
MULTI-THREADING AND SHARED-MEMORY POOL TECHNIQUES
FOR AUTHORIZATION OF CREDIT CARD SYSTEMS USING JAVA

SITI HAFIZAH AB. HAMID1

MOHD HAIRUL NIZAM M. NASIR2

WONG YEW MING3

HAZRINA HASSAN4

Faculty of Computer Science and Information Technology
University of Malaya, 50603 Kuala Lumpur, Malaysia

1sitihafizah@um.edu.my
2hairulnizam@um.edu.my
3yew.ming@yahoo.com

4hazrina.hassan@yahoo.com

Abstract. This research paper presents a framework and solution for improving the efficiency of the
authorization processing of credit card transactions using multi-threading and shared-memory pool tech-
niques. Through the use of both techniques, a prototype of a real-time multi-threaded authorization sys-
tem has been developed with Java platforms to overcome the slow sequential authorization processing of
a single-threaded model of current credit card authorization systems. Via multi-threading technique, it
allows parallel execution of the validation functional units involved during the authorization process of
credit card transaction through multiple threads. It also enables a separate thread to be executed in the
background of the process to perform data synchronization maintained in the shared-memory pool with
the main system database. Shared-memory pool has been used to provide a global point of access to the
card information kept in the random access memory. During the authorization process, the respective
worker thread performs a binary search to obtain the authentication data from the shared memory instead
of the system database to hasten the authorization process of credit card transactions. Performance-
testing has been carried out to measure the efficiency of a fixed number of credit card authorization
processes running between the single-threaded and the multi-threaded authorization systems in a work-
station using similar hardware capabilities. Specially-embedded tools are incorporated in the payment
gateway applications to obtain the length of end-to-end execution.

Keywords: credit card, authorization system, multi-threading technique, shared-memory pool

(Received May 05, 2008 / Accepted July 16, 2008)

1 Introduction

Credit card authorization is a process whereby the card
issuer decides whether to approve or decline requests
to accept transactions performed by a cardholder based
on a series of validation of card risk-management pro-
files to verify that the cardholder’s account is open, the
transaction amount is within the available credit limit
and comes from the legitimate card, and many other

related validation parameters [8]. The validation of a
card’s risk management profile can be classified in two
categories, namely card restriction validation and online
fraud validation [1].

Card restriction validation includes financial and non-
financial verification related to the card whereas on-
line fraud validation involves cryptographic operation
through a host security module (HSM) to verify the se-

mailto:sitihafizah@um.edu.my
mailto:hairulnizam@um.edu.my
mailto:yew.ming@yahoo.com
mailto:hazrina.hassan@yahoo.com


curity aspect of the authorization in order to determine
the legitimacy of the card. HSM is an external device
connected to the authorization host that keeps the card
issuer’s secret information in tamper-resistant hardware
which is used to perform verification of the credit card
transaction[19]. Owing to various validations during
the authorization process for each transaction, it takes
some time for a whole process to be completed. With
old payment-processing methods of the conventional
system, credit card transactions take longer during au-
thorization processing [16].

This paper looks at the current issues surrounding
credit card authorization processes. It concludes that a
multi-threaded authorization system with shared-memory
pool is needed to improve the response time of the pro-
cess and to overcome the slow sequential authorization
processing problem of a single-threaded model for cur-
rent credit card authorization systems. The proposed
multi-threaded authorization system was developed with
JAVA, and the performance of the multi-threading im-
plementation measured.

This paper is divided into seven sections. The first
introduces the credit card authorization process in gen-
eral and highlights some issues. The second section
gives a brief overview of various methods of authoriza-
tion, while the third section discusses issues relating to
the current credit card authorization process. The fourth
section presents a system analysis and architectural de-
sign of a real-time multi-threaded authorization system.
The sixth section gives an evaluation in terms of per-
formance between multi-threaded and single-threaded
authentication engines. Section 7 concludes.

2 Overview

There are various methods proposed for improving the
response time of the authorization process of credit card
transaction. These include invention of host security
modules (HSM), implementation of distributed autho-
rization systems, utilization of cardholder-initiated trans-
actions devices and deployment of digital network ac-
cess system devices. Each method is elaborated in the
following sub-sections.

2.1 Host Security Module (HSM)

HSM is the external device which is used to securely
generate and store long-term secrets for use in cryptog-
raphy and physically protect the access to and use of
those secrets over time. These secrets include the pri-
vate keys used in symmetric key protection and public

key cryptography. HSM is implemented because hard-
ware implementation is the only way to achieve speeds
beyond the reach of general-purpose microprocessors
[4].

HSM is therefore used as a cryptographic accelera-
tor to hasten the intensity of mathematical operations,
especially in public key encryption, and provide better
performance than normal software-based cryptographic
systems [7]. The functionalities of HSM include ver-
ification of an on-line Personal Identification Number
(PIN) by comparison with an encrypted PIN block, val-
idation of credit card transactions by the checking of
card security codes and performance of a host-processing
component of a Europay MasterCard Visa (EMV) based
transaction. HSM also supports cryptographic opera-
tions in smart card application during personalization
and performs PIN block translation that involves en-
cryption and decryption processes. The only problem
with HSM apparently is that there is no global standard
in the low-level communication data exchange proto-
col owing to the re-engineering cost and marketdomi-
nance. Hence, there are only common principles shared
among HSM software developers and the current avail-
able credit card authorization systems have been tied up
to specific HSM types for cryptography processing.

In recent years, the introduction of an HSM that
supports Ethernet devices is gaining popularity because
of its higher speed of data transmission during cryp-
tographic processing [14]. In short, HSM provides the
industry with a leading performance which significantly
reduces credit card transaction processing time and low-
ers the cost per transaction [18].

2.2 Distributed Authorization System

A patented method of distributed authorization system
has been proposed in the last decade to accelerate the
authorization process. This distribution authorization
system utilizes a host computer communicating with a
network of remote electronic terminals from the host
computer. It includes storing negative file data in the
electronic terminal containing information used to iden-
tify accounts for which requested transactions are to be
denied, and storing authorization file data in the elec-
tronic terminal containing information used to deter-
mine whether to authorize a requested transaction. Upon
entry of a transaction request, the data are checked against
the terminal negative file data and immediately denied
if the card account is contained in the terminal’s nega-
tive file. If the transaction is not denied, authorization
logic is performed in the electronic terminal, resulting
in terminal output denying the request, authorizing the



request, or establishing an electronic connection from
the terminal to the host computer to obtain authoriza-
tion from the host computer. In the establishment of
this connection, account data are transmitted from the
host back to the remote electronic terminal, resulting in
terminal output either denying the request or authoriz-
ing the request. Also, during such connection, the ter-
minal’s authorization file is updated with account data,
transmitted from the host computer to the electronic ter-
minal. The completed transaction is stored in a terminal
transaction queue file residing in the terminal for sub-
sequent transmission to the host computer, and for use
with a transaction request is subsequently entered at the
terminal for the same account [10].

The increasing number of terminals and credit cards,
however, will increase the network traffic and it is costly
to maintain this information at the network level. More-
over, the card issuer has less control over the autho-
rization profile. This would result in some information
not being updated instantly into the network and could
cause a bad credit account. There is also a higher po-
tential risk of fraud that would cause financial loss in
the event of a lost card.

2.3 Cardholder-Initiated Transaction Device

This approach allows end-user cardholders by means of
their own card devices to authenticate POS terminal de-
vices in a way substantially different from the existing
EMV protocol. The EMV protocol is often used for au-
thenticating user transmissions to Point-of-Sales (POS)
terminal devices. In contrast, the invention performs
authentication of the parties to a prospective transaction
at the same time that it also transfers the message data
necessary to carry out the authorization of the transac-
tion through the POS terminal device. If both of the
authentications are successful, the exchanged authenti-
cation data and transactions data sent between devices
is used to complete the transaction. By this technique,
the authentication of the card and terminal greatly re-
duce the time required to perform the transaction [15].

In this approach, three sets of messages, namely
purchase request message, invoice message and acknowl-
edgement message, each comprising a series of data
packets, are transmitted to effect a financial transaction.
This approach lets the card device initiate randomized
challenges included in the purchase request message to
the terminal. Then the terminal returns an authentica-
tion reply included in the invoice message. Next, card-
holder apparatus validates the terminal authentication
reply and sends an authenticated response to the finan-
cial transaction terminal, where it is yet again validated

through real-time online authorization. The response
of the authorization is sent through an acknowledgment
message to complete the transaction. This approach
claims to reduce to 25 percent the usual time taken to
complete an electronic transaction which averages 15
to 30 seconds.

2.4 Digital Network Access System Device

The approach generally describes a system for data trans-
mission across what are commonly known as telephone
lines, and more particularly, to a system for authoriza-
tion of financial card transactions. Retail establishments
are usually equipped with a terminal containing a mo-
dem which is connected to a local telephone line. A
portion of the credit card is normally passed through a
slot in the terminal at which time identification informa-
tion is collected from the card. The terminal then auto-
matically dials a previously programmed phone number
to begin the authorization process. The number called
by the authorization terminal will be an answering mo-
dem and this answering modem may be connected to a
packet multiplexer that may be connected through an-
other line to a host computer. When the answering mo-
dem takes the call from the authorization terminal mo-
dem, the identification information is transmitted across
the line. The host computer processes this informa-
tion and transmits back to the authorization terminal
whether or not the credit card has been approved for
this transaction.

Even if the telephone number which the authoriza-
tion terminal modem dials is a local number, the retail
establishment is still charged a nominal rate for each lo-
cal call. In this regard, the modems were provided with
ground start interfaces which allowed the call coming
from the retailer to be answered by the answering mo-
dem before the answering modem actually rang [5].

This approach takes advantage of relatively new trunk
interfaces known as feature groups. The retailer’s au-
thorization terminal modem initiates a call through a
local exchange office and from the exchange office the
call is directed to an access tandem (AT) switch to gain
access to long-distance service. From the access tan-
dem, the information is transferred across a feature group
trunk to a Network Access System (NAS) device which
demultiplexes and demodulates the signal. NAS works
in conjunction with a plurality of asynchronous RS-232
interfaces and one or more micronodes which act as a
packet switch for formatting and error-checking. NAS
and the micronodes system are entirely digital and do
not require analog-to-digital conversion capabilities.

From the micronodes, the transaction data are trans-



ferred through a value-added network protocol such as
TCP/IP and are ultimately received by a host computer.
The usage of the digital device results in a faster pro-
cessing time that translates into less usage of telephone
lines and therefore less cost per call.

3 Issues Relating to Current Credit Card Au-
thorization Process

The common emphases of the authorization process of
credit card transactions are performance and security.
The performance aspect concerns the time taken to au-
thorize and complete a sales transaction whereas the se-
curity aspect is concerned with fraud prevention and
confidentiality of financial information [1]. With in-
creasing numbers of account and transaction volumes,
these two aspects remain a major dilemma for the credit
card authorization process.

3.1 Performance versus Security

Current research focuses on the security aspect of the
authorization process of credit cards. This is because
the number of fraudulent cases is growing dramatically
and it has become a serious problem faced by credit
card issuers. In 2004, credit card transactions had a total
loss through fraud of 800 million dollars in the United
States while in the United Kingdom, the loss amounted
to 425 million pounds [17].

In [9], various fraud detection techniques have been
proposed to combat fraud such as the use of smart cards
and also implementing fraud detection systems using
data mining techniques., Increasing security will, how-
ever, bring a downside to performance when it is im-
plemented using more advanced technology. The trade-
off for the authorization process when security is im-
plemented with advanced techniques like the smart card
means higher transmission bytes to the server and longer
processing time to perform verification. According to
an article in Motor Traders, the Managing Director of
ProJET Malaysia, Matthew Selbie, has said that chip-
based transaction will take a second or two longer than
the usual magnetic stripe transaction to complete veri-
fication after deployment of the new devices to accept
chip-based transactions in the petrol stations [20]. Be-
sides that, implementation of advanced risk analysis tech-
niques using the computer intellect will also contribute
to the processing time, which may result in performance
degradation.

The size of the database for managing the authenti-
cation data is also increasing enormously with the usage

of more advanced technology such as the smart card.
Achievable performance levels off relatively quickly when
the dataset is increasing. As a result, the verification
performance decreases monotonically and appears to
saturate when database size increases [3].

3.2 Performance versus Volume

According to Bank Negara Malaysia’s (BNM) Annual
Report [2], the number of credit cards in circulation in
Malaysia reached a total of 6.6 million at the end of
2004 with total transactions amounting to RM34.9 bil-
lion. In recent years, there has also been a dramatic
growth in credit card usage among college students. It
can be seen that the credit card usage is not only re-
stricted to elite groups, as this phenomenon is spreading
among graduates [11].

The credit card authorization systems that most banks
are using are more than fifteen years old, hard-coded,
rigid and time-consuming to change. Furthermore, many
of these systems are at capacity and struggling to keep
up with the large increase in card payment volume. Many
systems lack embedded business rules or workflow en-
gines, resulting in, among other things, inefficient risk
management operations [13]. As a consequence, some
of the transactions have no chance of being processed
with conventional architecture design during high si-
multaneous transaction flows.

According to Tim Kelly, director of TSYS, transac-
tion delays in the COBOL-based programs running on
mainframe affect the business hugely when the transac-
tion flow is high [12]. To cater for this scenario, some of
the banks have begun to upgrade the existing card pro-
cessor application to a new enhanced processing plat-
form. For instance, one of the largest banks in Ger-
many, VÖB-ZVD Bank, has appointed Atos Origin to
implement its new authorization solution named World-
line Pay. With the implementation of the new solution,
VÖB-ZVD Bank hopes to achieve high performance
authorization platforms that enable the bank to meet the
demands of the market and the clients, and can reliably
handle the future number of transactions [6].

Many banks are using home-grown authorization sys-
tems that are more than fifteen years and in need of
functional and technical upgrades. The card authoriza-
tion systems that most banks have in place are rigid, at
capacity in terms of account and transaction volume and
difficult to change in the face of changing regulations
and market conditions [13]. Currently, there are a few
big market players providing authorization system solu-
tions to the credit card companies. Most of these autho-
rization systems are parameter-driven in order to give



flexibility to the authorization process and meet the de-
mand of the market [13]. There is still, however, room
for improvement, as indicated in the latest industry sur-
vey report on the payment solution to cater for payment
transaction volume.

Based on the existing research, the current credit
card authorization systems do not utilize the multi -
threading technique as part of their architecture design.
Most of the systems are using Oracle as their database
management system and none is using the shared-memory
pool for authorization purposes. Apart from that, ad-
vanced language such as Java is not the most commonly-
used in the current architecture of credit card authoriza-
tion systems.

Performance is therefore still an issue that requires
improvement, given the increasing number of transac-
tions and implementation of greater security features.
Moreover, there are many home-grown credit card au-
thorization systems still using old technologies to per-
form authorization that could not support high transac-
tion flow. Multi-threading should therefore be deployed
as one of the techniques to improve the response time
of the credit card authorization process, since modern
operating systems with advanced multi-core processors
have supportive multi-threading implementation.

4 System Analysis and Architecture

The functionalities of a proposed authorization credit
card system can be categorized in two main broad com-
ponents, namely front engine and back office compo-
nents. The front engine component is the authentica-
tion engine of the credit card authorization system. This
component consists of four modules, namely listener
module, worker thread module, authorization module
and shared-memory module. The listener module con-
tains functionalities that include activate listener ser-
vice, activate worker thread-pool, activate child thread-
pool, activate shared-memory pool and accept socket
connection. The worker thread module contains func-
tionalities that include handle socket connection, parse
authorization message, display authorization message,
update authorization message, build authorization mes-
sage, save authorization message, update card balance,
save card changes and close socket connection. The
authorization module contains functionalities related to
card restriction validation and online fraud validation.
Card restriction validation consists of check card exis-
tence, check card status, check card activation status,
check card expiration date, check card usage and check
card balance, whereas online fraud validation consists
of check card security code, check card identification

number, check personal identification number, check
chip application cryptogram. The functionalities of on-
line fraud validation are performed through child threads.
Shared-memory module contains functionalities that in-
clude activate synchronization service, search modified
card information and update card information.

On the other hand, the back office component stores
the authentication data used in authorization of credit
card systems. This component consists of user manage-
ment and card management. The functionalities related
to the user management include display user informa-
tion, save user information and validate user informa-
tion, whereas card management consists of display card
information, display card activity, display card history,
save card information, update card information, search
card information and save card changes.

5 Architectural Design

The architectural design of multi-threaded authoriza-
tion engines of credit card systems consists of front en-
gine and back office. These two components will in-
teract with the system database to store and retrieve
application-related data. Apart from the system main
components, there are a few sub-systems that have com-
munication with the authorization of credit card system
and include host security module (HSM) server, point-
of-sale (POS) server, automated teller machine (ATM)
server and electronic commerce (E-Commerce) server.
The architectural design of multi-threaded authoriza-
tion engines of credit card systems consists of front en-
gine and back office. These two components will in-
teract with the system database to store and retrieve
application-related data. Apart from the system main
components, there are a few sub-systems that have com-
munication with the authorization of credit card system
and include host security module (HSM) server, point-
of-sale (POS) server, automated teller machine (ATM)
server and electronic commerce (E-Commerce) server.

All these sub-systems will communicate with autho-
rization of credit card through TCP/IP protocol. The
message format that is used for communication between
the authorization system and HSM server is specific
proprietary command, whereas for the other sub- sys-
tems the message format that is used to communicate
with the authorization system is ISO 8583. ISO 8583 is
the standard interchange message specification defined
by the International Organization for Standardization
(ISO) for electronic transactions made by cardholders
using payment cards.



5.1 How Does Multi-Threaded Architecture Work?

As illustrated in Figure1 below, thread-pool models have
been used to handle concurrent authorization requests
from the payment gateway and a shared- memory pool
is implemented in conjunction with the multi-threading
technique to hasten the authorization processing. A shared-
memory pool is implemented in this project to reduce
the time spent searching card information from the sys-
tem database, which involves expensive I/O operation
compared with obtaining similar information through a
shared- memory pool stored in random access memory
by use of a binary search.

Figure 1: Multi-threaded Authorization Engine

There are two thread-pools implemented in the sys-
tem, namely worker thread-pool and child thread-pool.
When listener service is activated, all the worker threads
and child threads are constructed and started in their re-
lated thread-pools through listening thread. Addition-
ally, all the card information is loaded to the shared-
memory pool before the authorization request can be
serviced. The worker threads in the pool are combined
with a work queue. The work queue signals waiting
worker threads each time a new authorization job ar-
rives to get the relative waiting threads to process the

authorization request immediately. Each authorization
job is mapped to a client connection. The assigned
worker thread gets a socket from the queue and serves
the request on that socket until connection is closed.
Once an authorization job is accepted, the worker thread
will acquire mutex lock not only to synchronize the ac-
cess to the shared data area but also to accelerate the
processing in thread-pool environment. In avoid star-
vation situation, the timer has been set to release the
mutex after a pre-defined period elapses.

The worker thread assigned to each authorization
process of credit card transaction will begin to read raw
buffer message in ISO8583 format from the socket con-
nection accepted and proceed with message parsing to
obtain all the elements. Once the message is parsed,
the worker thread will perform card restriction valida-
tion and online fraud validation based on the element
present in the message. The worker thread begins to
assign several child threads to perform cryptographic
operations in online fraud validation and the number of
child threads assigned for online fraud validation is in
accordance with the number of cryptographic elements
present in the credit card transaction itself. Similarly to
worker threads, child threads in the pool are also com-
bined with a child queue. Each assignment of child
thread is put in the child queue and the child queue
will signal available waiting child threads each time the
cryptographic task is added. The assigned child thread
will remove the cryptographic task and proceed with
its validation through HSM. These cryptographic op-
erations encompass card security code validation, card
identification number validation, personal identification
number validation and chip application cryptogram val-
idation.

Once all the child threads have been assigned for
these cryptographic operations, the worker thread it-
self will perform an operation pertaining to card restric-
tion validation. This operation is done in parallel with
the child threads handling the cryptographic processing.
The card restriction validation includes card existence
validation, card status validation, card activation status
validation, card expiry date validation, card usage val-
idation and card balance validation. All the operations
related to card restriction validation are done through
the shared-memory pool without accessing the system
database.

Once the worker thread finishes its card restriction’s
operation, it waits for a completion signal from the child
threads that perform online fraud validation. Upon re-
ceipt of all the completion signals from the child threads,
all the assigned child threads are put back to the child
thread-pool for the next assignment while the worker



thread will be working on providing a final response
code to the cardholder on whether to approve or de-
cline the transaction based on the result of the entire
validation. If there is any rejection during validation,
the final response code will be based on the first occur-
rence of the rejection. Otherwise, the transaction will
be approved and a unique authorization number ran-
domly generated aspart of the authorization response
message that will be used as reference. Next, the as-
signed worker thread will proceed with building an au-
thorization response message in ISO8583 format. Once
the response message is built, the worker thread will
write the message to the socket and this authorization
response will be sent back to the payment gateway that
originates the transaction.

After the authorization response is sent, the assigned
worker thread will drop the socket connection and pro-
ceed with internal processing. This internal process-
ing includes saving the authorization message into an
authorization table for record purposes and performing
balance updating for the particular card. The balance
adjustment will be updated in both the shared-memory
pool and the system database. Next, the acquired mu-
tex is released and the pending timer set earlier is can-
celled before the worker thread is put back to the worker
thread-pool for its next assignment.

In this project, an additional synchronization thread
is started in the background of the authorization engine
to update any changed information of the card done
through the back office component into the shared- mem-
ory pool. This is implemented to insure the data kept in
shared memory are always synchronous with similar in-
formation stored in the system database.

5.2 How Does a Singleton Design Pattern Operate?

The singleton design pattern is applied to the card ob-
ject which is acting as the shared-memory pool that
holds all the card information for authorization purposes.
Through singleton design pattern, a class is constructed
with only one instance that can be accessed globally
within the multi-threaded credit card authorization sys-
tem. When the listener service is activated, the listening
thread will load all the information on the cards into
random access memory through a configurable array.
After an authorization is received, a worker thread will
obtain the only instance of the card object and perform
a binary search through the related array of the card
objects in order to retrieve the information of the card
related to the transaction from the shared memory for
authorization purposes. In this project, a separate syn-
chronization thread is initialized in the background of

the authorization engine to browse the system database
for any modified card information required to be up-
dated in the shared-memory pool. This is implemented
to insure the data kept in the database are synchronized
with the data in the shared-memory pool. Once mod-
ified card information is loaded to the shared-memory
pool, the synchronization thread will update the system
database to mark that the card has been processed.

5.3 Why Multi-threaded Architecture Is Applied

Through this technique, multiple threads can be run si-
multaneously within the single memory space of the
process and all the threads share the same system re-
sources during the authorization process of credit card
transactions. In the single-threaded credit card autho-
rization system, both card restriction validation and on-
line fraud validation have to be done one after another.
Thus, system resources are not fully optimized because
the waiting time of slow I/O operation, especially dur-
ing the validation of cryptographic elements, is wasted.
This not only causes the authorization to take longer to
process but also degrades the performance of the server,
especially during the heavy traffic in peak hours. In that
case, cardholders might encounter problems getting au-
thorization because of the slow response time from the
credit card authorization system.

Multiple tasks of the authorization process could be
executed concurrently through multiple threads to ac-
celerate the authorization process. If there were two
or more cryptographic operations to be performed dur-
ing the authorization process, the idle time of waiting
I/O operation could be reduced to at least half of the to-
tal time required in processing those operations sequen-
tially. Apart from time, a thread-pool model is applied
to minimize system resources spent in creating and de-
stroying this type of recyclable thread.

Response time could also be further reduced if all
the card information were loaded into random access
memory to let the authorization system obtain infor-
mation from the shared-memory pool through a binary
search instead of accessing similar data from the database
for authorization processing. For all these methods, the
response time of the credit card authorization process
could be significantly improved.

5.4 Why the Singleton Design Pattern Is Used

The singleton design pattern is applied to insure all the
worker threads can access the shared-memory pool for
card information during authorization. Without the sin-
gleton design pattern, shared- memory pool implemen-



tation is not possible in an object-oriented environment.
Through the shared-memory pool, the access time is
faster and hence improves the response time of the credit
card authorization process.

6 System Evaluations

Performance-testing has been used to evaluate the re-
sponse time of the authorization process under different
circumstances. The response time was measured using
the embedded testing tools that were built in as part of
both authorization systems and payment gateway to ob-
tain the time taken before and after a transaction was
sent and received. The measurement unit for response
time was recorded in seconds.

In this project, the response time was evaluated from
two major aspects. These perspectives are an authoriza-
tion system using a multi- threaded authentication en-
gine against an authorization system using single-threaded
authentication engine, and a multi- threaded authenti-
cation engine accessing a shared-memory pool for au-
thentication data against a multi-threaded authentica-
tion engine accessing a system database for authentica-
tion data. In both cases, an incremental testing approach
has been chosen.

For the comparison between the multi-threaded au-
thentication engine and single-thread authentication en-
gine, incremental testing was performed to evaluate the
response time of a group of authorizations performed
sequentially, as shown in Table 1. For this evaluation,
no simultaneous authorization is performed. The next
authorization is sent upon receiving a response from
the previous transaction. The number of worker threads
and child threads that were used in multi-threaded au-
thorization system is three and nine respectively. In this
testing, the result is recorded according to the best re-
sponse time taken in five attempts for each category.
This is done to minimize the impact of the context switch-
ing between multiple threads running in the system over
the result obtained and to ensure the accuracy of the
testing performed.

On the basis of the test result, it is confirmed that the
performance of the multi-threaded authentication en-
gine is better than the single-threaded authentication en-
gine in Java platform. The performance of the multi-
threaded authentication engine is almost double that of
the single-threaded authentication engine in Java plat-
form.

In the second case, the result is plotted as shown in
Table 2 below. The testing was carried out to access the
response time of a group of authorizations performed
one after another using a multi-threaded authentication

Table 1: Test Result of Multi-Threaded and Single-Threaded Au-
thentication Engines

No Multi− Threaded Single− Threaded
10 5.5 9.5
20 10.5 19.0
30 15.9 28.7
40 21.0 38.0
50 26.7 47.8
60 32.7 56.9
70 37.2 66.9
80 41.9 76.4
90 47.5 86.8
100 53.2 95.7

engine accessing a shared-memory pool for authentica-
tion data and a multi-threaded authentication engine ac-
cessing a system database for authentication data. Simi-
larly to the first case, the next authorization is sent upon
receiving a response from the previous transaction and
no simultaneous authorization is performed.

Table 2: Test Result of Authentication Engine Using Shared Memory
and Database

No SharedMemory Database
10 4.9 5.3
20 10.1 10.5
30 14.9 15.6
40 20.3 20.8
50 25.5 25.9
60 30.7 31.1
70 35.6 36.5
80 40.7 41.9
90 45.9 47.5
100 50.1 52.7

On the basis of the test result, the performance of
the multi-threaded authentication engine using shared
memory for authentication data is better than that of the
multi-threaded authentication engine using a database
for authentication data in Java platform. The difference
is insignificant at the earlier stage, but it is more signif-
icant when the number of authorizations is increasing.
From the test result, the number of credit card autho-
rizations that can be processed using shared memory
is 10 percent more than the number of credit card au-
thorizations that can be processed using a database at a
single point of time.

7 Conclusions

This research provides a solution to optimize the per-
formance of credit card authorization systems through



multi-threading technique in JAVA platform. This tech-
nique enables authorization of credit card transactions
to be processed in a shorter time. From a business per-
spective, a fast and reliable authorization process will
generate more revenue to the organization whereas, from
the customer’s point of view, authorization process on
time builds the confidence of the cardholder to use the
credit card as a payment method. In short, this project
provides a win-win situation for both organization and
community since both parties will get the benefits of
implementation from multi- threaded authorization of
credit card systems.

The multi-threaded authorization of credit card sys-
tems implemented in this project also enables several
tasks related to card risk management profile valida-
tion to be executed concurrently during the authoriza-
tion process. This will not only provide better response
time for the authorization process but also enables more
credit card transactions to be processed in a shorter time.

The shared-memory pool is also used in conjunc-
tion with the multi-threading technique. Since multiple
threads are running in a single process space, a shared-
memory pool is implemented to keep all the card in-
formation that will be used for credit card authorization
process in the random access memory area. This is im-
plemented to allow the authorization process to access
the shared-memory pool for card information, which is
faster than accessing similar information from a sys-
tem database because it involves a less expensive I/O
operation. For this reason, a synchronization thread is
introduced to maintain the information in the shared-
memory pool so that any update in the system database
will reflect the shared-memory pool. Through shared-
memory implementation, the response time of the au-
thorization process is further improved.

The multi-threaded architectural design presented in
this project also supports dynamic tuning of the size
of the thread-pool running at runtime. The number of
fixed worker threads and child threads can be adjusted
to insure the utilization of the multiple threads to their
optimal level. This is implemented to insure that the ca-
pacity of the thread-pool matches the necessities of the
application based on the estimated volume and velocity
of the credit card transaction processed in the specified
period.

The user is enabled to monitor authorization traffic
through the screen and navigate to the back office com-
ponent to view the transaction details by clicking the
specific record on the screen. The web-based back of-
fice component is developed in this project so that users
can access the card information from other locations
as long as the internet connection is provided. Both

multi-threaded credit card authorization systems imple-
mented in this project can accept multiple connections
from payment systems at single port numbers. This al-
lows more simultaneous authorizations to be received
through these multiple links for load balancing usage in
future.

References

[1] Agent Systems,Inc. Credit Card Authorization
and Settlement for Customer-Operated POS
Equipment, Agent Transaction Manager, Texas,
2007.

[2] Bank Negara Malaysia. The Payment and Set-
tlement Systems, Annual Report 2004, Kuala
Lumpur, 2004.

[3] Bourlai, T., Kittler, J. and Messer, K. Database
Size Effects on Performance on A Smart Card
Face Verification System. Proceedings of the 7th
International Conference on Automatic Face and
Gesture Recognition FGR ’06, April 10-12, pp.
61-66, 2006.

[4] Chodowiec, P., and Gaj, K. Very compact FPGA
Implementation of The AES Algorithm. Lecture
Notes in Computer Science. Vol. 2779, pp. 319-
333, 2003.

[5] Kennedy, R.A. Financial Card Authoriza-
tion System, Free Patent Online, Com-
puServe, Inc. United States. April 08, 1997.
https://www.freepatentsonline.
com/5619559.html

[6] Computer Business Review. VÖB-ZVD Bank and
Atos Origin to Build New Authorization System,
CBR, London, 2005.

[7] Eslami, Y., Sheikholeslami, A., Gulak, P.G., Ma-
sui, S., and Mukaida, K. An Area-Efficient Uni-
versal Cryptography Processor for Smart Cards.
Very Large Scale Integration (VLSI) Systems,
IEEE Transactions, v.14(1), p43-56, 2006.

[8] Europay, Inc. Authorisation Guide, Belgium, Eu-
ropay Documentation Services, 2003.

[9] Hwang, D.D and Verbauwhede, I. Design of
Portable Biometric Authenticators - Energy, Per-
formance, and Security Tradeoffs. IEEE Transac-
tions on Consumer Electronics, v. 50(4), p1222-
1231, 2004.

https://www.freepatentsonline.com/5619559.html
https://www.freepatentsonline.com/5619559.html


[10] Jewell, T. L. Distributed Authorization
System, Free Patent Online, Gascard,
Inc. United States. January 02, 1990.
https://www.freepatentsonline.
com/4891503.html

[11] Lawrence, F.C., Christofferson, R. C., Nester S.
E., Moser, E. B., Tucker J. A. and Lyons A. C.
Credit Card Usage of College Students:Evidence
from Louisiana State University. Research Infor-
mation Sheet Number 107, LSU AgCenter Com-
munications, Los Angeles, 2003.

[12] Microsoft Corporation. Financial Services Com-
pany Increases Uptime, Cuts Delays, Attracts
New Customers, Microsoft Windows Server Sys-
tem Customer Solution Case Study, New York,
2007.

[13] Moyer, K. R. and Richard J.D.L, MarketScope for
Multiregional Card Management Software, Gart-
ner Industry Research, 2007.

[14] Panato, A., Barcelos, M. and Reis, R. An IP of
an Advanced Encryption Standard for Altera De-
vices. Proceedings of the 15th Symposium on In-
tegrated Circuits and Systems Design, pp. 197-
202, 2002.

[15] Russell, D. Method System for Acceler-
ating Financial Transactions, Free Patent
Online, United States. September 15, 2005.
https://www.freepatentsonline.
com/y2005/0203856.html

[16] Saum, J. DataDirect Shadow Transforms Their
Mainframe Into Re-Usable Web Services, Seattle
Times, Washington, 2007.

[17] Shen, A., Tong, R. and Deng, Y. Application
of Classification Models on Credit Card Fraud
Detection. Proceedings of the 2007 International
Conference on Service Systems and Service Man-
agement, June 09-11, pp. 1-4, 2007.

[18] Thales, Inc. Host Security Module 8000, Thales
e-Security, 2006.

[19] Thales, Inc. Personalisation Preparation, Thales e-
Security, 2007.

[20] Yap, C. All ProJET Stations Accept Chip-Based
Cards, Motor Trader. January 06-12, 2005.

https://www.freepatentsonline.com/4891503.html
https://www.freepatentsonline.com/4891503.html
https://www.freepatentsonline.com/y2005/0203856.html
https://www.freepatentsonline.com/y2005/0203856.html

	Introduction
	Overview
	Host Security Module (HSM)
	Distributed Authorization System 
	Cardholder-Initiated Transaction Device 
	Digital Network Access System Device 

	Issues Relating to Current Credit Card Authorization Process 
	Performance versus Security 
	Performance versus Volume

	System Analysis and Architecture
	Architectural Design
	How Does Multi-Threaded Architecture Work?
	How Does a Singleton Design Pattern Operate?
	Why Multi-threaded Architecture Is Applied
	Why the Singleton Design Pattern Is Used

	System Evaluations
	Conclusions

