritance metrics
studied
DIT metric is the maximum distance from the node to
the root of the tree (ignoring any shorter paths in case of
multiple inheritance is used), whereas NOC metric
count the number of immediate classes directly
subordinate to a class in the class hierarchy. NOC does
not count the number of non-immediate subclasses in
the class hierarchy since class has influence over all of
its subclasses. Both DIT and NOC are not focused on
the properties of the classes, because deeper a particular
class in the class hierarchy, greater the complexity of
class hierarchy, since more methods and attributes are
involved. None of the above metrics considers the
internal characteristics (variables or methods) of a class.
DITC metric measure the Depth of inheritance tree of a
class of class inheritance hierarchies in terms of sum of
the attributes (private, public, protected & inherited) and
methods (private, public, protected and inherited) at
each level. DITC metric focuses on the properties
(method, attribute) of a class, so it can easily view what
data members and functions can be inherited by the
class and which super class/ super interfaces bring these
members.
See in Table 3 (shown in Appendix), Analytical
Evaluation results of inheritance metrics against
Weyuker’s axioms [18].

6.3 Observations
Certain interesting observation from Table 1 (shown in
Appendix) can be made. According to the mean
statistics classes in hierarchy H6 at any chosen level are
most likely to inherit more member functions (or
methods) and attributes, thus making it more complex to
predict the behavior of classes in hierarchy H6 and more
development time will be required to analyze the class
at this level in terms of design and coding, than in H7,
H1, H8, H4, H5, H10, H9, H2, H3. High mean value of
H6 indicates, greater possibilities of reusing inherited
methods or attributes or both at lowest level in H6
implying greater DITC of particular class in H6 and
harder to maintain that class in hierarchy, since more
methods, attributes and classes are involved. The same
is true for Median (first H6 then H5 and H4, H9 and H1,
H10 and H2, H7, H8, H3) and Standard Deviation
(S.D.) statistics (first H8 then H7, H3, H5, H4, H2, H1,
H10, H9, H6). According to both Mean and Median
statistics Hierarchy H6 is most likely to inherit more
member functions (or methods) and attributes.
Now consider the entries in Table 2 (shown in
Appendix). The proposed metric DITC correlates very
well with development time (DEV) (first row of Table
2) and can be used as a good predictor for it. In all the
columns, the entries corresponding to DITC metric is
the highest except in one case for hierarchy H8 where
DIT performs slightly better than DITC.

7. Conclusion and Future scope
An attempt has been made to define a class inheritance
metric based upon the sum of the number of attributes
(private, public, protected & inherited) and methods
(public, protected, private & inherited) to measure the
Depth of Inheritance Tree of a Class for class
inheritance hierarchy at each level. In the work
presented here, the goal was to find the effect of the
different class inheritance metrics values at each level
upon the development time (DEV). The approach taken
was analytical and empirical. The DIT metric of
Chidamber and Kemerer [13] was used to derive from
DITC Metric (DIT=L) as stated in Section 4. The
object-oriented language used in the data set was C++.
As seen from Table 2, the DITC metric is a good
predictor of development time since the correlation is
very high in all the cases.
It must be mentioned that the programs used for the
study were very small compared to large industry
system. Therefore in terms of future scope, we plan to

study some fundamental issues. Some more program
parameter has to be incorporated to DITC metric for
satisfying the Weyuker’s property 5 and property 9.
Also further characteristics of classes need to be studied
to establish an empirical relationship between the
different class inheritance metric and proposed one
w.r.t. to development time and behavior of the classes.
The future work will be towards further validation with
an extended set of classes and further evaluation of
proposed DITC metric will in turn improvement of the
quality of classes.

References

[1] Alshayeb. M and Li. W, “An Empirical Validation of Object-

Oriented Metrics in Two Different Iterative Software Processes”,
IEEE Trans. on Software Engineering, 29, 11 (2003) 1043-1049.

[2] Arisholm. E, Briand. L. C., Foyen, “A Dynamic coupling
measures for Object-Oriented Software”, IEEE Trans. on
Software Engineering, 30, 8 (2004) 491-506.

[3] Basili. VR, Briand. L. C, Melo. WL, “A validation of object-
oriented design metrics as quality indicators”, Technical report,
University of Maryland, Department of Computer Science,
1995; 1-24.

[4] Bhattacherjee. V, Rajnish. K, “ Class Complexity-A Case
Study”, Proceedings of First International Conference on
Emerging Application of Information Technology(EAIT-2006),
Kolkata,India,2006, pp. 253-258.

[5] Bieman. J. M and Kang. B.K, “Cohesion and Reuse in an
Object-Oriented System”, in Proc. Symp. Software Reliability,
(1995) 259-26.

[6] Booch.G, Object-Oriented Design and Application,
Benjamin/Cummings, Mento Park, CA, 1991.

[7] Briand. L. C, Daly. J. W and Wust. J. K, “A Unified Framework
for Cohesion Measurement in Object-Oriented Systems”,
Empirical Software Eng., 1, 1 (1998), 65-117.

[8] Briand. L. C and Wust. J. K,“Modeling Development Effort in
Object-Oriented Systems Using Design Properties”, IEEE Trans.
on Software Engineering. , 27, 11(2001), 963-986.

[9] Brotoeabreu. F, “The MOOD Metrics Set”, in Proc. ECOOP’95
Workshop Metrics, 1995.

[10] Chae.H.S, Kwon. Y. R and Bae.D. H, “A Cohesion Measures for
Object-Oriented Classes”, Software practice and Experiences,
30, 12 (2000), 1405-1431.

[11] Chae. H. S, Kwon. Y. R and Bae. D. H, “Improving Cohesion
Metrics for Classes by considering Dependent Instance
Variables”, IEEE Trans. on Software Engineering, 20, 6 (1994),
476-493.

[12] Chidamber. S. R and Kemerer. C. F, “Towards a Metric Suite
for Object-Oriented Design”, in Proc. Sixth OOPSLA Conf.,
(1991), 197-211.

[13] Chidamber. S. R and Kemerer. C. F, “A Metric Suite for Object-
Oriented Design”, IEEE Trans. on Software Engineering, 20,
6(1994), 476-493.

[14] Churcher. N. I and Sheppered. M. j, Comments on “A Metric
Suite for Object-Oriented Design”, IEEE Trans. on Software
Engineering.,21 (1995), 263-265.

[15] Daly. J, Brooks. A, Miller. J, Roper. M, Wood. M, “Evaluation
inheritance depth on the maintainability of object-oriented
software”, Empirical Software Engineering 1996; 1(2): 109-132.

[16] Emam. K. EL, Benlarbi. S, Goel. N and Rai. S. N, “The
Confounding Effect of the Class Size on the Validity of Object-

Oriented Metrics”, IEEE Trans. on Software Engineering, 27,
7(2001), 630-650.

[17] Evanco. W. M, Comments on ““The Confounding Effect of the
Class Size on the Validity of Object-Oriented Metrics”, IEEE
Trans. on Software Engineering, 29, 7 (2003), 670-672.

[18] E.J.Weyuker. “Evaluating Software Complexity Measures”,
IEEE Trans. on Software Engineering, 14, 1998, 1357-1365.

[19] Fenton. NE, Neil. M, “Software metrics: Successes, failures and
new directions”, The Journal of Systems and Software 1999;
47(2-3):149-157.

[20] Harrison. R, Counsell. SJ, Nithi. RV, “An evaluation of the
MOOD set of object-oriented software metrics”. IEEE Trans. On
Software Engineering 1998; 24(6):491-496.

[21] Henderson-Sellers. B and Edwards. J. M, “Books Two of Object-
Oriented Knowledge: The Working Object”, Prentice Hall,
Sydney, 1994.

[22] Hitz. M, and Montazeri. B, Correspondence, Chidamber and
Kemerer’s Metrics Suite: “A Measurement Theory Perspective”,
IEEE Trans. on Software Engineering, 22, 4(1996), 267-271.

[23] Internal Reports, Department of Computer Science & engg. Birla
Institute of Technology, Ranchi, India.

[24] Kabaili. H, Keller. R. K and Lustman. F, “Cohesion as
Changeability Indicator in Object-Oriented System”, in Proc.
Fifth European Conf. Software Maintenance and Reengineering,
2001.

[25] Kitchenham. B, Pfleeger. SL, Fenton. NE, “Towards a
framework for software measurement validation”, IEEE Trans.
On Software Engineering 1995; 21(12):929-944.

[26] Li. W,”Another metric suite for object-oriented programming”,
The Journal of Systems and Software 1998; 44(2): 155-162.

[27] Lorenz. M, and Kidd. J, “Object-Oriented Software Metrics”: A
Practical Guide, 1994.

[28] Mahanti,. P. K, Rajnish. K and Bhattacherjee. V, “Measuring
Class Cohesion: An Empirical Approach”, Proceedings of ISCA
19th International Conference on Computer Applications in
Industry and Engineering (CAINE-2006), November 13-15, Las
Vegas, Nevada, USA, pp. 193-198.

[29] Pratap. R,“Getting Started with MATLAB-VI”, Oxford
University Press, 1998.

[30] Rajnish. K, Bhattacherjee. V, “Maintenance of Metrics through
class Inheritance hierarchy”, proceedings of International
conference on Challenges and Opportunities in IT Industry”,
PCTE, Ludhiana, 2005, pp.83.

[31] Rajnish. K, Bhattacherjee. V,” A New Metric for Class
Inheritance Hierarchy: An Illustration”, proceedings of National
Conference on Emerging Principles and Practices of Computer
Science & Information Technology”, GNDEC, Ludhiana, 2006,
pp 321-325.

[32] Rajnish. K, Bhattacherjee. V,”Complexity of Class and
Development Time: A Study”, Journal of Theoretical and
Applied Information Technology (JATIT-2K6), Asian Research
Publication Network, Vol. 3, No.1, June-Dec-2006, pp. 63-70.

[33] Rajnish. K, Bhattacherjee. V, “Cohesion Metric for Object-
Oriented Design”. Proceedings of Second National on
Innovation in Information and Communication
Technology(NCIICT-2006), July 7-8, PSG College of
Technology, Coimbatore, India, pp. 73-78.

[34] Rajnish. K, Bhattacherjee. V, “ Class Cohesion and development
Time : A Study”, Proceedings of National Conference on
Methods and Models in Computing(NCM2C-2006), December
18-19 2006, School of Computer and Systems Sciences, JNU,
New Delhi, India, pp. 26-34.

[35] Rajnish. K, Bhattacherjee. V, “Class Cohesion: An Empirical
and Analytical Approach” International Journal of Science and
Research (IJSR), Victoria, Australia, Vol.2, No.2, 2007, pp. 53-
62.

[36] Rajnish. K, Bhattacherjee. V, “Class Inheritance Metrics and
development Time: A Study”, International Journal Titled as

“PCTE Journal of Computer Science”, Vol.2, Issue 2, July-Dec-
06, pp. 22-28.

[37] Rajnish. K and Bhattacherjee. V, “Object-Oriented Class
Complexity Metric-A Case Study”, Proceedings of 5th Annual
International Conference on Information Science Technology
and Management (CISTM), 2020 Pennsylvania Ave NW, Ste
904, Washington DC, published by the Information Institute,

USA, July 16-18, Hyderabad, 2007, pp.36-45
http://www.cistm.org.

[38] Rajnish. K, Bhattacherjee. V, “Applicability of Weyuker
Property 9 to Object-Oriented Inheritance Tree Metric-A
Discussion”, proceedings of IEEE 10th International Conference
on Information Technology (ICIT-2007), published by IEEE
Computer Society Press, pp. 234-236, December-2007,
http://ICIT2007.home.comcast.net/ , http://www.computer.org

Appendix

Figure 11. Statistics of the DITC metric for different class Inheritance Hierarchies.

Figure 12. Statistics of the DITC Metric for the Mean ,Median and Standard Deviation of different C++ Class Inheritance Hierarchies.

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Mean 9.8571 6.5 5.75 9.3333 8.2 12.2 10 9.75 7.667 8
Median 8 7 2 10 10 13 4 3.5 8 7
Std.Dev 5.3675 5.5076 8.1803 6.0277 6.0992 4.3665 12.166 13.53 4.5092 5.099

Table 1: Descriptive Statistics for the DITC Metric Analysis of Different Class Hierarchies

Table 2: Correlation Coefficient of Class Inheritance Metrics at each level in the Class Inheritance Hierarchies w.r.t.

Development Time (DEV)

Table 3: Analytical Evaluation Results for DITC, DIT and NOC Metrics Against Weyuker’s Properties

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

DITC 0.8850 0.9540 0.9878 0.9099 0.9845 0.8296 0.9987 0.9679 0.9921 0.9309

DIT 0.1357 0.2208 0.9206 0.8660 0.5514 0.6660 0.9245 0.9780 0.9820 0.9535

NOC 0.2195 -0.2208 -0.9206 -0.5 -0.5183 -0.7276 -0.9912 -0.9540 -0.7559 -0.7303

Weyuker’s Properties
No.

DITC DIT NOC

1 √ √ √

2 √ √ √

3 √ √ √

4 √ √ √

5 X X √

6 √ √ √

7 √ √ √

8 √ √ √

9 X X X

√ indicates that the metric satisfies the corresponding property.
X indicates that the metric does not satisfy the corresponding property.

