OntoReST: A RST-based Ontology for Enhancing Documents
Content Quality in Collaborative Writing

HALA NAJA-JAZZAR !
NISHADI DE SILVA 2
HALA SKAF-MOLLI 3
CHARBEL RAHHAL 3
PASCAL MoLLI 3

ILaMA Laboratory - Lebanese University, Tripoli, Lebanon
hjazzar@ul.edu.lb,hala.naja@hotmail.com
2 School of Electronics and Computer Science, University of Southampton, UK
n.desilva@ecs.soton.ac.uk
3 LORIA — INRIA Lorraine, Université de Nancy, France
skaf@loria.fr, Charbel.Rahal@loria.fr,molli@loria.fr

Abstract. Collaborative writing is the process by which more than one author contributes to the content
of a document. Although, multi-synchronous collaboration is very efficient in reducing task completion
time, it is well known for producing documents of poor-quality content. Most existing collaborative
writing environments do not really check the logical arrangement of documents portions (i.e. sentences,
paragraphs,...). They rely on authors to verify the content quality of the document. This imposes a severe
overhead on the authors to achieve efficient collaboration. To address this issue, we use semantic web
technologies and a discourse theory called Rhetorical Structure Theory (RST) with the aim to reduce
the overhead of consistency checking. We develop OntoReST, an ontology based on RST that helps
detect incoherent texts automatically. OnfoReST also provides authors with valuable information about
the semantic structure of texts which contributes towards enhancing documents content quality.

Keywords: Collaborative writing, Ontology, Document content quality, Semantic web.

(Received April 14, 2009 / Accepted June 07, 2009)

Introduction

nature of collaboration varies extensively in terms of the

Collaborative writing is the process by which more than
one author, in addition to sharing opinions, contributes
to the content of a document [7]]. Collaborative writing
is standard practice in technical and scientific settings;
some examples include research papers, software devel-
opment, proposals for funding and user manuals. When
collaboration is efficiently managed, the advantages of
working in a group include improved efficiency, reduced
errors, and increased the benefits of different viewpoints
and expertise [[10]. If collaboration is poorly supported,
it will lead to inconsistencies, misunderstandings, con-
flicts, redundant work and coordination problems. The

group writing strategies, proximity and synchronicity of
group activities. For instance, collaborative writing can
be done in parallel synchronously, asynchronously or
multi-synchronously [9} [13]]. Synchronous work, with
a joint-writing strategy, can give good results but is lim-
ited to small groups working for a short period of time.
Asynchronous work with turn-taking strategies, allows
to work distributed in time but does not allow task paral-
lelization. The multi-synchronous interaction mode al-
lows people to work in parallel synchronously or asyn-
chronously while being distributed in time and space.
It is the least restrictive collaborative writing strategy.

hjazzar@ul.edu.lb,hala.naja@hotmail.com
n.desilva@ecs.soton.ac.uk
skaf@loria.fr, Charbel.Rahal@loria.fr, molli@loria.fr
Heitor
Rectangle

This working mode is well known in software engineer-
ing. Software engineers commonly use version control
systems or distributed version control system to achieve
high parallelization of tasks and reduce development
time. This high level of concurrency is potentially risky
and can lead to software inconsistencies. Fortunately,
software engineers can compile software and run auto-
matic tests in continuous integration strategy [3]] to limit
the risk of inconsistencies.

Unfortunately, we cannot reuse these proven effi-
cient collaborative strategies outside the software en-
gineering world. Currently, we lack the presence of
automatic testing mechanisms for checking document
content quality according to some specifications. Text
documents do not have typed objects to reason about,
and therefore cannot be “compiled” in order to verify
some type safety violation.

Multi-synchronous collaboration mode greatly in-
creases the risk of misaligned contributions by individ-
ual authors. Despite each section may be well con-
structed, all sections may not ‘fit’ logically when placed
together. While this is easy to correct in short texts, the
problem is much harder in large, multi-authored doc-
uments. This is what we refer to as content quality
which is the focus of this paper.

Content quality is poorly supported by existing Multi-
synchronous collaborative writing environments. In these
environments, each author works on her own copy of
the shared data. The system is correct if: (1) it eventu-
ally converges to an idle state where all copies are iden-
tical (2) user intentions are preserved [15]. ’Intention’
means that if an operation produced an effect when gen-
erated, this effect must be observed in the same way by
all users. Collaborative environments help authors by
providing awareness about concurrent changes. Next,
authors have to verify that each local operation is com-
patible with all other concurrent operations. We want
to leverage this stage by providing more information
about the context and impact of modifications. This re-
quires us to define more clearly what is meant by “con-
tent quality”.

What we mean by content quality is the ease with
which a document can be read and understood. While
multiple factors such as grammar and punctuation can
affect this, the logical progression of the ideas pre-
sented is perhaps the one with the most impact.

In this paper, the words incoherence and inconsis-
tency are used interchangeably. They designate missar-
rangements in documents portions (i.e. sentences, para-
graphs,...) that negatively affect the general meaning of
the document.

In this paper, we use techniques from the seman-

tic web domain to address the problem of poor-quality
content documents during collaborative writing. More
precisely, we define an ontology called OntoReST based
on the theory on Rhetorical Structure Theory (RST) de-
fined by Mann and Thompson [8]]. OntoReST turns the
document contents into a machine readable and struc-
tured form which allows the detection of illogical ar-
rangements of document portions. Such ontologies can
be used to turn text into typed objects. Consequently,
multi-synchronous collaboration interaction mode can
be used in order to achieve more efficient collaboration
for producing text documents.

So, first we give a brief description of RST and show
how the structure of a text can be analysed using it.
In section 3] we define OntoReST formally using OWL
and description logic DL. Next, in section [we detail
the required steps to manipulate this ontology during
collaborative writing and describe the applied merging
algorithm using an example. We also discuss related
work in the field and finally, present our conclusions
and directions for future work.

2 Rhetorical Structure Theory (RST)

There are several discourse theories developed by lin-
guists to analyse the structure of texts. We have chosen
Rhetorical Structure Theory (RST) [8]] for its simplicity,
clear relationship definitions and its ability to render it-
self into formal descriptions. RST attributes the coher-
ence of a text to implicit logical relationships such as
’Motivation’, *Background’ and ’Elaboration’ that ex-
ist between portions of the text. The rest of this section
gives a brief overview of how a RST analysis can be
done and highlights parts of the process essential to the
discussions in this paper.

2.1 Analysing a Text Using RST

The first step in a RST analysis is to divide the text into
non-overlapping, functionally independent segments[8].
As an example, we use the text below to demonstrate
the segmentation.

[Text 1:] [1:The problem with existing writing soft-
ware is their inability to detect semantic problems in
documents.] [2:0ntoReST is the result of combining the
techniques behind onotologies and those related to RST)
[3:When combined with existing writing tools, it can
help improve the quality of documents by alerting au-
thors to possible semantic inconsistencies. |
During a bottom-up analysis, the second step is to iden-
tify logical relationships that exist between pairs of seg-
ments. For instance, in the above example, we see seg-
ment 3 to be providing motivating information to the

statement in segment 2 (i.e. Motivation relationship).

Segments in a relationship can play one of two roles:
a nucleus or a satellite. A nucleus is considered to be
an important segment, essential to the understanding of
the text. A satellite is not as critical but does provide
supporting material.

More information about RST can be found in Mann
and Thompson’s paper [8] where 23 relationships are
defined. Henderson and De Silva [3]], however, consid-
ered 23 to be too many for technical writing and began
selecting a subset of relationships that were sufficient
for analysing technical documents. In [2], a user study
has shown that technical authors found a set of 9 rela-
tionships adequate for their analysis.

In the analysis, segments involved in a relationship
collectively form a span. A span can in turn become
part of another relationship. For instance, in our exam-
ple, the span of segments 2 and 3 is identified as being
in a BACKGROUND relationship with segment 1 (i.e.
segment 1 provides background information that helps
understand the significance of BOTH segments 2 and
3). Hence, the analysis is a recursive process and con-
tinues until all the segments are assembled into a tree of
relationships. This is called a RSTree.

2.2 RSTrees Properties

The important point about RSTrees is that Mann and

3 Ontologies for documents description

An ontology describes basic concepts in a domain and
defines relations among them. It is composed of con-
cepts, properties, relations and restrictions on proper-
ties. We formalize the RST theory as an ontology. This
allows to take advantages of the semantic web by turn-
ing the content of document into a machine readable
and structured form. It provides also a common knowl-
edge base for the authors. Moreover, it is possible to
detect automatically semantic problems and to make in-
teresting queries on the document. For example, by se-
lecting all the Nucleus we can produce a summary of
the document.
We have defined three ontologies (see figure|I)):

e Document structure ontology: captures the inter-
nal structure of the document (sections, sentences,
etc).

¢ Rhetorical ontologyOntoReST: models the docu-
ment in terms of its rhetorical elements (i.e. seg-
ments, spans and RST relationships). This allows
the detection of semantic inconsistencies in docu-
ments.

e Annotation ontology: annotates the sentences and
the sections of the document. It also captures addi-
tional meta data about the document. This is help-
ful in classifying the documents according to their
types, authors and topics.

Thompson conjecture that producing a well-formed RSTree

for a text indicates that a text is coherent. This is a use-
ful measure in our work where we apply RST to detect
incoherent texts. They define four properties that deter-
mine if a RSTree is well formed. They are:

1. Completedness: One schema application (the root)
should cover the entire text.

2. Connectedness: Each text span/segment, apart from
the span that covers the entire text, should be a
minimal unit in the tree or part of another schema
application.

3. Uniqueness: Each text span/segment should have
only one parent (i.e. each schema application con-
sists of a different set of text spans/segments).

4. Adjacency: Only adjacent text spans/segments can
be grouped together to form larger spans.

We make use of these properties in OntoReST to
evaluate the quality of documents written collaboratively.

The definition of three separate ontologies allows
flexible modification of the ontologies and is inspired
from [16]]. In this paper, our major interest is detect-
ing inconsistency in the documents. For this reason, we
will focus just on the rhetorical ontology OntoReST.

3.1 Rhetorical Ontology OntoReST

The rhetorical ontology captures the semantics of the
text by using RST. It models the segments, spans and
rhetorical relations. It also uses the four properties for
well-formed RSTrees to detect incoherences in the doc-
ument. We only use the subset of 9 relations identified
in [} 2]].

We identify five main concepts: Document, Element,
Span, Segment and RhetoricalRelation as shown in fig-
ure[2] In this figure, we omit inverse properties for sim-
plicity.

A Document is composed of an ordered sequence
of segments and has two sets of spans and rhetorical
relations. It has also the following properties:

e hasID: a unique identifier given by the system for
the document.

Rhetorical Relation
— =

_ - —~

~
inSection ~

~~ ' hasContent
*

Rhetorical
Stucture
Ontology

|
t
1
t
|
\
¥ ~a

hasSdction
SRR e
1
T hasSentence
P
|

annotatesSec

Document
Structure
Ontology

I % !
annotatesPub | I annotatesSen I[
T T T
I 4
Meta Annotation I SectionAnnotation
I

Annotation
Ontology .

. property H
: isSubclassOf

Figure 1: Ontology Layers

hasRoot

D'\ hasC(l)ntent
~ I
~ \|~

| Slerzaaeni visible\ hasTD

—— —

- - — % :property
— :isSubclassOf

Document
1

hasContents

> |
\lastPusiticr} \ﬁrstPcrsitinu | @
\
|

inSpan

hasID 'D
Background

hasContents |

‘
hasID'
RhetoricalRelation

-—
hasSatellite ~ =

hasNucleus __
=

e

-

visible

~

Figure 2: The Rhetorical Ontology OntoReST

e hasContents: links a document to its segments,
spans and rhetorical relations. The textual con-
tent of a document is the hasContent values of its
all ordered segments. This property is the inverse
property of containingDoc.

e hasRoot: indicates the root of a document, which
is the span that covers the entire text. Its inverse
property is isRoot.

An Element can be either a Segment or a Span. It is
used to avoid repetition of common properties in Seg-
ments and Spans. It has the following properties:

e hasID: is a unique identifier given by the system
for each element.

e firstPosition and lastPosition: are the position of °

the segment in the document. They have equal

value for a segment. For a span, they indicate the
position of the first and last segments covered by
the span in the document. We use them for the
adjacency property.

visible: is the status of the element. Its range is
boolean and has “true" as default value. It turns to
“false" when the element is deleted. We add this
property because we do not delete physically the
element, but rather we mark it as invisible. This
property will be set by the merging algorithm as
we will see later.

hasParent: indicates the parent of an element. Each
element in the document has a parent property ex-
cept the root.

containingDoc: indicates the document containing
the elements.

A Segment is a sentence. It inherits the properties of
an element and has an additional property hasContent.

A Span covers two adjacent segments and is always
linked to one rhetorical relation. Span inherits the prop-
erties of an element and has the additional following
properties:

o hasFirstChild and hasSecondChild: are the first
and the second child elements of a Span.

e isRoot: indicates the parent document of the root
span. Its inverse property is hasRoot.

o hasRstRelation: indicates the rhetorical relation ex-
isting between the children of the span. The chil-
dren of a span are the nucleus and satellite of that
relation.

e changed: is the status of the span. It is “false” by
default and set to “true", after deleting one of its
children or the hasRstRelation property.

The changed property allows to propagate modifica-
tions to the concerned spans and relations in the RSTree,
and provides some awareness that helps the authors to
localize the modified parts of the documents.

A Rhetorical Relation is the rhetorical relation that
holds between two elements. It is always linked to a
span. It has the following properties:

e hasID: is a unique identifier given by the system
for each relation.

e hasName: is the name of the relation such as Moti-
vation or Elaboration. Its domain is a Relation and
its range is a list of relations’ names. According to
the RST theory, the name of the relation specifies
the order of the nucleus and the satellite i.e. nu-
cleus is before satellite or the opposite.

e hasNucleus and hasSatellite: represent the nucleus
and satellite of the relation respectively. Their val-
ues are the first and the last child of the linked span
i.e. they refer to the first and last child properties
of the related span.

e visible: is the status of the relation. Its range is
boolean and has “true" as default value. It turns to
“false" when the relation is deleted.

e inSpan: this property is the inverse property of the
hasRstRelation.

3.2 Formal Specification of OntoReST

We use both OWL (Web Ontology Language) and De-
scription Logic to formalize OnfoReST. We write the
class axioms, the property axioms, and the constraints
in OWL DL which is the most investigated species of
OWL [[1]. OWL DL has different syntaxes. However,
the normative syntax of OWL DL is the abstract syntax.
OWL can be seen as an alternate notation for Descrip-
tion Logic Language SHOZN (D). Table[l|presents the
concepts of the OntoReST.

Table 2] presents the object and data properties. In
this table, we skipped some identical properties for sim-
plicity. Both tables represent a mapping between the
OWL DL abstract syntax and the syntax of the Descrip-
tion Logic SHOZN (D).

4 OntoReST in Collaborative Writing

Using OntoReST to maintain consistency during collab-
orative writing requires the following steps:

e Ontology instantiations: Each instance of concept
is created locally at a user’s site. First, when the
author adds a sentence, the system will detect this
modification as an operation and creates an instance
of the segment concept. Second, the operation is
sent and integrated at all other users’ sites. Fi-
nally, if there are no modifications, the replicated
instances will be the same at all sites. In section[d.1}
we define operations to instantiate this ontology.

o Merging algorithms: To integrate remote modi-
fications, we use the Tombstone Transformation
Functions algorithm [11] (TTF) as mentioned in

section

e [nconsistency checker: There is a significant dif-
ference between using RST in collaborative writ-
ing and traditional applications of RST. Normally,
RST is applied to a ‘static’ text. However, in col-
laborative writing, the text varies too often and its
corresponding RSTree changes too. We have to
ensure that the new RSTree respects the four prop-
erties defined in the RST theory, as detailed in sec-
tion [4.4]

4.1 Populating Ontology

In this section, we describe the process of ontology’s
instantiation during the edition.

During the edition, the changes made by the authors
are detected by the system as follows:

OWL Abstract syntax

DL syntax

Class axioms

SubClassOf(Document Thing)

SubClassOf(Element Thing)

SubClassOf(Span Element)

SubClassOf(Segment Element)
EquivalentClasses(Element unionOf(Span Segment))
DisjointClasses(Span Segment)
EquivalentClasses(RheRelation)
unionOf(Background ... SolutionHood))
DisjointClasses(Background, Contrast)
DisjointClasses(Sequence, SolutionHood)

Document C T

Element C T

Span C Element

Segment C Element

Element = Span U Segment

Span M Segment C |
RheRelation =

Background U ... LI SolutionHood
Background M Contrast = 1, ...
Sequence M SolutionHood C L

Table 1: The Rhetorical concepts in OWL and DL

1A:The problem with existing writing
software is their inability to detect se-
mantic problems in documents.

=3:MOTIV ATH

1u When combined with existing

lated to RST.

1B: OntoRest is the result of
combining the techniques be-
hind ontologies and those re-

wrinting tools, it can help improve
the quality of documents by alerting
authors to possible semantic incon-

sistencies.

Figure 3: RSTree of AnnotatedText]

addSeg(position, haslID, content, sid) adds an in-
stance of segment with the specified position and
the text content. sid is the identifier of the site gen-
erating the operation. The sid is necessary for the
merging algorithm.

delSeg(position) deletes logically a segment at the
given position. The visible property of the segment
is set to false. There is no physical deletion of seg-
ments to ensure the convergence [11]. If the seg-
ment has a parent span, the changed property of its
parent will be set to true.

addSpan(hasID, hasFirstChildID, hasSecondChil-
dID) creates an instance of span with the required
properties.

delSpan(hasID) deletes logically a span. The visi-
ble property of the span is set to false. If the span
has a parent span, then the changed property of its
parent is set to true.

addRel(hasID, NucleusID, SatelliteID, SpanlD, has-
Name) adds a rhetorical relation between the chil-

dren of span Spanld. Nucleusld, respectively Satel-
liteld, is the spanld child which is nucleus, respec-
tively satellite of the created relationship.

delRel(hasID) deletes logically a relation. The vis-
ible property of the relation is set to false. The
changed property of the span linked to this rela-
tion is set to true.

We define only add and delete operations. Because,
during the merge the update operation is detected as
delete followed by add by the diff algorithms.

Let us consider a scenario where an author is work-
ing on sitel. She wants to write the Text 1 of section 2]
but this time with rhetorical annotations.

She modifies her local copy through generating op-
erations. The system will detect these changes as the
following sequence of operations:

S =

addSeg (1, 1A, "The problem ...
addSeg (2, 1B, "OntoReST is...
addSeg (3,1C, "When combined ...
addSpan (2-3s, 1B, 1C);

addRel (2-3,1C, 1B, 2-3s, "Motivation");

OWL Abstract syntax

|

DL syntax

Property axioms

ObjectProperty(hasFirstChild domain(Span)
range(Element))

restriction(hasFirstChild maxCardinality(1)
minCardinality(1))

ObjectProperty(hasNucleus domain(RheRelation)
range(Element))

restriction(hasNucleus minCardinality(1)
maxCardinality(2))

ObjectProperty(hasParent domain(Element)
range(Span))

ObjectProperty(inSpan domain(RheRelation)
range(Span)
inverseOf(hasRstRelation))

DatatypeProperty(firstPosition domain(Element)
range(String))

DatatypeProperty(hasID
domain(unionOf(Element RheRelation
Document)) range(Integer))

DatatypeProperty(visible range(Boolean))

T C V hasFirstChild~.Span
T C V hasFirstChild.Element
Span C (= 1 hasFirstChild)

T C V hasNucleus™.RheRelation
T C V hasNucleus.Element
RheRelation T (>1 hasNucleus) M (<2 hasNucleus)

T C V hasParent™ .Element

T C V hasParent.Span

T C VinSpan~.RheRelation

T C VinSpan.Span

inSpan = hasRstRelation™
Element C 3 firstPosition.String

T C V hasID~.(Element LI RheRelation)
Element LI RheRelation U Document = 3 hasID.Integer

Element LI RheRelation C 3 visible.Boolean

Table 2: The Rhetorical properties in OWL and DL

addSpan (1-3s,1A,2-3s);

addRel (1-3,1A,2-3s,1-3s, "Background")]
The system will build the RSTree for Annotated-

Textl as depicted in figure 3]

4.2 Concurrent Writing

Now consider that two authors A and B, working on
site2 and site3 respectively, are writing the Annotated-
Textl of figure [3] Each author has his own copy of the
text.

Author A decides to delete the segment in position
2. In order to preserve local consistency of the RSTree,
the system will propagate this deletion to its parent span
and associated relation. Span 2 — 3s and relation 2 — 3
are logically deleted. Moreover, the parent of span of
2 — 3s will be replaced by 1 — 3’s and relation 1 — 3 by
1 — 3’ as shown in figure 4

The changes performed by author A will be detected
by the system as the following sequence of operations
P1:

Pl= [delSeg(2); delSpan(2-3s);
delRel (2-3); delSpan(l-3s);
delRel (1-3);addSpan(1-3’'s,1A,1C);
addRel (1-3’,1A,1C, "Background")]

At the same time, author B performs concurrent op-
erations (see figure 5). She adds a new segment:“This
is a work in progress." at position 4 and two relations.

The system produces the following set of operations
P2:
P2=[addSeg (4, 1D, "This...",3);
delSpan(l1-3s); delRel (1-3);
addSpan (2-4s,2-3s,1D) ;
addRel (2-4,1D,2-3s, "Elaboration");
addSpan (1-4s,1A,2-4s);
addRel (1-4,1A,2-4s, "Background") ;]

4.3 Merging Ontological Data

In this section, we will detail through an example how
we merge the above concurrent operations. Authors A
and B have generated P; and P, respectively, so the
copies hosted on site2 and site3 are diverging now i.e.
they have different content. Both sites exchange their
operations and run the integration process. In order to
converge, the system has to ensure Merge(P1, P2) =
Merge(P2, P1). Unfortunately, this property would
not be ensured by traditional merge algorithms.

This problem is well-know in CSCW community.
The Operation Transformation (OT) framework [4]] has
been developed to ensure convergence in these condi-
tions. In [12]], we defined a set of all transformation
functions dealing with concurrent operations, and en-
sure convergence of semantically annotated documents
with RST.

As shown in figure|[6] the final state is converged to-
wards an inconsistent value which is the result of merg-

1-3’s:Span

1A:The problem with existing writing
software is their inability to detect se-
mantic problems in documents.

—3":BACKGROU

1C: When combined with existing
wrinting tools, it can help improve
the quality of documents by alerting
authors to possible semantic incon-
sistencies.

Figure 4: AnnotatedText] for author A

1-3s:Span

T

1-3:BACKGROUND

1A:The problem with existing writing
software is their inability to detect se-
mantic problems in documents.

’ 2-3s:Span ‘ ’ This is a work in progress ‘

/mﬂ - - —
1C: When combined with existing

1B: OntoRest is the result of wrinting tools, it can help improve
combining the techniques be-

hind ontologies and those re-
lated to RST.

the quality of documents by alerting
authors to possible semantic incon-

sistencies.

Figure 5: AnnotatedTextl of author B

ing the two RSTrees. The resulting value does not re-
spect the rhetorical properties. For example, the seg-
ment at position 1 violates the uniqueness property. The
resulting RSTree will help the authors to better under-
stand the reasons of the semantic inconsistency and to
locate exactly the segments of the text which are re-
sponsible for this inconsistency. In the next section, we
detail our inconsistency checker.

4.4 Inconsistency Checker

In our approach, we consider a document as coherent if
it respects the four properties of the RST (see section
). Therefore, we formalize these properties as con-
straints in the OntoReST ontology. These constraints
are checked continuously. As result, individual author
produces coherent documents and detects any inconsis-
tency after merging concurrent modifications.

To check the inconsistent instances of the OnfoR-
eST, we formalize the violation of the coherence prop-
erties of the RST in DL on an instance d of the docu-
ment Document(d) as follows :

1. Completedness Violation (CompV) document d

has a number of roots different from one.
CompV=- (= 1 hasRoot)

2. Connectedness Violation (ConV) For document
d, an inconsistent element that violates the con-
nectedness property is a visible element that has
no parent and is not a root of d.

ConV = Element M 3 visible.{true}
d containingDoc. {d} MV hasParent. L MYV
isRoot.—{d}

3. Uniqueness Violation (UniV) For document d, an
inconsistent element that violates the uniqueness
property is a visible element that has a number of
parents different than one.

UIE = Element M dvisible.{true} I 3 contain-
ingDoc.{d} M = (=1 hasParent)

4. Adjacency Violation (AdjV) For a visible span
in document d, there exists a visible element (seg-
ment or span) between the last position of its first
child and the first position of its second child.

C1l = Span M 3 visible.{true} M 3 containing-
Doc.{d}

1-3s:Span 1-3’s:Span

"BACKGROUND

1A:The problem with existing writing

software is their inability to detect se- 2-4s:Span

mantic problems in documents.

2-3s:Span This is q work..... ‘

/fﬁ/[mﬁ’ . . —
IC: When combined with existing

1B: OntoRest is the result of wrinting tools, it can help improve

combining the techniques be- f .
hind ont 0%0 gies and t(}ll ose re- the quality of documents by alerting

lated to RST. authors to possible semantic incon-

sistencies.

Figure 6: Merging Result

C2 = Element I 3 visible.{true} M 3 contain-
ingDoc.{d}

Let s and e be C'1(s) and C2(e):

AdjV =

(> firstPosition. {e}
lastPosition.hasFirstChild. {s})

M

(< lastPosition. {e}
firstPosition.hasSecondChild.{s}).

We have implemented and verified our OntoReST
and rhetorical constraints in Protégé and Protégé Axiom
Language (PAL) respectively.

5 Related works

In the collaborative writing domain, most studies on se-
mantic consistency are based on constraints. Some ap-
proaches allow the violation of the constraints. When
violated, reparation is done either automatically, like
in [14]], or manually. Others prevent constraints viola-
tion like in [6]]. If an operation violates the constraints,
the operation is canceled. Both approaches in [14] and
[6] bring about lost updates which is not ideal.
Constraints can be specific to an application and con-
cern more the document structure. However, they can-
not capture the co-author’s understanding and logical
reasoning about the text. RST provides this need by at-
tributing relationships between its segments. These re-
lationships create an overall effect on the reader, result-
ing in a better understanding of the text. Consequently,
when authors exchange documents, they also pass on
their knowledge via the attached RST relationships. In

our work, we evaluate the semantic consistency of doc-
uments, by using the RST properties as our constraints.
The project SALT (Semantically Annotated Latex)
has some common features with our work. In [[16]], the
authors propose a framework for authoring and anno-
tating LaTeX documents. They develop ontology based
on RST. The authors add RST-based semantic tags to
their LaTeX documents while editing. SALT does not
consider collaborative work. In our work, the OntoR-
eST ontology is used not only to add semantic annota-
tions within the document but also to evaluate the docu-
ment’s level of coherence during collaborative writing.
By constantly maintaining and checking the four prop-
erties, we are able to detect inconsistencies and alert
the authors to such areas. We anticipate to integrate our
work easily into the SALT framework so that our RST
capability can be extended into LaTeX documents too.

6 Conclusions and Future Work

The problem we have tackled in this paper is the lack
of support in current collaborative writing tools to de-
tect semantic problems in texts. We have combined
ideas from a discourse theory, called Rhetorical Struc-
ture Theory (RST), and ontologies to develop OntoR-
eST. RST has provided us with a way to formally iden-
tify what it means for a text to be coherent (or semanti-
cally sound). RST attributes the coherence of a text to
underlying relationships between its segments. These
relationships create an overall effect on the reader which
contributes towards a better understanding of texts. The
creators of RST also define some properties which we
have formalised and used in our work to evaluate if the
text is semantically sound.

OntoReST offers a novel application of annotations,
where the focus is to achieve more coherent documents
in collaborative writing. It benefits from having the
advantages of ontologies such as providing a common
knowledge base for authors, and searching easily for
data through queries. We make use of a merging tech-
nique to ensure the convergence of the OntoReST, i.e.
getting identical RSTrees for documents on all the au-
thors’ sites leaving no room for confusion.

This combination of different strands of research
(RST, ontologies and collaborative writing) is novel. As
future work, we intend to evaluate its practical use and
identify its shortcomings.

References

[1] de Bruijn, J., Lara, R., Polleres, A., and Fensel, D.
Owl dlI vs. owl flight: conceptual modeling and
reasoning for the semantic web. In WWW °05:
Proceedings of the 14th international conference
on World Wide Web, pages 623—632, New York,
NY, USA, 2005. ACM.

[2] De-Silva, N. A narrative-based collaborative
writing tool for constructing coherent technical
documents. PhD thesis, University of Southamp-
ton, 2007.

[3] Duvall, P., Matyas, S., and Glover, A. Continu-
ous Integration: Improving Software Quality and
Reducing Risk (The Addison-Wesley Signature Se-
ries). Addison-Wesley Professional, June 2007.

[4] Ellis, C. A. and Gibbs, S. J. Concurrency Control
in Groupware Systems. 18:399-407, May 1989.

[5] Henderson, P. and De-Silva, N. A narrative ap-
proach to collaborative writing: A business pro-
cess model. In 8th International Conference on
Enterprise Information Systems (ICEIS), Cyprus,
2006.

[6] Kermarrec, A.-M., Rowstron, A., Shapiro, M.,
and Druschel, P. The IceCube Approach to the
Reconciliation of Divergent Replicas. In Proceed-
ings of the ACM Symposium on Principles of Dis-
tributed Computing - PODC 2001, pages 210—
218, Newport, Rhode Island, USA, August 2001.
ACM Press.

[7]1 Lowry, P. B., Curtis, A., and Lowry, M. R. Build-
ing a Taxonomy and Nomenclature of Collabo-
rative Writing to Improve Interdisciplinary Re-

search and Pratice. Journal of Business Commu-
nication, 41(1):66-99, January 2004.

[8] Mann, W. C. and Thompson, S. A. Rhetorical
structure theory: Toward a functional theory of
text organization. 7ext, 8(3):243-281, 1988.

[9] Molli, P., Skaf-Molli, H., Oster, G., and Jourdain,
S. SAMS: Synchronous, Asynchronous, Multi-
Synchronous Environments. In Proceedings of the
Conference on Computer-Supported Cooperative
Work in Design - CSCWD 2002, pages 80-85, Rio
de Janeiro, Brazil, September 2002.

[10] Noél, S. and Robert, J.-M. Empirical study on
collaborative writing: What do co-authors do, use,

and like? Computer Supported Cooperative Work
- JCSCW, 13(1):63-89, 2004.

[11] Oster, G., Urso, P., Molli, P., and Imine, A. Tomb-
stone transformation functions for ensuring con-
sistency in collaborative editing systems. In The
Second International Conference on Collabora-
tive Computing: Networking, Applications and
Worksharing (CollaborateCom 2006), Atlanta,
Georgia, USA, November 2006. IEEE Press.

[12] Rahhal, C., Skaf-Molli, H., Molli, P., and Silva,
N. D. Semcw: Semantic collaborative writing
using rst. In The 3rd International Conference
on Collaborative Computing:Networking, Appli-
cations and Worksharing - CollaborateCom 2007,
New York, USA, nov 2007.

[13] Skaf-Molli, H., Ignat, C.-L., Rahhal, and Molli, P.
New Work Modes for Collaborative Writing. In
International Conference on Enterprise Informa-
tion Systems and Web Technologies- EISWT 2007,
Orlando, Florida, jul 2007.

[14] Skaf-Molli, H., Molli, P., and Oster, G. Semantic
Consistency for Collaborative Systems. In Pro-
ceedings of the International Workshop on Col-
laborative Editing Systems - CEW 2003, Helsinki,
Finlande, September 2003.

[15] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen,
D. Achieving Convergence, Causality Preser-
vation, and Intention Preservation in Real-Time
Cooperative Editing Systems. ACM Transac-
tions on Computer-Human Interaction, 5(1):63—
108, March 1998.

[16] Tudor Groza, K. M., Siegfried Handschuh and
Decker, S. SALT - Semantically Annotated La-
TeX for scientific publications. In 4th Euro-
pean Semantic Web Conference (ESWC 2007)., jul
2007.

	Introduction
	Rhetorical Structure Theory (RST)
	Analysing a Text Using RST
	RSTrees Properties

	Ontologies for documents description
	Rhetorical Ontology OntoReST
	Formal Specification of OntoReST

	OntoReST in Collaborative Writing
	Populating Ontology
	Concurrent Writing
	Merging Ontological Data
	Inconsistency Checker

	Related works
	Conclusions and Future Work

