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1 Introduction

The secretary problem has become widely known after
addressed by Martin Gardner, on his column of Math-
ematical Games at Scientific American Journal, in an
issue of 1960 (Ferguson [3]).
The problem is: n candidates are interested in occupy-
ing a single secretary position. The candidates are in-
terviewed, in a random order, however, just after each
interview, it is decided to accept or reject the candidate.
If one decides to reject a candidate, he/she cannot be ac-
cepted later and, once accepted, all others are rejected.
Finally, if the first n-1 candidates are rejected, the n-th
candidate is automatically accepted. Stated the prob-
lem, there is the need to answer the following question:
What strategy should be adopted aiming to maximize
the probability of hiring the best candidate? Or, at least,
a sufficiently qualified one?
There are many variations of the secretary problem. Among
them It can be distinguished the cases where the ob-
server (who wants to hire the secretary) is playing against

an opponent. In these cases, the observer wants to hire
the best secretary (lower rank) or, at least, a sufficiently
qualified (low rank). The role of the opponent is to
choose the presentation order of the candidates, in or-
der to maximize the rank of candidate accepted by the
observer. Thus, it minimizes the likelihood of success
of the observer.
In this work three variations of the secretary problem
with one opponent are considered:

1. First variation - The opponent can choose any
line at random of then × n cyclical Latin square
which, in turn, represents the order of the ranks of
the candidates presented for the observer;

2. Second variation- The opponent chooses only the
position of the best candidate;

3. Third variation - The opponent presents, always
with probability 1/2, the best or the worst sec-
retary among those who have not yet been inter-
viewed.



This paper presents models for the three variations of
the secretary problem described above (Section3) from
the strategic point of view for zero-sum finite games for
two players (Section2).
There are no new results in this article. What is new is
a surprisingly elementary approach that allows an intu-
itive comprehension to the problem. Such approach is
strong enough to perform all proofs, even the less trivial
ones. Therefore, one doesn’t need great familiarity with
stochastic optimization to understand this article. This
is the reason for so short reference bibliography. Much
more complete bibliography can be found in Freeman
[5].
Based on the minimax theorem for finite games, the
problem of maximizing the lowest average gain of the
observer, no matter what is the strategy adopted by the
opponent, is represented by a linear programming mo-
del (Section4), whose solution via simplex method pre-
sents not only a good optimal strategy for the observer,
but can also validate an optimum strategy of the ob-
server (Section5). Finally, the conclusions are outlined
in Section 6. This article is based on the works of Fergu-
son [4] and Carvalho [2]. Related results can be found
in Brighenti [1].

2 Strategic Model for Zero-Sum Finite Games
for Two Players

The strategic form of the game is defined by three com-
ponents (Ferguson [4]):

• The set of playersN = {1, 2, 3, ..., n};
• A sequenceA1, ..., An of sets of strategies for the

players;

• Assuming that the player1 chooses the strategy
a1 ∈ A1, the player2 chooses the strategya2 ∈
A2 and so on untilan ∈ An is chosen by the player
n, the gain function (payoff) of the j-th player
(j = 1, ..., n) is denoted byfj(a1, ..., an). There-
fore, the sequencef1(a1, ..., an), ..., fn(a1, ..., an)
of payoff functions for the players is the third com-
ponent of the strategic form of a game.

A game in the strategic form is called zero-sum if the
sum of earnings (payoff) of the players is always zero,
despite of the actions taken by players. That is, the
game is called zero-sum if and only if

n∑

i=1

fi(a1, a2, ..., an) = 0

for all a1 ∈ A1, a2 ∈ A2, ..., an ∈ An.

For zero-sum games with two players, the amount one
wins is exactly what the other looses. The strategic form
can be simplified to a triple(X,Y, Z), where:

• X is the non-empty set of strategies for the player
I;

• Y is the non-empty set of strategies for the player
II;

• A : X × Y → < is the gain functionpayoffof
the player I over the player II. Therefore, after the
simultaneous choice of the strategyx ∈ X by the
player I andy ∈ Y by the player II,A(x, y) is the
amount won by the player I payed by the player II.
If A(x, y) is negative, player I must pay the abso-
lute value of this amount to player II.

If the setsX, Y are finite, we havefinite games. In the
particular case of sum-zero finite games, they are also
calledmatrix games, because thepayoff function can
be represented by a matrix. That is, ifX = {x1, . . ., xm},
andY = {y1, . . ., yn}, then the game matrix orpayoff
matrixAm×n can be represented as follows:

y1 . . . yn

A =




a11 . . . a1n

...
.. .

...
am1 . . . amn




x1

...
xm

whereaij = A(xi, yi).
If player I chooses a line and player II chooses a col-
umn, player II pays player I the correspondent matrix
entry.
The elements of the setsX andY are consideredpure
strategies. A mixed strategieis to choose at random a
pure strategy to be used at each stage of the game.
For example, consider the game where the player I has
m pure strategies and the player II hasn pure strate-
gies. A mixed strategy for the player I can be denoted
by a column vector of probabilitiesp = (p1, p2, . . .,
pm)T . Similarly, a mixed strategy for the player II is
a probability vectorq = (q1, q2, . . . , qn)T . The sets
of mixed strategies of players I and II will be denoted
respectively byX∗ andY ∗, and given by:

X∗ = {p = (p1, p2, . . . , pm)T : pi ≥ 0,

wherei = 1, . . . ,m and
m∑
i=1

pi = 1},
Y ∗ = {q = (q1, q2, . . . , qn)T : qi ≥ 0,

wherei = 1, . . . , n and
m∑
i=1

qi = 1}.

It is worth to observe that them-dimensional unit vec-
tors ek ∈ X∗, where thek-th element is one and the



others are zeros, can be identified as the pure strategies,
the choice of thek-th row in the game matrixA. So, we
can suppose thatX ⊂ X∗.
If p = (p1, p2, ..., pm)T is the mixed strategy adopted
by player I and thej-th column is the choice of player
II, then, on average, thepayoff for player I is:

m∑

i=1

piaij . (1)

Similarly if player II usesq = (q1, q2, . . . , qn)T , and
player I chooses thei-th row, then, on average, thepay-
off for player I is:

n∑

j=1

qjaij . (2)

Generally, if player I uses the mixed strategyp and
player II uses the mixed strategyq, on average, thepay-
off for player I is:

A(p, q) = pTAq =
m∑

i=1

n∑

j=1

piaijqj . (3)

Now, suppose that the player I have discovered, in ad-
vance, the mixed strategyq ∈ Y ∗ of the player II. In
this case, player I can choose thei-th line that maxi-
mizes(2) or, equivalently, he can choose somep ∈ X∗
that maximizes(3). This strategy is known as thebest
answer (or the Bayes strategy) against q:

max
1≤i≤m

n∑

j=1

aijqj = max
p∈X∗

pTAq. (4)

To prove the equality (4) it is sufficient to note that the
right side of equality is the maximum ofpTAq among
all p ∈ X∗. Then, sinceX ∈ X∗, the left hand side
must be less than or equal to the right hand side:

max
1≤i≤m

n∑

j=1

aijqj ≤ max
p∈X∗

pTAq.

Moreover, as (3) is the average amount in (2), the maxi-
mum value of (2), precisely the left side of (4), must be
greater than or equal to

max
p∈X∗

pTAq= max
1≤i≤m

n∑

j=1

aijqj ≥ max
p∈X∗

pTAq.

Then, max
1≤i≤m

n∑

j=1

aijqj = max
p∈X∗

pTAq.

Now suppose that the new determination of the game
is obligatory disclosure of the strategy of the player II

to the player I. In that case, knowing the possibility of
the player I to use Bayes strategies, player II may re-
sort to a strategy calledminimax strategy, to minimize
his/her maximum average loss, regardless of the strat-
egy adopted by the player I:

V̄ = min
q∈Y ∗

max
1≤i≤m

n∑

j=1

aijqj (5)

= min
q∈Y ∗

max
p∈X∗

pTAq

whereV̄ is calledsuperior value of the game(X, Y ,
A).
Regarding player II, the reasoning is similar to player I.
Then itsbest reply (or the Bayes strategy) against p
is defined by:

min
1≤j≤n

m∑

i=1

piaij = min
q∈Y ∗

pTAq (6)

and the minimax, strategy is given by

V
−

= max
p∈X∗

min
1≤j≤n

m∑

i=1

piaij (7)

= max
p∈X∗

min
q∈Y ∗

pTAq,

stands for thelower value of the game.
To prove the existence of the superior value for finite
games, it is worth noting that (4), the maximum ofm
linear functions ofq, is a continuous function ofq and,
sinceY ∗ is a closed set, this function necessarily as-
sumes its minimum overY ∗ at some point ofY ∗ (Fer-
guson [4]). Regarding the lower value of the game
(X,Y,A), the reasoning for its existence is similar to
the superior value.
The proof forV

−
≤ V̄ can be done by absurd since,

assuming the hypothesisV
−
> V̄ , it means that player II

can lose on average more thanV̄ or player I can earn on
average less thanV

−
. It is a contradiction. Finally, the

minimax theorem states that, for finite games,V
−

= V̄

(Ferguson [4]). In this caseV = V
−

= V̄ is called

thevalue of the gameand the mixed strategies used by
the players that ensure their return are calledoptimal
strategies. If V is zero we say that the game is fair.
If V is positive, the game is favorable to the player I,
and ifV is negative, the game is favorable to the player
II. Solving a game means finding its value and, at least,
one optimal strategy for each player.



3 Strategic Models for the secretary problem
variations

First variation . Since the opponent can choose any
row at random from the cyclical Latin squaren × n,
then forn candidates to be ordered by the opponent,
the cyclical Latin square is presented as follows:




1 2 3 · · · n− 1 n
n 1 2 · · · n− 2 n− 1

n− 1 1 2 . . . n− 3 n− 2
...

...
...

. ..
...

...
2 3 4 · · · n 1




Since player I succeeds when he hires the best secre-
tary, then to construct thepayoff matrix, one sets the
value1 when the observer hires the best secretary and
0 when he hires any other but the best. The set of pure
strategies for the observer is given byX = 1, 2, . . . , n,
where1 means hiring the first interviewee,2 means hir-
ing the second interviewee, and so on. In turn, the set of
pure strategies for the opponent isY = L1, L2, ..., Ln,
whereL1 means to choose the first row of the Latin
square,L2 means to choose the second row, and so on.
The matrix of the game is:

L1 L2 L3 Ln


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

.. . 0
0 0 0 . . . 1




1
2
3
...
n

Second variation. Since the opponent has the power
to choose only the position of the best candidate, then
in the modeling process of this variation of the problem,
the strategy of placing the best candidate on ther-th po-
sition is denoted byTr, andT is the mixed strategy that
choosesTr with probability pr. Meanwhile the strat-
egy of ignoring the firsti candidates and then choose
the first candidate better than the previous, is denoted
by Si, andS is the mixed strategy that choosesSi with
probabilitypi. Therefore, if the observer uses the strat-
egySi and the opponent uses the strategyTr, the prob-
ability of the observer to win is0 if i ≥ r (i.e., if the
best candidate is between the firsti candidates ignored
by the observer) andi/(r − 1) if i < r.
Summarizing, whenever the players use their pure strate-
gies, that is, the observer uses the strategySi and the
opponent uses the strategyTr, the averagepayoff is
i/(r − 1) wheni < r. Observer will succeed with his
strategySi if the best candidate among the firstr − 1
candidates is among the firsti candidates.

To demonstrate this fact, consider a set withr − 1 dis-
tinct balls among which there is one considered to the
best. If i balls from that set were placed in a box, the
total number of possible ways is thei-combination of

r − 1 balls:Cr−1
i =

(
r − 1
i

)
.

Now, one wants the best ball to be among thei balls
placed in the box. The total number of possible ways of
puttingi− 1 balls plus the best ball fromr − 1 distinct
balls in a box is the(i− 1)-combination ofr − 2 balls:

Cr−1
i =

(
r − 2
i− 1

)
.

Thus, the probability of success, that is, the probabil-
ity of the best ball to be among thei balls in the box

is P[sucess] =
Cr−2
i−1

Cr−1
i

=
i

r − 1
. So, wheni < r the

probability of the observer to hire the best secretary is
i/(r − 1). Therefore, the game matrix for the observer
is:

T1 T2 T3 . . . Tn−1 Tn
S1 0 1 1/2 . . . 1/(n-2) 1/(n-1)
S2 0 0 1 . . . 2/(n-2) 2/(n-1)
S3 0 0 0 . . . 3/(n-2) 3/(n-1)
...

...
...

...
...

...
Sn−1 0 0 0 . . . 0 1

Third variation . Figure1 illustrates the situation in
which the opponent may present, with probability1/2,
the best (lowest post) or the worst (highest post) secre-
tary, among those who have not yet been interviewed.
One can note that the numbers represent the ranks of
the candidates and the ways on the graph represent all
possible presentation sequences of the candidates.
Regarding strategies, the observer hasn pure strategies
(hiring the first secretary, the second, ..., then-th) and
the opponent has2n−1 pure strategies (the number of
paths of the graph).
Thus, the game matrix can be represented as follows:
each entry is the rank of the hired secretary (i.e.,1, if
the best secretary is hired,2, if the second best secretary
is hired, and so on):

0
BBBBBBB@

1 1 1 1 . . . 1 n n . . . n
2 . . . 2 n n 1 . . . 1 . . . n − 1

.

.

.

.
.
.

.

.

.
n − 1 n . . . . . . 2
n n − 1 . . . . . . 1

1
CCCCCCCA

The first row of the matrix indicates that the observer
hires the first interviewee, so he hires the best candi-
date (in the matrix represented by the number1) with
probability1/2 or hires the worst candidate,n-th, also
with probability 1/2. In the second row, the observer
hires the second interviewee, that is, he hires the best



Figure 1: Graphical sequences representing all possible using the
strategy of the opponent.

candidate (1), or the second better (2), or the worst (n),
or even the second worst (n − 1), with probability1/4
each. Generally, on thek-th row, the observer hires the
k-th interviewee, that is, he hires the best (1), or the
second better (2), ..., or thek-th better, or the worst (n),
or the second worst (n − 1), ... or even thek-th worst
(n − (k − 1)), with probability1/2k each. The matrix
columns present all paths in the graph.

4 Solving the three variations of the secretary
problem via Linear Programming

Considering the variations of the secretary problem ac-
cording to the player’s I perspective is determiningp1,
. . ., pm in order to maximize (6) subject to the restric-
tion thatp ∈ X∗, which formally can be written as the
following optimization model:

max min
1≤j≤n

m∑
i=1

piaij

s.t.
m∑
i=1

pi = 1

pi ≥ 0, i = 1, . . . ,m.

Although the restrictions are linear, the objective func-
tion is not linear due to the minimization operator. How-
ever, this can be rounded by maximizing an auxiliar
variablev, which in turn must be less than the objec-

tive function, i.e.,v ≤ min
1≤j≤n

m∑
i=1

piaij . Thus, we have

the following linear programming (LP) model
max v

s.t.
m∑
i=1

piaij ≥ v, j = 1, . . . , 8
m∑
i=1

pi = 1

pi ≥ 0, i = 1, . . . ,m,

This model is able not only to return the value of game
but also some mixed optimal strategy for player I. One
way to solve a problem of linear programming is via
the simplex method, implemented in this work through
the programming package in Java (JDK1.5.0 version8)
and the interface GLPK4.8 NYI, whose partial result
was as follows (Table1):

Table 1: Values of objective function in the simplex outputs that rep-
resent the values of the game for three variations of the secretary prob-
lem, wheren = 2, . . . , 5 is the number of strategies for player II
(opponent).

Amount of strategies for player II (opponent)
Var 2 3 4 5
1 OPTIMAL OPTIMAL OPTIMAL OPTIMAL

Objective: 0.5 Objective: 0.333 Objective: 0.25 Objective: 0.2
(MAXimum) (MAXimum) (MAXimum) (MAXimum)

2 OPTIMAL OPTIMAL OPTIMAL OPTIMAL
Objective: 2 Objective: 2.5 Objective: 2.833 Objective: 3.083
(MAXimum) (MAXimum) (MAXimum) (MAXimum)

3 OPTIMAL OPTIMAL OPTIMAL OPTIMAL
Objective: 1.5 Objective: 2 Objective: 2.5 Objective: 3
(MAXimum) (MAXimum) (MAXimum) (MAXimum)

5 Theoretical validation via game theory

First variation . Let pT =
(
p1 p2 . . . pn

)
be a

mixed strategy for the observer. Then, if opponent uses
an uniform mixed strategyqT = (1/n 1/n . . . 1/n).
That is, his intention is to choose a line at random from
the n × n cyclical Latin square. The meanpayoff is
then:

pTAq =

(
p1 p2 . . . pn

)



1 0 . . . 0
0 1 . . . 0
...

...
.. .

...
0 0 . . . 1







1/n
1/n
...
1/n




=
1
n

(p1 + p2 + . . .+ pn) =
1
n

The above result shows that, independent on the stra-
tegy adopted by the observer, if the opponent chooses a
line at random from then × n cyclical Latin square he
reduces the probability of success to the minimum1/n.
Second variation. The probability of the observer to
hire the best candidate using the strategySi and the op-
ponent using the mixed strategyT = (p1, p2, . . . , pn)

is, therefore,
n∑

r=i+1

pr
i

r − 1
.

The opponent wants, for sure, to choose a mixed strat-
egyT that ensures minimizing the probability of suc-
cess of the observer. For achieving such goal it is nec-
essary to use a procedure that equals the mean gains of
both players. Then, Player II wants to choose an strat-
egyT , that is, to determine the values ofpi such that



his gain is the same if the Player I chooses linei or line
i+ 1, that is:

n∑

j=i+1

pj
i

j − 1
=

n∑

j=i+2

pj
i+ 1
j − 1

,

which can be solved by recurrence, as follows: Fori =
n− 2, gives:

n∑
j=n−1

pj
n− 2
j − 1

=
n∑

j=n

pj
n− 1
j − 1

;

pn−1 + pn
n− 2
n− 1

= pn;

pn−1 = pn

(
1− n− 2

n− 1

)
;

pn−1 = pn
1

n− 1
.

For i = n− 3, gives:

n∑
j=n−2

pj
n− 3
j − 1

=
n∑

j=n−1

pj
n− 2
j − 1

;

pn−2 + pn−1
n− 3
n− 2

+ pn
n− 3
n− 1

= pn−1 + pn
n− 2
n− 1

;

pn−2 = pn

(
1

(n− 1)(n− 2)
+

1
n− 1

)
;

pn−2 = pn
1

n− 2
,

and so on, what yields following generalization:pj =
pn

1
j .

Since
n∑
j=1

pj = 1, follows that

p1 + p2 + . . .+ pn−1 + pn = 1;

pn + pn
1
2

+ . . .+ pn
1

n− 1
+ pn = 1;(

1 +
1
2

+ . . .+
1

n− 1
+ 1
)
pn = 1;

pn =
(

1 +
n−1∑
i=2

1
i

)−1

.

Settingpj = K/j andpn = K, where

K =
(

1 +
n−1∑
i=1

1
i

)−1

.

In this case the probability of success isK. Similarly, if
the opponent uses the strategyTr and the observer uses
a mixed strategyS = (π1, π2, . . . , πn−1), the probabil-
ity of the observer to hire the best candidate is
r−1∑

i=1

πi
i

r − 1
.

The observer wants, of course, choosing a mixed strat-
egyS that ensures maximizing his probability of suc-
cess. Using the same reasoning above,πi = K/i for
i = 1, 2, . . . , n − 1. The mean return for the observer
using this strategy is thenK. This is therefore the real
minimax solution of this game.
Third variation . The idea is to count the occurrences
of distinct ranks in each row of the game matrix. Since
the first row corresponds to hiring in the first interview,
the worst or the best candidate will be chosen with prob-
ability 1/2. Thus, the worst candidate (n) is presented
C1

0 times and the best candidate (1) is presentedC1
1

times. As the opponent has2n−1 pure strategies or
2n−1 ways of sorting the candidates to be submitted,
the ranks1 andn appear in the first row(2n−2C1

0 ) times
each.
In general, considering thek-th row of the matrix, the
worst candidate (n) and thek-th best candidate (k) are
presentedCk−1

0 times, the second worst (n − 1) and
(k − 1)-th best (k − 1) are presentedCk−1

1 times, ...,
the(k − 1)-th worst (n− (k − 2)) and the second best
(2) are presentedCk−1

k−2 times, and, finally,(k)-th worst

(n− (k− 1)) and the best (1) are presentedCk−1
k−1 times

(according to the paths on the Figure1). Thus, the ranks
1, 2, . . . , k, (n− (k− 1)), . . . , (n− 1), n, appear in the
k-th row of the matrix

1
/

2k · 2n−1 · Ck−1
k−1 , 1

/
2k · 2n−1 · Ck−1

k−2 , . . . ,

1
/

2k · 2n−1 · Ck−1
0 , 1

/
2k · 2n−1 · Ck−1

k−1 , . . . ,

1
/

2k · 2n−1 · Ck−1
1 e1

/
2k · 2n−1 · Ck−1

0

times, respectively. Another point that should be stressed
is that the sum of the elements in each row of the ma-
trix is constant. Considering the generic form presented
above, one can confirm that. Adding up the elements of
thek-th row of the matrix, gives:

1
[
2n−(k+1)Ck−1

k−1

]
+ 2

[
2n−(k+1)Ck−1

k−2

]
+ . . .+

(k − 1)
[
2n−(k+1)Ck−1

1

]
+ k

[
2n−(k+1)Ck−1

0

]
+(n− (k − 1))

[
2n−(k+1)Ck−1

k−1

]
+ (n− (k − 2))[

2n−(k+1)Ck−1
k−2

]
+ . . .+

(n− 1)
[
2n−(k+1)Ck−1

1

]
+ n

[
2n−(k+1)Ck−1

0

]

Factoring up this term, gives:

2n−(k+1)[n
k−1∑

i=0

Ck−1
i + kCk−1

0 + (k − 2)Ck−1
1 +

+ . . .+ (−k + 4)Ck−1
k−2 + (−k + 2)Ck−1

k−1 ] (8)

But,
k−1∑
i=0

Ck−1
i = 2k−1; Ck−1

0 = Ck−1
k−1 ; Ck−1

1 = Ck−1
k−2



and so on. Therefore, the following grouping can be set:

kCk−1
0 + (−k + 2)Ck−1

k−1 =
= 2Ck−1

0 = Ck−1
0 + Ck−1

k−1 ;

(k − 2)Ck−1
1 + (−k + 4)Ck−1

k−2 =
= 2Ck−1

1 = Ck−1
1 + Ck−1

k−2

and so on, giving:

Ck−1
0 + Ck−1

1 + . . .+ Ck−1
k−2 + Ck−1

k−1 =

=
k−1∑
i=0

Ck−1
i = 2k−1

Returning to (8):

2n−(k+1)[n
k−1∑

i=0

Ck−1
i

︸ ︷︷ ︸
2k−1

+

+Ck−1
0 + Ck−1

1 + . . .+ Ck−1
k−2 + Ck−1

k−1︸ ︷︷ ︸
2k−1

]

= 2n−(k+1)[n(2k−1) + 2k−1] = 2n−2(n+ 1).

Thus, any row in the matrix adds to2n−2(n+ 1).
Next it will be proved that such strategy, used by the
opponent, inhibits the observer to take any strategy that
brings him some advantage, that is, no matter what strat-
egy the observer uses, he always will get a mean post
(n+ 1)/2. If the observer uses a mixed strategy

pT =
(
π1, π2, . . . , πn

)

and the opponent uses the uniform mixed strategy:

qT =
(

1/2n−1, 1/2n−1, . . . , 1/2n−1
)

, the meanpayoff for the observer is given by:

pTAq = (π1, π2, . . . , πn)
(

1
2n−1

)




2n-2(n+1)

2n-2(n+1)
...

2n-2(n+1)




=
(

1
2n−1

)
2n-2(n+1)[π1 + π2+ . . .+ πn︸ ︷︷ ︸

1

] = n+1
2

from where the result follows.
It is worth noting that this result is demonstrated by
Chow et al. (1964) using the sophisticated theory of
Martingales. Table 2 compares the these results with
those in previous section showing the optimality of the
strategies evaluated.

Table 2: Comparison of the game theory and linear programming
approach of the three variations of the secretary problem.

Secretary problem approach
Var Game Theory L.P.

1
1
n

V =
1
n

2 K =

(
1 +

n−1∑

i=1

1
i

)−1

V =

(
1 +

n−1∑

i=1

1
i

)−1

3
(n+ 1)

2
V =

(n+ 1)
2

6 Conclusions

The basic tools of Game Theory is enough to solve the
three variations of the secretary problem presented here.
This approach has the advantage of being elementary
and didactic, avoiding the heavy formalism of the prob-
abilistic approach as the Martingale theory.
Moreover, it represents them by them strategic way and
via linear programming models, enabling not only to
validate the theoretical analysis of specific strategies
adopted by the players but also to assess how fast and
efficient the optimality of several more complex strate-
gies are.
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