
A Graphical Tool Support to Process and Simulate ECATNets Models based on
Meta-Modelling and Graph Grammars

Elhillali KERKOUCHE1 and Allaoua CHAOUI2

1Department of Computer Science,

University of Oum El Bouaghi, Algeria

elhillalik@yahoo.fr

2MISC Laboratory,

Department of Computer Science,
University Mentouri Constantine, Algeria

a_chaoui2001@yahoo.com

Abstract. ECATNets are an algebraic Petri net category based on a safe combination of algebraic abstract

types and high level Petri Nets. ECATNets’ semantic are defined in terms of rewriting logic allowing us to

built models by formal reasoning. Furthermore, the rewriting logic language Maude gives to ECATNEts

dynamic aspects which are not measurable without simulation. The building of a modelling tool for the

design and analysis from scratch (for ECATNets for example) is generally prohibitive task. Meta-

Modelling approach is useful to deal with this problem, as it allows (possibly is done graphically) the

modelling of the formalisms themselves. Since meta-model and model are graphs, further manipulations

−simulation, transformation and code generation for an existing solver− of the models can be described
graphically and formally as graph grammar. In this paper, we propose an approach based on the combined

use of Meta-modelling and Graph Grammars to automatically generate a visual modelling tool for

ECATNets for analysis and simulation purposes. In our approach, the UML Class diagram formalism is

used to define a meta-model of ECATNets. The meta-modelling tool ATOM3 is used to generate a visual

modelling tool according to the proposed ECATNets meta-model. We have also proposed a graph grammar

to generate Maude description of the graphically specified ECATNets models. Then the rewriting logic

language Maude is used to perform the simulation of the resulted Maude specification. Our approach is

illustrated through an example.

Keywords: ECATNets, Rewriting Logic, Maude, Meta-modelling, Graph Grammars, Graph

Transformations, AToM3, Automatic Code Generation.

 (Received September 02, 2009 / Accepted January 06, 2010)

1. Introduction

ECATNets are an algebraic Petri net category based on a

safe combination of algebraic abstract types and high

level Petri Nets [5]. In addition to modelling, ECATNets

allow the verification and simulation of concurrent

systems [4]. The most distinctive feature of ECATNets

is that their semantic are defined in terms of rewriting

logic [21], allowing us to build models by formal

reasoning. The rewriting logic Maude [8] is considered

as one of very powerful languages in the specification

and verification of concurrent systems [21]. Rewriting

logic gives to ECATNets a simple, more intuitive and

practical version to analyse, without loosing formal

semantic (mathematical rigor, formal reasoning).

Furthermore, high level abstraction of this logic makes

ECATNets, in spite of their complexity, to be dealt as

simple as possible. The power of Maude in terms of

specification, programming, simulation and verification

in addition to the ECATNets’ integration in Maude,

implies that there is no need to translate ECATNets in

several languages and thus any risks about their

semantic loss [7]. On the other hand, the use of the

rewriting logic language Maude is constrained by the

textual way to create and deal with ECATNets system.

Execution under Maude system is done by using

command prompt style. In this case, we loose the

graphical aspect of ECATNets formalism which is

important for the clarity, simplicity and readability of a

system description.

The cost of building a modelling tool from the

scratch is prohibitive. Meta-Modelling approach is

useful to deal with this problem, as it allows (possibly

graphical) the modelling of the formalisms themselves

[11]. A model of formalism should contain enough

information to permit the automatic generation of a tool

to check and build models subject to the described

formalism’s syntax. If this specification is done

graphically, the time to develop a modelling tool can be

drastically reduced to a few hours.

Since meta-model and model are stored as graphs,

further manipulations of the models can be described

graphically and formally as graph grammars [24]. Some

of these manipulations are model simulation or

animation, model optimisation, for example, to reduce

its complexity, model transformation into another model

(equivalent in behaviour), expressed in a different

formalism, and the generation of textual model

representations for use by existing simulators or tools. In

this paper we will focus on the last kind of model

transformation. These ideas presented above are

implemented in ATOM3: A Tool for Multi-formalism

and Meta-Modelling [2].

In this paper, we propose an ECATNets meta-model

and we use the meta-modelling tool AToM3 to generate

automatically a visual modelling tool to process models

in ECATNets formalism. We also define a graph

grammar to translate the models created in the generated

tool to a Maude specification. Then the rewriting logic

language Maude is used to perform the simulation of the

resulted Maude specification.

The rest of this paper is organized as follows:

Section 2 outlines the major related work. We give a

brief introduction on ECATNets formalism and their

integration in rewriting logic in section 3. In section 4,

we recall some concepts about Graph Grammars. In

section 5, we give an overview of the AToM3 tool. In

section 6, we define a meta-model for ECATNets and

we generate a visual tool for this formalism. In section

7, we propose a graph grammar to generate Maude

specification of models created with our tool. In section

8, we illustrate our tool with Router problem. First, we

have created the ECATNets model for this problem.

Then we have generated Maude specification of the

model and invoked the rewriting logic language Maude

to perform the simulation. Finally, section 9 concludes

the paper.

2. Related Work

In addition to AToM3, there are several visual tools to

describe formalisms using metamodeling like Generic

Modeling Environment (GME) [15], MetaEdit+ [18]

and other tools from the Eclipse Generative Modeling

Tools (GMT) project such as Eclipse Modeling

Framework (EMF) [12], Graphical Editing Framework

(GEF) [14] and Graphical Modeling Framework (GMF)

[16]. In most of these tools, model transformations have

to be described textually and user friendly support for

visual analysis and testing is generally missing. In

AToM3, the user expresses such transformations by

means of graph grammar models. Graph grammars are a

natural, declarative, and general way to express

transformations.

There are also similar tools which manipulate

models by means of graph grammars, such as

PROGRES [22], GReAT [17], FUJABA [13], TIGER

[25] and AGG [1]. However, none of these has its own

meta-modeling layer. Some of them are complemented

with support for meta-modelling (for example, The

GReAT model transformation engine is combined with

GME).

The combined use of meta-modelling and graph

grammars taken in AToM3 allow users not only to

benefit from the advantages of both (meta-modelling

and graph grammars) but also to model with multi-

paradigm modeling [9]. The AToM3 tool has been

proven to be very powerful, allowing the meta-modeling

and the transformations of known formalisms. In [10]

the authors presented a transformation between

Statecharts (without hierarchy) and Petri Nets. In [19],

the authors have presented a formal framework (a tool)

based on the combined use of Meta-Modeling and

Graph Grammars for the specification and the analysis

of complex software systems using G-Nets formalism.

The framework allows a developer to draw a G-Nets

model and transform it into its equivalent PrT-nets

model automatically. In order to perform the analysis

using PROD analyzer, the framework allows a

developer to translate automatically each resulted PrT-

Nets model into PROD’s net description language. In

[20] the authors have proposed an approach for

transforming UML Statechart and collaboration

diagrams to colored Petri nets models. More precisely,

they have proposed an automated approach and a tool

environment that formally transforms dynamic

behaviours of systems expressed using UML models

into their equivalent colored Petri Nets (CPN) models

for analysis purpose. This transformation aimed to

bridge the gap between informal notation (UML

diagrams) and more formal notation (coloured Petri nets

models). It produces highly-structured, graphical, and

rigorously-analyzable models that facilitates early

detection of errors like deadlock, livelock, … .To make

the analysis more easy, they have used the obtained

CPN models to generate automatically their equivalent

description in the input language of INA Petri net tool.

3. ECATNets

ECATNets [5] are a kind of net/data model combining

the strengths of Petri Nets with those of abstract data

types. The most distinctive feature of ECATNets is that

their semantic is defined in terms of rewriting logics

[21]. Motivating ECATNets (Extended Concurrent

Algebraic Terms Nets) leads to motivating Petri Nets,

abstract data types, as well as their combination into a

unified framework [7].

From a syntactic point of view, places are marked

with multi-sets of algebraic terms. Input arcs of each

transition t, i.e. (p,t), are labeled by two inscriptions

IC(p,t) (Input Condition) and DT(p,t) (Destroyed

Tokens), output arcs of each transition t, i.e. (t,p’), are

labelled by CT(t,p’) (Created Tokens), and finally each

transition t is labelled by TC(t) (Transition Condition).

IC(p,t) specifies the enabling condition of the transition

t, DT(p,t) specifies the tokens (a multi-set) which have

to be removed from p when t is fired, CT(t,p’) specifies

the tokens (a multi-set) which have to be added to p’

when t is fired. Finally, TC(t) represents a Boolean term

which specifies an additional enabling condition for the

transition t. the current ECATNets state is given by the

union of terms having the following form (p,M(p)).

Figure 1. A generic ECATNets

The ECATNets behaviour may be informally

commented in the following way. A transition t is

enabled when various conditions are simultaneously

true. The first condition is that every IC(p,t) for each

input place p is enabled. The second condition is that

TC(t) is true. Finally the addition of CT(t,p’) to each

output place p’ must not result in p’ exceeding its

capacity when this capacity is finite. When t is fired,

DT(p,t) is removed from the input place p and

simultaneously CT(t,p’) is added to the output place p’.

Transition firing and its conditions are formally

expressed by rewriting rules [7].

4. Graph Grammars: an introduction

Graph grammar [24] is a generalization of Chomsky

grammar for graphs. It is a formalism in which the

transformation of graph structures can be modelled and

studied. The main idea of graph transformation is the

rule-based modification of graphs as shown in Figure 2.

Figure 2. Rule-based Modification of Graphs

Graph grammars are composed of production rules;

each having graphs in their left and right hand sides

(LHS and RHS). Rules are compared with an input

graph called host graph. If a matching is found between

the LHS of a rule and a subgraph in the host graph, then

the rule can be applied and the matching subgraph of the

host graph is replaced by the RHS of the rule. A

rewriting system iteratively applies matching rules in the

grammar to the host graph until no more rules are

applicable.

5. AToM
3
: An Overview

AToM3 is a visual tool for multi-formalism modelling

and meta-modelling. The two main tasks of AToM3 are

meta-modelling and model transformation. For meta-

modelling, AToM3 supports visual modelling using

Entity Relationship (ER) formalism or UML Class

Diagram formalism, which means that in AToM3, we

can use either ER model or UML Class Diagram model

to meta-model the new formalisms of interest. To be

able to fully specify modelling formalisms, the meta-

formalism may be extended with the ability to express

constraints (which cannot be expressed within ER or

UML Class Diagram alone). Constraints provide a view

on how a construct can be connected to another to be

P P’

TC(t)
IC(p,t)

DT(p,t)

CT(t,p’)

LHS

Rule = (LHS,RHS)

RHS

meaningful, and thus specify static semantics of the

formalism. Whereas the meta-modelling formalism

frequently uses a graphical notation, constraints are

concisely expressed in textual form. For this purpose,

some systems, including AToM3 use the Object

Constraint Language OCL used in the UML. As AToM3

is implemented in the scripting language Python,

arbitrary Python code may be also used. Once we build

the meta-models for the interested models, AToM3 can

generate automatically a visual modelling environment,

in which you can build and edit the new models.

For model transformation, AToM3 supports graph

rewriting, which uses graph Grammar rules to visually

guide the procedure of the transformation (see section

4). The rules are specified by the user, and the rules are

ordered according to certain criteria depending on the

features of the model to be transformed. Expressing

computations in the form of graph grammars has some

advantages over an implicit representation (embedding

the transformation computation in a program using a

traditional programming language) [3]. The main

advantages can be summarized as follows:

• It is an abstract, declarative, high level

representation of the computation. This enables

exchange, re-use, and symbolic analysis of the

transformation model.

• The theoretical foundations of graph rewriting

systems may assist in proving correctness and

convergence properties of the transformation

tool.

In the next sections, we will discuss how we use

AToM3 to meta-model ECATNets formalism, how to

generate the ECATNets visual modelling environment,

and how to convert models in ECATNets formalism to

their equivalent description in Maude for the simulation

purpose.

6. Meta-Modelling of ECATNets

To build models of ECATNets formalism in AToM3, we

have to define a meta-model for ECATNets. The meta-

formalism used in our work is the UML Class Diagrams

and the constraints are expressed in Python code [23].

Since ECATNets consist of places, transitions, and

arcs from places to transitions and from transitions to

places, we have proposed to meta-model ECATNets two

Classes to describe Places and Transitions, and two

associations for Input Arcs and Output Arcs as shown in

Figure 3. We have also specified the visual

representation of each class or association according to

the notation presented in Figure 1.

Given our meta-model, we have used AToM3 tool to

generate a visual modelling environment for ECATNets

models. Figure 4 shows the generated ECATNets tool

and a dialog box to edit a place. Each place has two

attributes (name and initial marking) which are defined

in the proposed Meta-model (see Figure 3 in

ECATNetsPlace class).

Attributes:

 - Name :: String

 - initMarking :: List

Constraints:

 > MoreThenOneInputArc

 > MoreThenOneOutput

Multiplicities:

 - To InputArc: 0 to N

 - From OutputArc: 0 to N

ECATNetPlace

Attributes:

 - Name :: String

 - TC :: String

Multiplicities:

 - From InputArc: 0 to N

 - To OutputArc: 0 to N

ECATNetTransition

InputArc

Attributes:

 - IC :: List

 - DT :: List

 - ListVariables :: List

Multiplicities:

 - To ECATNetTransition: 1 to 1

 - From ECATNetPlace: 1 to 1

OutputArc
Attributes:

 - CT :: List

 - ListVariables :: List

Multiplicities:

 - To ECATNetPlace: 1 to 1

 - From ECATNetTransition: 1 to 1

Figure 3. ECATNets Meta-Model

Figure 4. Generated tool to process ECATNets models

7. Generation of Maude Specification

In order to simulate ECATNets models, it is necessary

to translate these models into their equivalent

representations in Maude syntax. In this section we

show how to use the modelling environment generated

in the previous section to generate Maude specification.

We do this by defining a Graph Grammar to traverse the

ECATNets model and generate the corresponding code

in Maude. The advantage of using a graph grammar to

generate the textual code is the graphical and high-level

fashion. The graph grammar has an initial Action which

opens the file where the code will be generated and

decorates all the Transition and Place elements in the

model with temporary attributes to be used in the

conditions specified in the rules. In Transition elements,

we use two attributes: current and visited. The current

attribute is used to identify the transition in the model

whose code has to be generated, whereas the visited

attribute is used to indicate whether code for the

transition has been generated yet. In Place elements, we

use also two attributes: fromVisited and toVisited. The

fromVisited attribute is used to indicate whether this

place is processed as input place whereas the toVisited

attribute is used to indicate if this place is processed as

output place.

In our graph grammar, we have proposed six rules

which will be applied in ascending order by the

rewriting system until no more rules are applicable. We

are concerned here by code generation, so none of these

rules will change the ECATNets models. These rules are

shown in figure 5 and described as follows:

Rule1: genLHS_rl(priority 1): is applied to locate a

place (not previously processed) which is related to

current transition with an input arc, and generate the

corresponding Maude specification.

Rule2: betweenLHSandRHS(priority 2): is applied to

generate Maude code which separates LHS and RHS of

the equivalent rewriting rule.

Rule3: genRHS_rl(priority 3): is applied to locate a

place (not previously processed) which is related to

current transition with a output arc, and generate the

corresponding Maude specification.

Rule4: genTC(priority 4): is applied to generate the

appropriate Maude syntax depending on the TC of the

transition, and mark the transition as visited.

Rule5: InitialisePlace(priority 5): is applied to locate

and initialise temporary attributes in places for

processing the next transition .

Rule6: SelectTransition(priority 6): is applied to select

a ECATNets transition that has not been previously

processed to generate its equivalent rewriting rule in

Maude.

The graph grammar has also a final action which

erases the temporary attributes from the entities and

closes the output file. Finally, we have assigned the

execution of this graph grammar to a button labelled as

"Generate Maude Description" in Figure 4.

Figure5. Graphs Graph Grammar to generate Maude

specification from an ECATNets model

::====

LHS RHS

current = = 0

visited = = 0
current = 1

visited = = 0

::====

6.- SelectTransition. Priority : 6

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

fromVisited = = 1

toVisited = = 0
fromVisited = 0

toVisited = 0

::====

5.- InitialisePlace. Priority : 5

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

current = = 1

visited = = 0
fromVisited = = 0

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

2

3

1
LHS

1.- genLHS_rl. Priority : 1

RHS

current = = 1

visited = = 0

fromVisited = 1

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

2

3

1

LHS RHS

current = = 1

visited = = 0
current = 2

visited = = 0

::====

2.- betweenLHSandRHS. Priority : 2

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

RHS

current = = 2

visited = = 0
toVisited = 1

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

3

2

1

::====

LHS

current = = 2

visited = = 0

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

3

2 1

toVisited = = 0

3.- genRHS_rl. Priority : 3

LHS RHS

current = = 2

visited = = 0
current = 0

visited = 1

::====

4.- genTC. Priority : 4

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

8. Steps of ECATNets Simulator: router problem

example

In this section, we describe the most principal steps of

ECATNets Simulator trough an example presented in

[6] about communication network that relies messages

senders to receivers. We present first the ECATNets

model describing this example via the generated tool.

Thereafter, the translating of this model into its

equivalent Maude specification using proposed graph

grammar will be shown. Finally, the simulation of this

example under Maude system will be given.

8.1. Example presentation

This example is about a network of communication

that joins three messages senders to three receivers.

Every sender (respectively receiver) is joined to a port of

network. Every group of senders (or/and of receivers)

sends (receives) messages in parallel.

The Figure 6 presents the ECATNets model of the

router problem created in our tool. Places, transitions

and arcs inscriptions are as follows:

Places: route, R1, R2, R3, S1,S2 ,S3, Queue1,

Queue2, Queue3, Adr1,Adr2, Adrn.

Transitions: From-S1, From-S2, From-S3, To-R1,

To-R2, To-R3, Check-Adr1, Check-Adr2, Check-Adr3.

Arcs Inscriptions: we use the definition in term of

algebraic specification of the queue: q is a variable of

type queue. front(q) is a function that returns the

message m that is in the head of the queue q. addq(m, q)

is a function that adds the message at the end of q.

remove(q) is a function that returns the remainder of the

queue q after deleting the first message (in head).

Figure6. ECATNets modeling a router problem created

in our tool

It must be noted that the initial state (initial marking)

of the ECATNets model is indicated by its places

marking. For each place in model, we have place name

on the upper and its contents marking inside. The

marking of place S1 for example is (m1, A1).

8.2. Translating ECATNets Model to Maude

Description

This step has graphical representation of an ECATNets

model as input. It consists of translating this graphical

representation into its equivalent Maude description

using the graph grammar defined in previous section. To

realise this translation, the user have to click on the

"Generate Maude Description" button in the interface of

the generated tool.

In fact, Maude specification contains on one hand

the structure of the ECATNet and on the other hand, the

initial state of this ECATNets. The output of this step is

the file (router.maude) which contains two elements: an

equivalent code in Maude of ECATNet structure and an

initial state in Maude syntax as shown in Figure 7.

Figure 7. Generated Maude specification of router

model

As illustrated in Figure7, the initial state of the

ECATNets model in Maude syntax is a sequence of

pairs separated with points. Where the first element of

pair is a place and the second one is its marking. For

example, The pair <S1;(m1,A1)> indicate that place S1

has (m1,A1) as marking.

8.3. Simulation

The output of the previous steps (router.maude file) is

the input of this one. In order to perform the simulation

of the resulted Maude specification, we have invoked

the rewriting logic language Maude. Simulation consists

of transforming the initial state to another by doing one

or many rewriting actions. Therefore, in addition to

generated file, the user may give to the Simulator the

number of rewriting steps if (he/she) wants to check

intermediary states. If this number is not given, the

Simulator continues the simulation operation until

reaching a final state. We notice that infinite case is

possible. The Result marking (final state) of the

simulation is given in the same manner as initial one.

In our example (see Figure 8), we have asked the

application to perform the simulation on the following

initial state without indicating the number of rewriting

steps:

S1;(m1,A1)>. <S2;(m2,A2)>. <S3;(m3,A3)>.

<Queue1;EmptyQueue>.

<Queue2;EmptyQueue>.<Queue3;EmptyQueue>.

<Adr1;A1>. <Adr2;A2>. <Adr3;A3>.

The result marking of the simulation is:

<R1; m1>. <R2; m2>. <R3; m3>.<Queue1;

EmptyQueue>. <Queue2; EmptyQueue>. <Queue3;

EmptyQueue>.

This final marking indicates that all submitted

messages (m1, m2 and m3) from senders (S1, S2 and S3

respectively) in network of communication are achieved

in their destinations (R1, R2 and R3 respectively)

according to their addresses (A1, A2 and A3

respectively).

Figure8. Execution of ECATNet example under Maude

system.

9. Conclusion

In this paper, we have proposed an approach based on

combining Meta-modelling and Graph Grammars to

automatically generate a visual modelling tool for

ECATNets for simulation and analysis purposes.

ECATNets are a category of algebraic Petri Nets based

on a safe combination of algebraic abstract types and

high level Petri Nets. ECATNets’ semantic are defined

in terms of rewriting logic allowing us to built models

by formal reasoning. The cost of building a visual

modelling tool (for ECATNets for example) from

scratch is prohibitive. We have demonstrated in this

work that Meta-Modelling approach is useful to deal

with this problem since it allows the modelling of the

formalisms themselves. By means of Graph Grammars,

models manipulations are expressed on a formal basis

and in a graphical way. In our approach, the UML Class

diagram formalism is used as meta-formalism to propose

a meta-model of ECATNets. The meta-modelling tool

ATOM3 is used it to generate a visual modelling tool

according to the proposed ECATNets meta-model. We

have also proposed a graph grammar to generate Maude

description of the graphically specified ECATNets

models. Then the rewriting logic language Maude is

used to perform the simulation of the resulted Maude

specification.

In a future work, we are planning to hide the steps of

the Simulation. The objective of this hiding is to

unburden the user from having to manually invoke

Maude language and to manipulate the textual version of

the result of simulation. For this purpose, the result of

simulation (final state) will be returned in graphical way

to ECATNets model structure.

References

[1] AGG, http://tfs.cs.tu-berlin.de/agg/

[2] AToM3 , http://atom3.cs.mcgill.ca/

[3] Bardohl, R., Ehrig, H., De Lara, J. and Taentzer,

G. Integrating Meta Modelling with Graph

Transformation for Efficient Visual Language

Definition and Model Manipulation, Lecture Notes

in Computer Science, Springer. v. 2984, p. 214-

228, 2006.

[4] Bettaz, M., Chaoui, A., and Barkaoui, K. On

Finding Structural Deadlocks in ECATNets Using

a Logic of Concurrency, Journal of Computing and

Information. v.2 , p. 495-506, 1996.

[5] Bettaz, M. and Maouche, M. How to specify Non

Determinism and True Concurrency with

Algebraic Term Nets, Lecture Notes in Computer

Science, Springer Verlag, Berlin, v. 655, p. 11-30,

1992.

[6] Bettaz, M., Maouche, M., Soualmi, M. and

Boukebeche, M. Protocol Specification Using

ECATNets, Networking and Distributed

Computing. p. 7-35, 1993.

[7] Boudiaf, N., Chaoui, A. and Bakha, H. A rewriting

logic based tool for ECATNets’ analysis: Edition

and Simulation steps description, European Journal

of Scientific Research, v. 6, No 2, 2005.

[8] Clavel, M. Durán, F., Eker, S., Lincoln, P., Martí-

Oliet, N., Meseguer, J. and Quesada, J. Maude:

Specification and Programming in Rewriting

Logic, Internal report, SRI International. 1999.

[9] De Lara, J. and Vangheluwe, H. AToM3: A Tool

for Multi-Formalism Modelling and Meta-

Modelling", Lecture Notes in Computer Science.

Springer-Verlag, v. 2306, p.174-188, 2002.

[10] De Lara, J. and Vangheluwe, H. Computer aided

multi-paradigm modelling to process petri-nets and

statecharts, International Conference on Graph

Transformations (ICGT), Lecture Notes in

Computer Science, Springer-Verlag, Barcelona,

Spain. v. 2505,p. 239-253, 2002.

[11] De Lara, J. and Vangheluwe, H. Meta-Modelling

and Graph Grammars for Multi-Paradigm

Modelling in AToM3, Manuel Alfonseca, Software

and Systems Modelling, Springer-Verlag. Special

Section on Graph Transformations and Visual

Modeling Techniques. v. 3, p. 194-209, 2004.

[12] EMF, Home page http://www.eclipse.org/emf/

[13] FUJABA, Home page http://www.fujaba.de/

[14] GEF, http://www.eclipse.org/gef/

[15] GME, http://www.isis.vanderbilt.edu/gme/

[16] GMF, http://www.eclipse.org/gmf/

[17] GReAT,

http://www.escherinstitute.org/Plone/tools/

[18] Kelly, S., Lyytinen, K. and Rossi, M. MetaEdit+:

A fully con_gurable Multi-User and Multi-Tool

CASE and CAME Environment, In Advanced

Information System Engineering, LNCS. v.1080.

Berlin, 1996.

[19] Kerkouche, E. and Chaoui, A. A Formal

Framework and a Tool for the Specification and

Analysis of G-Nets Models Based on Graph

Transformation, International Conference on

Distributed Computing and Networking -

CDCN’09-, Springer-Verlag Berlin Heidelberg.

LNCS v. 5408, p. 206–211, 2009.

[20] Kerkouche, E., Chaoui, A., Bourennane, E. and

Labbani, O. Modelling and verification of

Dynamic behaviour in UML models, a graph

transformation based approach, proceedings of

SEDE’2009, Las Vegas, Nevada, USA, 2009.

[21] Meseguer, J. Rewriting Logic as a Semantic

Framework of Concurrency: a Progress Report,

Lecture Notes in Computer Science, Springer-

Verlag. V.119, p. 331-372, 1996.

[22] PROGRES, http://www-i3.informatik.rwth-

aachen.de/research/projects/progres/

[23] Python, htpp://www.python.org

[24] Rozenberg, G. Handbook of Graph Grammars and

Computing by Graph Transformation, World

Scientific. v.1, 1999.

[25] TIGER, http://tfs.cs.tu-berlin.de/tigerprj/

