
An Architectural Framework of a Personalized Web Crawler based
on User Interests

J. AKILANDESWARI1

N.P. GOPALAN2

1Sona College of Technology
Department of Computer Science and Engineering

Salem - 636005, Tamilnadu, India
akila_rangabashyam@yahoo.com

2National Institute of Technology
Department of Computer Applications

Tiruchirappalli - 620015, Tamilnadu, India
gopalan@nitt.edu

Abstract. The World Wide Web (WWW) is overwhelmed with information which can not be assimilated
by the normal users without the use of search tools. The traditional search returns thousands of results
for a single search query making the search and surfing experience cumbersome. This drawback has
triggered the need for implementing personalized search tools. In this paper, a novel architecture is pro-
posed to gather pages that are relevant to a particular user or group of users. The system consists of three
modules: input, crawling and feedback. The input module is integrated with topic suggestion component
extracting search query terms and representative documents from different sources. The crawling module
is realized with intelligent multi-agent system for prioritizing the download of appropriate URLs. The
relevance of the documents is computed based on interests ofthe users. While rendering the results, the
user gives feedback and the system is compared to different crawler implementations. The empirical re-
sults clearly suggest the advantage of using topic suggestion component and computation of personalized
relevance score in terms of harvest ratio and coverage.

Keywords: Personalized Crawler, Multi-agent system, URL Ordering, Multi-level frontier queue, Web
mining, Classification

(Received December 31, 2008 / Accepted April 26, 2009)

1 Introduction

Due to the enormous growth of World Wide Web, users
usually prefer search engines to locate a Web page of
their interest. Search engines try to index as many Web
pages as possible. Yahoo! claims that it had indexed
over 20 billion Web pages while Google had indexed
three times more than its competitor [5]. Most of the
existing Web search engines return a list of search re-
sults based on a query but disregard the user’s specific
interests and/or search context. Therefore, the identi-
cal query from different users or in different contexts

will generate the same set of results displayed in the
same way for all users, a so called one-size-fits-all ap-
proach. A user may have to go through many irrele-
vant results or try several queries before finding the de-
sired information. Problems encountered in searching
are exaggerated further when the search engine users
employ short queries. An alternative to this approach
can be a personalized search tailored for the needs of
specific users. Its essentiality is felt as they provide the
location of information on the WWW as accurately as
possible, using the methodologies of data mining and

akila_rangabashyam@yahoo.com
gopalan@nitt.edu


knowledge discovery. The Web has now become in-
telligent in terms of serving the users with the docu-
ments they prefer. Creating such an environment re-
quires new tools and infrastructure components which
includes agent technology and various soft computing
techniques. The development of an intelligent Web us-
ing computational intelligence and mining techniques
has been an active research topic [9].

Text-based search engines compute document’s rel-
evance using the query text position and frequency of
its occurrence in the document. For instance, to locate
a Web page about ’data mining’, a text based search
engine will give a list of Web pages containing that
text, even though they might not be relevant to the user.
Also, this technique allows the spammers to stuff im-
portant keywords in the Web document solely with the
purpose of increasing the site’s rank. The computation
of rank using link structures reduces the problem de-
scribed above. Most of the empirical studies say that
Google outperforms in technology of gathering Web
pages and indexing methods because of its ranking al-
gorithm which exploits link structures. Nowadays, peo-
ple began to use more specialized search tools which
will fetch only those URLs that are more important to
them. Because of the size of the Web, developing such a
personalized search crawler that utilizes the link struc-
tures for ranking the documents is a very challenging
task.

For designing a crawler that is personalized to a par-
ticular user or group of users, the crawler has to fo-
cus on certain topic(s). Unlike general purpose Web
crawlers, focused crawlers crawl only on particular top-
ical portions of the Web. It is therefore very useful for
the circumstances where the interest lies only on cer-
tain domain. A focused crawler tries to foresee whether
a target URL is pointing to a relevant and high-quality
Web page before actually fetching that page. Many re-
searchers have employed Machine Learning strategies
to improve crawler’s functionalities in many aspects.
Classification is one such approach used in determining
the relevance of a Web page and in building and main-
taining Web directories or portals. In semi-supervised
machine learning approaches like reinforcement learn-
ing, the crawlers learn progressively by interacting di-
rectly with the dynamic environment. Because of the
inherent dynamism in WWW, the crawlers are never
told about the correct action, instead they are told about
how good or bad its action was [2].

Agent technology is preferred for retrieving infor-
mation in a large environment such as the Web. Unlike
objects, an agent is defined in terms of its autonomous
behavior. This technology stresses in autonomy ori-

ented computing for modeling multiple entities and the
self organization of them towards a specific goal. In-
telligent agents can be developed in an efficient way
because of their use of memorized information. Given
that a single agent approach may be inefficient and im-
practical for a large-scale Information Retrieval envi-
ronment, most of the systems employ multi-agent sys-
tems. The multi-agent framework supports cooperative
search and have the potential of parallelism, robustness
and scalability. In multi-agent systems, communica-
tion and organization enables the agents to cooperate
and coordinate their actions to accomplish a common
goal. There are a number of communication languages
like KIF (Knowledge Interchange Format) [14], KQML
(Knowledge Query and Manipulation Language) [13],
and ACL (Agent Communication Language) [20].

This paper presents an architectural framework for
locating relevant Web documents for a specific user or
group of users. The personalization is incorporated in
the input and crawling modules. The input module con-
sists of a topic suggestion component that extracts search
query terms from different sources. The crawler module
is realized with two types of agents: retrieval agents and
coordinator agent. The coordinator agent is built with
multi-level frontier queue to achieve tunneling and the
URLs stored there are disseminated to retrieval agents.
The retrieval agents download and classify Web pages
as relevant or irrelevant using personalized relevance
score.

The remainder of this paper is organized as follows:
section 2 discusses on the work related to focused Web
crawlers. In section 3, the architectural framework of
the crawler is described. In section 4, experimentation
and evaluation details are discussed. Finally in section
5, conclusions are presented.

2 Related Works

There are several works on crawler designs and strate-
gies [10],[16], [25], [11],[28]. There are research works
that exploited structural similarities between the Web
and modeled WWW as social networks to develop tech-
niques or methodologies for enhancing the search ex-
perience [19]. The Web in many ways simulates a so-
cial network: links do not point to pages at random but
endorses the page author’s idea of what other relevant
or interesting pages exist. This information can be ex-
ploited to collect more on-topic data by intelligently
choosing what links to follow and what pages to dis-
card.

One of the pioneering approaches in ordering the
URLs according to the relevance was Fish search [7].
The system was query-driven and text-based which con-



sidered only those pages that were matching the query
and links that emanated from those pages. An improve-
ment of Fish Search was proposed as Shark search [15].
The algorithm used weighted term frequency (TF) and
inverse document frequency (IDF) measure to deter-
mine page relevance score. In [17] a technique was pro-
posed to reorder the URLs in the frontier queue accord-
ing to various heuristics like page rank,in link count,
back link count and combination of these features.

A soft focused crawler is proposed in [10]. This
technique used a classifier to obtain a score. The main
shortcoming of this technique is that it will not support
tunneling i.e. following a path of off-topic pages.

A context-graph based crawler described in [11] and
Cora’s crawler [22] used tunneling concept. Cora is a
domain-specific search engine whose spider is incor-
porated with reinforcement learning algorithm for pro-
gressively capturing the dynamic environment. There
are other systems like Web Topic Management System
[24] that fetched only those pages that were parent, child
or sibling to on-topic pages. This system has a short
coming of meeting a dead end in the earlier stage of
crawling. Bingo! [29] is a crawling system that elim-
inated the initial training step and employs continual
training of the classifier with high quality pages. Men-
zcer et al. [23] presented a framework to evaluate fo-
cused crawlers and developed a crawler based on evo-
lutionary concepts. An information integration frame-
work ALII is presented in [6] which used active logic.
ALII, employs a compact context representation and
build a hierarchy model of query and Web pages. The
crawler has also made limited backward crawling using
general search engine indices.

An intelligent crawling architecture was presented
by Aggarwal et al. [1] based on predicates. It applies
a self-learning mechanism that can dynamically adapt
to the particular structure of the relevant predicate. For
building a composite crawler several factors are consid-
ered during the crawl to evaluate its effectiveness.

A crawling algorithm is presented by Ehrig et al.
[12] based on ontology and computed page relevance
according to a particular user’s need. Entities (words)
occurring in the ontology are extracted from the page
and counted. Relevance of the page is computed with
regard to user selected entities using several measures
on ontology graph like direct match, taxonomic and
more complex relationships. The experimental results
of this system has shown improvements in harvest rate
when compared to baseline focused crawler that com-
puted page relevance by a simple binary keyword match.
Case based BDI-agent [27] is a domain specific search
engine that made use of Case Based Reasoning (CBR)

as its learning component. The system has used past
results and reused that for answering future queries. A
personalized focused crawler is proposed by Kim et al.
[18] which has exploited both link structures and fuzzy
concept networks. They have modeled the user inter-
ests as fuzzy concept networks and retrieved the results
in a personalized manner. Altingovde et al. [4] pro-
posed an efficient algorithm to order the URLs in fron-
tier queue based on rule discovery method and their re-
sults showed an improvement in coverage.

AutoCrawler (Automatic Topical Crawler), devel-
oped by Tsay et al. [30] is an integrated crawling sys-
tem that consists of a user interest specification module
to mediate between users and search engines in identi-
fying target examples and keywords that together spec-
ify the topic of their interest and URL ordering. Au-
toCrawler is designed to have a topic specification mod-
ule, a classifier learning module, an URL ordering mod-
ule and an analysis module. The user interests can be
specified using two approaches: taxonomy-based and
keyword-based. In taxonomy-based approach, users se-
lect their interest from topics of a predefined taxonomy.
In keyword based approach, interest is specified by key-
words that define the targets of the interest. In Au-
toCrawler user interests are specified using taxonomy
based approach and through a set of target examples and
a set of keywords that together specify the topic of their
interest. Similar to the proposed work, Autocrawler
combines term suggestion, query modification and doc-
ument ranking. But the it lacks in ordering the URLs
based on user’s need. In [3] a profile representation is
described using Internet domain features extracted from
URLs. Users are required to specify interest profiles as
binary vectors, where each feature corresponds to a set
of one or more DNS tree nodes. Given a profile vec-
tor, weighted pagerank is computed assigning a weight
to each URL based on the match between the URL and
the profile. Since the profile is represented as a binary
vector, it is very unlikely that all possible terms are in-
cluded in it.

Ma et al. [21] suggested a mapping framework that
automatically maps a set of known user interests on to
a open directory project hierarchy. The paper also de-
scribed the comparison between personalization cate-
gorization system (PCAT) and non personalized cate-
gorization system (CAT) and found that PCAT is prefer-
able for short queries. The work described is a form of
personalization based on an interest-taxonomy-mapping
framework and result categorization. It is embedded on
a standard search engine such as Google and displayed
the categorized search results on the basis of known
user interests. In the reference [31], a system is re-



ported which uses a fuzzy intelligent search agent to
satisfy the specific requirements of different users. An
example of job hunting agent is described to illustrate
fuzzy approach. However, no description is given on
how the information is collected from the Web and the
application of the fuzzy rules.

3 Architectural framework

Figure 1 depicts the overall component structure of the
crawler design. It consists of three phases: input, crawl-
ing and feedback.

Figure 1: Overall architecture of the personalized crawling system

3.1 Input Phase

The elements of input phase are shown in Figure 2.

Figure 2: Components of input module

The main functionality of this module is to drive the
crawler with appropriate query terms and an example
set of URLs. This feature makes the crawler to decide
whether a Web page is relevant or not apart from ex-
ploiting information available in link structures. This
step is considered crucial since the user may not ex-
actly know the keyword describing the topic of search.

If these terms are extracted from other sources and sug-
gested, the user may very well be able to guide the
crawler to the correct direction. The user has to specify
the initial search terms which are stored in the user pro-
file, to query term evaluator. This component integrates
topic taxonomy like Yahoo! and user profile, to extract
keywords from example set of documents available in
the taxonomy. The query term evaluator suggests a list
of keywords and URLs of example Web documents to
the user. He/she has to select one or more of them which
is given as input to the crawler module. While pick-
ing the search terms, the user has to provide a weight
measure which is the indicator of how important is the
presence of that term in the Web document.

3.2 Crawling Phase

The modules represented in Figure 3 are responsible for
gathering relevant pages with respect to particular user
interest. The following issues are taken care during im-
plementation:

• Decide on next page to download

• Tunneling

• Improving harvest ratio

• Efficient prioritizing of URLs in frontier queue to
maximize the number of relevant downloads

• Avoid multiple agents downloading the same page

Figure 3: Components of Crawler



The crawler is implemented with multiple agents.
Two types of agents are employed: coordinator agent
and retrieval agents. The functionality of retrieval agent
is to download the Web pages and classify them as rel-
evant or irrelevant. The coordinator agent disseminates
the URLs from global frontier queue to different re-
trieval agents. By using two types of agents, there is
a gain of reduced network traffic load and parallelized
computation.

The coordinator agent functions as a mediator among
retrieval agents and input module. The agent is incor-
porated with multi-level frontier queue. The URLs with
topmost relevance score will be placed in topmost level
and the URLs with lower relevance scores are placed
in the subsequent levels. This data structure is used to
implement tunneling. There are four levels of frontier
queue. The URLs received as input are placed along
with its relevance score initially in the first level of multi-
level frontier queue. Initially, the coordinator agent ini-
tiates number of retrieval agents equal to the number of
URLs in the first level of queue.

One URL from the queue is placed in each retrieval
agent. The agent downloads the Web page, parses it.
The parsed results are given to the classifier which is
implemented as Naïve-Bayes classifier. The relevance
of the document is computed as the combination of page
rank [8] and content similarity. The latter component is
added to reduce number of spam pages getting into the
result. The score is determined as follows:

DS(d) = PRn (d) + CSn(d) (1)

whereDS is the document score,PRn is the nor-
malized page rank andCSn is the normalized content
similarity. PRn andCSn is normalized to make their
sum≤ 1. The weights for normalization are chosen
as 0.62 and 0.38 by careful examination of the system
with different values. The content similarity between
the documentd and query vectorv is computed as

CS =

n
∑

i=1

Wti,d Wti,v
(√

n
∑

i=1

Wt2i,d

)(√

n
∑

i=1

Wt2i,v

) (2)

whereWti,d andWti,v are the weights of the terms
in the document and query vectors respectively. The
weights can be computed in any one of the following
forms:

• W = tf , wheretf is term frequency which speci-
fies the frequency of occurrence of the term in the
document

• W = tf/tfmax, where tfmax is the maximum
term frequency in the document

• W = IDF = log(N/n), where IDF is the inverse
document frequency which assigns high values for
rare words and low values for common words,N
is the number of documents in the collection and n
is the number of documents containing the query
term

• W = tf× IDF = tf × log(N/n), the popular
TFIDF measure

• W = tf× IDF = tf×log((N−n)/n), a variation
of TFIDF measure

This work has implemented the computation of weights
by choosing the popular TFIDF measure.The computed
document relevance score is compared with a thresh-
old value which is specified after experimentation and
the document is classified as relevant or irrelevant. The
links from both relevant and irrelevant documents are
extracted and link similarity scores are computed.

LSn = Un + ATn (3)

whereLSn is the link relevance score,Un is the rel-
evant measure of URL andATn is the similarity com-
puted between anchor text and query vector as in (2).
Un is the conditional probability measured asP (C |
RL) whereC is the event that current page is relevant
satisfying the user’s search term with(C) as the asso-
ciated probability andRL be the event that document
following a link is also relevant. The computed link rel-
evance scores are checked against a given thresholdt
to determine the probability of adding them into URL
frontier. If LSn > t then percentage of relevanceRLp

is computed as:

RLp =
LSn − t

t
× 100 (4)

The URLs whoseRLp value in the interval 75%–
100%, 50%–75%, 25%–50%, and 0%–25% are added
in levels 0,1, 2, and 3 respectively. The Web docu-
ments which are determined as relevant are stored in the
database along with their document relevance scores.
The main purpose of extracting URLs of irrelevant doc-
uments is to achieve tunneling i.e. following URLs
from off-topic pages so that more coverage is achieved.

3.3 Feedback Phase

The URLs stored in the database are sorted according to
their scores and presented to the user by the ranker mod-
ule. Each result is assigned with a probability of rele-
vance measure by the user. This module is included in



the framework solely for the purpose of evaluating the
performance of the crawler. During experimentation,
users with the knowledge in the particular domain of
search are asked to give the feedback in terms of three
cases. Those cases are: highly relevant, fairly relevant
and irrelevant. The system then assigns a probability
score of 0.9, 0.6 and 0.3 to those answers given by the
user.

4 Discussion

The proposed system is developed using JADE envi-
ronment. JADE is one of the multi-agent development
environment supporting the implementation of multiple
agents. It also integrates communication and coordina-
tion mechanisms to allow multiple agents cooperating
among themselves to achieve a particular task. Each of
the agents dynamically discovers each other and com-
municates using FIPA ACL [26].

The performance of the proposed system is com-
pared with three baseline crawlers:

1. baseline crawler with relevance scores computed
using page rank alone – BC1

2. baseline crawler with relevance scores computed
using content similarity alone – BC2

3. baseline crawler without topic suggestion module
– BC3

The most important parameter considered for eval-
uating a personalized crawler is the harvest rate. It is
defined as the average relevance of all retrieved pages
on a particular topic.

Harvest Rate=

N
∑

i=1

DS(d)

N
(5)

The performance of the crawlers is plotted in Figure 4
The crawlers are also compared with respect to the

relevance of the documents retrieved. This attribute is
determined with the help of feedback given by the user.
The user has assigned a probability of relevance on all
the documents retrieved by different crawlers and av-
erage probability is calculated. The evaluation results
are tabulated in Table 1 which clearly shows that the
proposed crawler design has substantial improvement
in retrieving more relevant documents.

avgprob=

N
∑

i=1

prob of Rel

N
(6)

Figure 4: Performance of the crawlers with respect to Harvest Ratio

Table 1: Comparison of average probability of relevance among dif-
ferent crawler implementations

Chinese
Topics Tourism Digital camera restaurants

in India
BC1 0.71 0.64 0.62
BC2 0.53 0.43 0.45
IntelliCrawl 0.79 0.78 0.70

While comparing the proposed crawler with base-
line crawlers, the experimental results showed substan-
tial improvements gained by implementing single level
frontier queue as multiple level frontier queues. The
coverage is defined as the total number of relevant pages
downloaded by the crawler. The experimental results
for total of 10000 pages are depicted in Figure 5.

Figure 5: Coverage of crawlers under experimentation



The experimentation is done on different levels of
frontier queues. It was found that the relevance scores
of the harvested pages increased till the number of lev-
els was 4. Adding one more level to the queue decreases
the relevance score as the crawler guided by the low
quality pages drifted from the topic of search. The re-
sults are represented in Figure 6.

Figure 6: Number of levels vs. average relevance score

Even though the results from the experiment look
very promising, it is planned to test its significance with
the help of hypothesis testing. The intension of the sig-
nificance test is to check whether the proposed method
yields consistent performance. The annova test is per-
formed on the sample values taken from the experiment
and given below:

Let H0 (null hypothesis): There is no significant dif-
ference in the calculation of relevance score

H1 : There is significant improvement in the calcula-
tion of relevance score

Table 2: Relevance scores computed under different schemes

BC1 BC2 IntelliCrawl
0.73 0.68 0.79
0.74 0.72 0.83
0.76 0.69 0.78
0.71 0.7 0.81

The null hypothesis is successfully rejected and it
is concluded that there is significant improvement in
the values of the relevance scores computed by intell-
iCrawl. Another hypothesis testing is applied for sub-
stantiating the improvement on performance on using
topic suggestion module. One tailed Z-test is used for

this purpose. The table of values on relevance scores
computed is shown below.

Table 3: Relevance scores of the crawler designs with and without
topic suggestion module

S.No.

BC3 without
topic suggestion
module

intelliCrawl
with topic
suggestion module

1 0.68 0.76
2 0.69 0.79
3 0.60 0.72
4 0.49 0.63
5 0.59 0.70

Let H0 (null hypothesis): No significant effect of topic
suggestion module on the result.

H1 : There is significant effect of topic suggestion mod-
ule on the result.

The null hypothesis is successfully rejected and alterna-
tive hypothesis is concluded.

5 Conclusion

Several issues of designing a personalized crawler are
discussed in this paper. A new architecture is proposed
to locate relevant information with respect to particular
user. A novel strategy is proposed to compute personal-
ized relevance score. The input module integrated in the
system improves the effectiveness of the retrieval task.
Experimental results suggest that the system proposed
performs well in terms of harvest rate, and coverage.
This work can be extended to apply dynamic data fu-
sion algorithm in the coordinator module allowing the
retrieval agents to download duplicate pages in order to
reduce the time taken on coordinating them by a central
agent.

References

[1] Aggarwal, C. C., Al-Garawi, F., and Yu, P. S.
Intelligent crawling on the world wide web with
arbitrary predicates.In Proceedings of the 10th
International Conference on WWW, ACM Press,
pages 96–105, 2001.

[2] Akilandeswari, J. and Gopalan, P. A web min-
ing system using reinforcement learning for scal-
able web search with distributed fault-tolerant
multi-agent.WSEAS Transactions on Computers,
4:1633–1640, 2005.



[3] Aktas, M. S., Nacar, M. A., and Menzcer, F. Using
hyperlinks features to personalizeweb search.Ad-
vances in Web Mining and Web Usage Analysis,
LNCS, pages 104–115, 2006.

[4] Altingövde, I. S. and Özgür Ulusoy. Exploiting
inter-class rules for focussed crawling.IEEE In-
telligent Systems, 19:66–73, 2004.

[5] Bar-Yossef, Z. and Gurevich, M. Random sam-
pling from a search engine’s index.In Proceed-
ings of 15th International conference on WWW,
pages 367–376, 2006.

[6] Barfouroushi, A., Anderson, M., Nezhad, H. M.,
and Perlis, D. Information retrieval on the world
wide web and active logic: A survey and problem
definition. Technical Report, pages 1–45, 2002.

[7] Bra, P. D., Houben, G.-J., Kornatzky, Y., and Post,
R. Information retrieval in distributed hypertexts.
In Proceedings of 4th International Conference
on Intelligent Multimedia Information Retrieval
Systems and Management (RIAO 94), Center of
High International Studies of Documentary Infor-
mation Retrieval (CID), pages 481–491, 1994.

[8] Brin, S. and Page, L. The anatomy of large scale
hypertextual web search engine.In Proceedings of
7th World Wide Web Conference, Elsevier Science,
pages 107–117, 1998.

[9] Cercone, N., Hou, L., Keselj, V., An, A., Nerue-
domkul, K., and Xu, X. From computational in-
telligence to web intelligence.IEEE Computers,
35(11):72–76, 2002.

[10] Chakrabarti, S., den Berg, M. V., and Dom, B. Fo-
cused crawling: A new approach to topic-specific
web resource discovery. Computer Networks,
31(11–16):1623–1640, 1999.

[11] Diligenti, M., Coetzee, F., Lawrence, S., Giles,
C., and Gori, M. Focused crawling using context
graphs.In Proceedings of 26th International Con-
ference on VLDB, pages 527–534, 2000.

[12] Ehrig, M. and Maedche, A. Ontology-focused
crawling of web documents.In Proceedings of the
ACM symposium on Applied Computing, pages
1174–1178, 2003.

[13] Finin, T., Fritzson, R., McKay, D., and McEntire,
R. Kqml as an agent communication language.
n Proceedings of the 3rd International Confer-
ence on Information and Knowledge Management
(CIKM’94), ACM Press, pages 456–463, 1994.

[14] Genesereth, M. R. and Fikes, R. E. Knowledge
interchange format, version 3.0.Technical Report
92-1, Stanford University, Computer Science De-
partment, 1992.

[15] Hersovici, M., Jacovi, M., Maarek, Y. S., Pel-
leg, D., Shtalhaim, M., and Ur, S. The shark-
search algorithm – an application: Tailored web
site mapping.Computer Networks and ISDN Sys-
tems, 30(1–7):317–326, 1998.

[16] Junghoo Cho, H. G. M. Parallel crawlers.In
Proceedings of 11th International Conference on
WWW, pages 124–135, 2002.

[17] Junghoo Cho, H. G.-M. and Page, L. Effi-
cient crawling through url ordering.Computer
Networks and ISDN Systems, 30(1–7):161–172,
1998.

[18] Kim, K.-J. and Cho, S.-B. Personalized mining
of web documents using link structures and fuzzy
concept networks.Applied Soft Computing, pages
398–410, 2007.

[19] Kumar, R., Raghavan, P., Rajagopalan, S., and
Tomkins, A. The web and social networks.IEEE
Computers, 35(11):32–36, 2002.

[20] Labrou, Y., Finin, T., and Peng, Y. The current
landscape of agent communication languages.In-
telligent Systems and their Applications, 14:45–
52, 1999.

[21] Ma, Z., Pant, G., Olivia, and Sheng, R. L. Interest
based personalized search.ACM Transactions on
Information Systems, 25(1):1–38, 2007.

[22] McCallum, A., Nigam, K., Rennie, J., and Sey-
more, K. Building domain-specific search engines
with machine learning techniques.In Proceedings
of AAAI Spring Symposium on Intelligent Agents
in Cyberspace, AAAI Press, pages 28—39, 1998.

[23] Menczer, F., Pant, G., and Srinivasan, P. Top-
ical web crawlers: Evaluating adaptive algo-
rithms. ACM Transactions on Internet Technol-
ogy, 4:378–419, 2004.

[24] Mukherjea, S. Wtms: A system for collecting and
analyzing topic-specific web information.The In-
ternational Journal of Computer and Telecommu-
nications Networking, 33(1–6):457–471, 2000.

[25] Najork, M. and Wiener, J. L. Breadth-first crawl-
ing yields high-quality pages.In Proceedings of



10th International Conference on WWW, pages
114–118, 2001.

[26] Nikraz, M., Caire, G., and Bahri, P. A. A method-
ology for the analysis and design of multi-agent
systems using jade.International Journal of Com-
puter Systems Science and Engineering, Special
issue on Software Engineering for Multi-Agent
Systems, 2006.

[27] Olivia, C., Change, C., Enguix, F., and Ghose, A.
Case-based bdi agents: An effective approach for
intelligent search on the web.In Proceedings of
AAAI-99, Spring Symposium on Intelligent Agents
in Cyberspace, Stanford University, USA, 1999.

[28] Raghavan, S. and Molina, H. G. Crawling the
hidden web.In Proceedings of 27th International
conference on VLDB, pages 129–138, 2001.

[29] Sizov, S., Graupmann, J., and Theobald, M. From
focused crawling to expert information: An ap-
plication framework for web exploration and por-
tal generation. In Proceedings of 29th Inter-
national Conference on Very Large Databases
(VLDB 2003), Morgan Kaufmann, pages 1105–
1108, 2000.

[30] Tsay, J., Shih, C.-Y., and Bo-LiangWu. Au-
tocrawler: An integrated system for automatic
topical crawler. In Proceedings of 4th Annual
ACIS International Conference on Computer and
Information Science, pages 462–467, 2005.

[31] Wu, J., Qiu, M., Huang, H.-C., and Yang, L. T. In-
telligent search agent for internet computing with
fuzzy approach.In Proceedings of International
Conference on Computational Science and Engi-
neering, pages 181–188, 2008.


	Introduction
	Related Works
	Architectural framework
	Input Phase
	Crawling Phase
	Feedback Phase

	Discussion
	Conclusion

