
1. Introduction
 As workflow has been applied to an increasing

number of areas, many designs and implementation

technologies exist [1]. But, researchers and vendors have

been focused mainly on the process logic and IT

infrastructure dimensions of workflow and often

neglected the organization dimension which consider

linkage between the organizational elements and process

activities. The complete relationship among the

dimensions of workflow and especially the critical role

played by the organization dimension are not well studied

[2]. However, workflow should support human-centric

business processes and therefore must include the

modeling of dynamic business roles and human

activities. The importance of human involvement in

workflow applications has recently been pointed out by

[3], who has identified the excessive activity automation

and poor design of work assignment strategies as critical

issues in workflow projects.

The enforcement of task assignment relies on an

authorization model, which is expressed in terms of roles

rather than in terms of specific individuals in order to

reduce the number of authorizations necessary in the

system and to simplify their maintenance [4]. However,

this role-based model alone is inadequate to meet all the

requirements of processes within an organization. Such

requirements may include: (1) role delegation [5], (2)

binding of roles [5], and (3) separation of duties [6].

On the other hand, the dynamic business process

brings additional challenges to the authorization strategy.

For example, as most business processes involve team

work, authorization strategy should not only be role

based but also be team based [7]. Furthermore, each

organization in an enterprise usually enforces its specific

management policies; authorization strategies from

different management policies should be coordinated.

In this paper an access control model for managing

workflow processes is proposed. An access control is

specified in a Task Authorization Policy Language

(TAPL), which can be easily translated into SQL query

sentences so that the access control can be directly

executed by a database management system. Based on

the TAPL, a policy modeling and enforcement

architecture to support dynamic business processes is

Managing Workflow Processes through Access Control Policies

RASOOL ESMAEILY FARD
1

ALAN KLEIN
2

REZA KARIMI NEZHAD
2

1Shiraz University
resmaeily@gmail.com

2School of IT, University of Sydney
klein@it.usyd.edu.au, reza.kariminezhad@gmail.com

Abstract: Workflow systems enable organizations to model and execute business processes, but the

majority of contemporary workflow management systems are not designed and suited for supporting

dynamic business processes. One of the deficiencies is the inability to model realistically the organization

of an enterprise to manage the dynamic human-centric business processes. An access control architecture

for managing workflow processes is described in the paper. It includes an organizational model and an

authorization model for supporting dynamic business processes. More specifically, authorization policies

are expressed in an SQL-like language which can be easily rewritten into query sentences for execution. In

addition, the architecture supports dynamic integration and execution of multiple access control policies

from disparate enterprise resources. Finally, a prototype implementation of the dynamic business process

management architecture is described.

Keywords: Workflow process management, Dynamic access control integration, Authorization policy

(Received November 06, 2009 / Accepted May 07, 2010)

proposed.

The remainder of the paper is organized as follows.

Section 2 gives a brief review of workflow management

and introduces a workflow process management

architecture. Section 3 presents an organizational model

for dynamic business processes. Section 4 defines the

syntax of TAPL and discusses the access control

modeling and management problem in an organization.

Section 5 introduces architecture together with some key

techniques to support policy enforcement and access

control within a workflow management system. Section 6

describes briefly the implementation of a demonstration

system. Section 7 discusses related work. Finally, Section

8 provides some concluding remarks.

2. A workflow process management architecture

There are many process model representations for

workflow management implemented by different

vendors and proposed by researchers. To facilitate

discussion, a brief introduction to a generic process

model for workflow management is first given.

A process consists of a set of activities and the

dependencies among the activities. The dependencies

prescribe the ordering relationships between activities

within a process. According to the workflow

management coalition (WfMC) [8], six ordering

structures may appear in a business process [9]: (1)

SEQUENCE—an activity has a single subsequent

activity; (2) AND-SPLIT—an activity leads to multiple

parallel activities that will all be executed, (3)

XOR-SPLIT—an activity leads to multiple but mutually

exclusive alternative activities and only one of which will

be executed; (4) AND-JOIN—multiple parallel

executing activities join into a single activity; (5)

XOR-JOIN—multiple but mutually exclusive alternative

activities join into a single activity; and (6) LOOP—one

or more activities are repeatedly executed until the exit

condition is satisfied.

A process can be graphically depicted as a directed

graph in which each node represents an activity and each

directed edge the dependency [10]. For example, process

models are shown in Figure 1, where Figure 1(a) depicts

a serial workflow process for software system

development and Figure 1(b) is an iterative workflow

process model for software component development.

Many approaches have been proposed to improve the

adaptability of workflow process to accommodate

changes. However, most approaches focus on how to

adapt changes for a single workflow, which is inadequate

for modeling a dynamic business process that may

include tens or hundreds of activities [11].

Researchers have proposed process reuse and activity

decomposition as effective ways to support the dynamic

business process [12][13]. Figure 2 shows a workflow

process management architecture that employs process

reuse and activity decomposition. In this architecture, a

workflow library stores a set of process models that are

designed to meet the business requirements. First, a

workflow model is selected to model the entire business

process and the high-level ordering constraints of the

business process.

Figure 1. Some examples of process model of workflow. (a) A

process model for software system project and (b) a process model

for component development.

Figure 2. A workflow process management architecture.

Each activity in the project model can be a

sub-process, which can be instantiated from another

workflow model stored in the workflow library or

defined as a set of activities, which can in turn be

decomposed further as sub-processes.

For this dynamic process management architecture, an

activity may have several child processes. The parent of

activity x is obtained by function sup(x). A project p can

also be viewed as an abstract activity, in this case,

sup(p)=Φ.

In order for this architecture to work, process

decomposition and model reuse must be supported.

Process decomposition and model reuse rely heavily on

the experiences of the project managers and engineers

and a knowledge support system is needed to enable

decision-making process. A mechanism is also needed to

integrate the data objects of a single sub-process instance

into the whole business process.

Most importantly, an authorization model needs to be

developed to support the dynamic business processes.

Next, an organization model for dynamic business

processes is described and the development of an

authorization model will then be discussed in detail.

3. An organization model for dynamic business

processes

The organization model for dynamic business

processes is shown in Figure 3. In Figure 3, a project

model consists of one or more process models. A process

model in turn is composed of a set of activities.

An activity can be complex or atomic. A complex

activity includes a set of activities as its children. An

atomic activity has no child activities, i.e., for an atomic

activity a, ¬x sup(x)=a. When a workflow model is

instantiated as a process, an atomic activity should be

assigned and it is also called a task. Each activity consists

of a set of basic attributes denoted as a={aid, name, type,

…}, in which aid, name and type are the unique id, name

and type of the activity a. The function type of (a) returns

the type of activity a. Inheritance relationships can be

defined among activity types. An activity type can be

referenced to some process models in the workflow

library. For example, an activity type ―component

development‖ in a software development project may

have reference to two process models. One is ―internal

development‖ as depicted in Figure 1(b) and the other

could be ―outsourced development‖.

Role is an important concept in the organization

model. A role defines a set of capabilities or authorities

required to execute certain types of activities. A role can

inherit another role. If r1 inherits r2, denoted as r1r2,

role r1 will subsume all the capabilities or authorities of r2

a. Role r2 is called the superior of r1. This relationship is

transitive. A role that has sub-classes is called a virtual

role while the role that has no sub-classes is called a

concrete role. Figure 4 shows two examples of

inheritance relationships between different roles. Role

developer can be classified into database developer and

user interface developer and similarly, role tester can be

classified into database tester and user interface tester.

A staff in an organization is defined with a set of basic

attributes, denoted as m={id, attr1, attr2, …}. Each staff

can be assigned several concrete roles reflecting the

abilities of the staff person. The relationship play (m, r)

represents that the staff m can play the role r. A staff

belongs to a department, which includes a role set as its

structure definition.

Figure 3. An organization model for dynamic business process.

Figure 4. Role hierarchy.

For a given project, teams are put together to deal with

various business tasks. The members of a team may be

assembled from several departments temporarily for

specific tasks. A team consists of several team positions,

which define the role requirements for the team. Staffs

can be selected and assigned to hold these positions. It is

assumed that the staff members assigned are capable to

play the roles required by these positions. A team can

thus be formally represented by T= PS, RS, MS, RM,

where PS represents the position set, RS is a role set, MS

represents the members in this team, and

RM=PS×RS×MS corresponds to the assignments and

positions of the members. For example, a design team

can be represented as t= {leader, member}, {manager,

UI developer, UI tester}, {Esmaeily, Mehdipour,

Hassani, Ahmadi}, {leader, manager, Hassani,

member, UI developer, Esmaeily, member, UI

developer, Mehdipour, member, UI tester, Ahmadi}.

Member can play one or more roles in a team. Finally, the

functions team_member (t), team_role (t) and

enabled_role(t, s) are designed to retrieve the staff

members of the team, the role set of the team and the role

set that the staff s plays in the team t.

4. An authorization model for dynamic business

processes

There are different task authorization strategies that

can be deployed for task assignment in a business

process. The four most basic task authorization types are:

(1) Staff-authorization: to assign a staff for a task.

(2) Role-authorization: to assign a specific role for a task.

(3) Team-authorization: to form a team and assign the

task to the team. A team can further be divided into

sub-teams. If a team t1 is a sub-team of team t, then

(team_member (t1)  team_member (t))  (team_role (t1)

 team_role (t))  (s  team_member (t1), enabled_role

(t1, s)  enabled_role (t, s)) must hold. Each team is

responsible for a complex activity and the project team

deals with the whole project. If there is no team assigned

to an activity directly, then the function sup() defined in

Section 2 can be issued several times till an activity that

has a team assigned to is found so that each activity in the

process corresponds to a team and the team of an activity

a is obtained by function teamof (a).

(4) Department-authorization: in some cases, an activity

is assigned to a specific department or division to

maintain the autonomy of an organization. The

department has the responsibility to determine its task

assignments. This activity can be considered as a

sub-project, in which task assignment strategy is handled

autonomously within the department.

A project may employ all four type authorization

strategies. A Task Assignment Policy Language (TAPL)

is developed to describe the task authorization strategies

and to represent complex requirements in task allocation.

4.1. TAPL—Task Assignment Policy Language

TAPL is a policy language with simple syntax but is

adequate to express complex constraints in the task

authorization for a business process.

The syntax of TAPL is shown in Table 1. In TAPL, a

―when‖ clause includes a group of pre-defined functions

such as IsFull(), IsAssigned() and Play(). They can be

used to retrieve the history of task allocations and

evaluate current situations. Furthermore, ―*‖ represents

―all‖ and ―#‖ represents ―exist‖. The ―where‖ clause is

applied to refine the roles defined in the policy. It

includes a set of ranges and functions. The function used

in ―where‖ clause of current version TAPL is HasSkill(),

which represents that a role having some specific skills is

needed. The ―with‖ clause includes a set of ranges to

further specify the activity type that a policy states.

Figure 5 shows an example of task authorization policies

related to a process instance ―AM Component

Development‖.

Table 1. The syntax of TAPL

statement ::= require | substitute | reject

require ::= require resource where when for

with

substitute ::= substitute resource where when by

resource where for with

reject ::= reject resource where when for

with

for ::= for activity | activity_type

activity ::= activity activity_idactivity_type::=

activity_type  activity_type_id

resource ::= * |#| person| role

person ::= person person_id

role ::= role role_id

when ::= empty | when functions

where ::= emptywhere ranges|where

functions|where functionsAND ranges

with ::= empty | with ranges

ranges ::= range|range AND ranges

range ::= attributeopvalue

op ::= > | < | = | >= | <=

functions ::= function and functions

In TAPL, a policy is divided into three types, namely

the requirement policy, the scenario policy and the

substitution policy.

4.1.1. Requirement policy

A requirement policy defines the required roles for a

task. The name of a specific activity or an activity type is

defined by a ―for‖ clause which can be further specified

by a ―with‖ clause. Constraint conditions for a role can be

specified in a ―where‖ clause. If several requirement

policies are specified for an activity and the role defined

in these policies are the same, then the selected staffs

should meet all the constraints defined in the ―where‖

clauses of these policies. For the example shown in

Figure 5, on the activity ―AM analysis‖, policies 1–3

refer to the same role, i.e., ―analyst‖.

4.1.2. Scenario policy

A scenario policy can be specified to restrict certain

people to be assigned to a specific activity or an activity

type. If there are more than one scenario policies defined

for one activity, then the policies should be considered

altogether. For the example shown in Figure 5, policy 9

illustrates a situation that no further tasks should be

assigned to a staff when the working load of the staff is

full.

4.1.3. Substitution policy

This policy states that if roles (staffs) defined by

requirement policies cannot be found, the roles can be

substituted by other roles. If there are more than one

policy defined for the same activity, then the policies

represent different ways to find substitution roles. For

example, policy 8 states that the staff who is qualified for

playing the role ―UI Developer‖ and has skill ―database

programming‖ can also play the role of ―DB Developer‖

if necessary.

1. require role “Analyst” for activity “AM Analysis”

2. require role “Analyst” where experience>=3 for activity

“AM Analysis” with DifficultDegree>4

3. require role “Analyst” where HasSkill(“Rational Rose”) for

activity “AM Analysis”

4. require role “Developer” where experience>=5 for activity

“AM Analysis” with DifficultDegree<6

5. require role “DB Developer” for activity “AM Coding” with

MainTechnology = “Database”

6. require role “DB Tester” for activity “AM Testing” with

MainTechnology=“Database”

7. reject role “Tester” when AssignedTo(activity “AM

Coding”) for activity “AM Testing” with

NumberOfLines>500

8. substitute role “DB Developer” by role “UI Developer”

where HasSkill(“Database Programming”)

9. reject * when IsFull(‘*’) for *
Figure 5. An example of task authorization policy.

4.2. Modeling and management of task authorization
policy

The task authorization policies are closely related to

the management strategies of an organization. Policies

can be specified in different management levels and for

different scopes. Since an organization may have many

authorization policies defined, a modeling and

management architecture is needed to systematically

specify task authorization policies.

Task assignment policies can be stored in a library. A

task authorization policy can be represented as PL = pid,

Con, St, Sc, where pid, Con, St, Sc are its identification,

the content defined in TAPL, its status and the scope,

respectively. Assignment policies can be categorized into

four types according to the scope as shown in Figure 6:

 (1) Department policy: Each department can have its

own task authorization policy. After accepting an

activity, this department can define its own sub-process

and allocate tasks.

(2) Process policy: Process policy is attached to each

process model in the workflow library. A process policy

can be an activity policy or coordination policy. An

activity policy is defined for each activity or activity type

specifically. A coordination policy defines task

assignment relationships among the activities.

(3) Project policy: Each project can have its own policies,

which applies to all the tasks in the project. For example,

a project policy:

reject * when IsFull(―*‖) for *

denotes that it is not permitted to assign extra tasks to any

person whose workload is full.

(4) Team policy: Project or team managers can specify

their specific task assignment policies for the whole team.

For example, for a team assigned to the activity ―system

development‖ for the software project, the team may be

imposed a substitution policy:

substitute role ―DB Developer‖ by role ―UI Developer‖

where HasSkill(―Database Programming‖)

which indicates a ―DB Developer‖ can be substituted by

a ―UI Developer‖ if appropriate skill is met. The policy

will also apply to all the tasks on the two sub-processes,

i.e., UI component development and AM component

development.

Figure 6. Different authorization policies in an organization.

5. Policy enforcement for task assignment

5.1. A task assignment architecture

Figure 7 depicts a task assignment architecture for

dynamic business processes. Before a project begins, a

project manager can form a project team according to the

knowledge about the project. The project manager can

also add certain task assignment policies to the project

and to the project team. As activities are decomposed into

sub-processes, sub-teams and their team policies can be

established. A sub-team manager can further append

policies to the activities or tasks. For example, the

sub-team manager may add a policy to the activity

―system development‖ as follows:

require role ―Analyst‖ where HasSkill(―Rational Rose‖)

for activity_type ―Component Analysis‖

According to the organizational requirements,

activities can be directly assigned to specific

departments.

Figure 7. A task authorization architecture for dynamic business

processes.

Task execution is handled by a workflow engine. The

workflow engine sends a request to the policy search and

rewriting module, which retrieves all related

authorization policies for a task and rewrite these policies

into executable clauses. The policy enforcement module

then executes these clauses to find a set of qualified staffs

for the task and output the results as a work list managed

by the workflow engine. All candidates will then receive

a task notification from the workflow engine. The task

will be assigned to the candidate who accepts the task and

no other candidate will further be assigned unless a

manager intervenes in the process by assigning another

candidate to the task directly.

5.2. Authorization policy search

With the existence of different authorization policy

sources, a mechanism is needed to search all the relevant

policies in order to fulfill a task assignment correctly.

Figure 8 shows the flow chart of an authorization policy

search algorithm for a given task. Because each task is

instantiated from a workflow process model, the first two

steps involve collecting all the related activity policies

and coordination policies from the workflow process

model. Other policies are then added according to the

team structure and project process structure. If an activity

has a parent and a team is directly assigned to the parent,

then all team policies should be selected for the task. The

process policies defined in its parent activity will also be

collected for this task. This process continues until the

current pre-defined project model is reached. Project

policies and team policies to the task are added. During

the search process, if an activity is allocated to a

department explicitly, then department policies should be

considered and supercede the project policies.

Figure 8. An algorithm of authorization policy search for a task

An important issue in the search algorithm is to

determine if a policy is related to a task. The following

rules are employed to determine for the relevancy:

(1) The activity type or the id of the task should be

consistent with the content of the ―for‖ clause, i.e., the

type of the task should be defined by the ―for‖ clause or is

a sub-type of that defined by the ―for‖ clause.

(2) If a ―with‖ clause exists in a policy, the properties of

the task are checked with the constraints defined in the

clause. If the constraints can be satisfied, the policy will

be included, otherwise the policy will be ignored.

(3) If a policy is not related to any activity type or a

specific activity, then the policy is included only if the

role defined in the policy is equal or superior to a role

defined in other selected requirement policies for the

task.

Finally, if the content in ―for‖ clause is an activity type,

then it will be replaced by the id of this task.

For example, if the ―DifficultyDegree‖ of the task

―AM Analysis‖ in a specific process is greater than 4 and

less than 6, task policies for the task ―AM Analysis‖ are

shown in Figure 9.

5.3. Policy rewriting and enforcement

After the authorization policies for a task a are

obtained, these policies are executed to find qualified

staffs from teamof(a). The requirement and scenario

policies are executed first. When no qualified staffs are

found based on requirement and scenario policies,

substitution policies are then executed. In this work, the

policies are translated into SQL query sentences, which

can then be executed by a database management system

(DBMS) directly.

1. require role “Analyst” for activity “AM Analysis”

2. require role “Analyst” where experience>=3 for activity

“AM Analysis” with DifficultDegree>4

3. require role “Analyst” where HasSkill(“Rational Rose”) for

activity “AM Analysis”

4. require role “DB Developer” where experience>=5 for

activity “AM Analysis” with DifficultDegree<6

5. reject * when IsFull(“*”) for activity “AM Analysis”

6. substitute role “DB Developer” by role “UI Developer”

where HasSkill(“Database Programming”)
Figure 9. Policies for the task “AM Analysis” of a specific process.

In the TAPL, the ―for‖ and ―with‖ clauses are used for

the policy search purpose; there is no need to translate

them into the SQL clauses. The ―where‖ and ―when‖

clauses act as filters and they are mapped into ―select‖

sub-clauses conforming to the SQL syntax. The functions

applied in the ―where‖ and ―when‖ clauses can be

translated into ―select‖ sub-clauses according to the

pre-defined templates. For a policy p defined for an

abstract role r, if a role defined in another policy is the

sub-role of r then p should be translated into the policy

acting on this sub-role. If there is no any other policy

defined to the sub-role of r, then p should be translated

into policies acting on all of its concrete roles. This

process continues recursively until all roles defined in the

policies are all concrete roles.

The following example illustrates how policies are

rewritten into SQL sentences. Suppose the relational

tables are defined as follows (with keys underlined):

• resource(resource_id, experience, workingload, …)

• team_member(team_id, resource_id, role_id, …)

• resource_skill(resource_id, skill, …)

• allocated_task(activityid, resource_id, …)

• role (role_id, rolename, …)

Let the team_id of teamof(a) as ID. The procedures for

rewriting policies into SQL sentences are shown below.

5.3.1. Rewriting requirement policy

The rule for rewriting requirement policies into a SQL

query sentences is shown in Figure 10.

As an example, for the activity ―AM Analysis‖ shown

in Figure 8, policies 1–3 are all related to the role

―Analyst‖ and policy 4 is related to the role ―DB

Developer‖. The requirement policies can be rewritten

into:

 “SELECT a.resource_id FROM resource as a,

team_member as b, resource_skill as c,

allocated_task as d, role as e

WHERE ((e.rolename=’Analyst’ AND

e.role_id=b.role_id) AND ((a.experience>=3)

AND(c.skill=’RationalRose’ AND

c.resouce_id=a.resource_id))) OR

((e.role=’DBDeveloper’ AND

e.role_id=b.role_id) AND (a.experience>=5)

AND (b.team_id=ID AND

b.resource_id=a.resource_id))”

Figure 10. Rewrite a requirement policy to a SELECT sentence in

SQL.

5.3.2. Rewriting scenario policy

Figure 11 shows the rewriting rule for the scenario

policy, which is used to eliminate the staffs from those

selected by requirement policies.

Figure 11. Rewrite a scenario policy to a SELECT sentence in SQL.

As for the activity ―AM Analysis‖ shown in Figure 9,

policy 5 states that no task should be allocate a staff

whose working load is full. The SELECT sentence can be

rewritten to:

 “SELECT a.resource_id FROM resource as a,

team_member as b, resource_skill as c,

allocated_task as d, resource_role as e WHERE

((e.role=’Analyst’ AND e.role_id=b.role_id)

AND ((a.experience>=3) AND

(c.skill=’RationalRose’ AND

c.resouce_id=a.resource_id))) OR

((e.role=’DBDeveloper’ AND

e.role_id=b.role_id) AND (a.experience>=5)

AND (b.team_id=ID AND

b.resource_id=a.resource_id)) AND (

a.resource_id NOT IN(SELECT resource_id FROM

resource WHERE resource.workingload>=8))”

 In the query sentence, ―SELECT resource_id FROM

resource WHERE resource.workingload>=8‖ is

generated from the mapping template defined for

function IsFull().

6. Implementation

A workflow management system for dynamic business

process has been implemented based on the architecture

shown in Figure 2. Access control modeling and

enforcement modules are two important parts of the

whole system.

Figure 12(a) is a process-modeling environment

through which a workflow process model can be defined

and saved into a workflow library. In the environment,

each workflow model is represented as a process graph.

The model shown in Figure 12(a) is the component

development process introduced in the paper. By

doubling click the activity node of the graph, the

properties such as activity description, resources

allocation, input and output objects of the selected

activity can be edited. Specifically, the environment

provides an interface for defining task assignment

policies as shown in Figure 12(b). This interface is a

policy editor through which a modeler can add policies

piece by piece. Figure 12(b) shows the example of policy

definition for the activity ―component analysis‖.

A workflow engine and a task assignment enforcement

module have been developed using the mechanism

shown in Figure 7. User interfaces, which are developed

based on the outlook web access of Microsoft Exchange

server 2000, are provided to staffs and managers. A staff

can access his work list to receive a task request or submit

a task through the interface. Managers can monitor the

process, allocate staffs to specific tasks and create

sub-processes using the interface.

7. Related work

It is widely accepted processes are the core of

organizations [14], organizations also have important

impact on process. Organizational models for workflow

management have been proposed by [2][15][16]. But

they only defined some Meta models of the organization

structure for workflow management, which can only

serve as a basis for task assignment research.

Most of the researches in recent years regard

role-based model as a set of constraints[17]. Constraints

can be static or dynamic and they can be applied to a

whole class of processes, or to specific instances.

Mechanisms for constraint specification range from logic

languages [17] to Petri Nets [18]. Constraint-based

Figure 12. A process modeling environment supporting task authorization policy modeling.

method employs algorithms to check the consistency of

constraints and assign users and roles to the tasks that

constitute the workflow in such a way that no constraints

are violated. Although powerful, constraint-based

method suffers the complexities brought by its

representation and consistency checking process.

In [4] authorization constraints are expressed as

event–condition–Action (ECA) rules. The event part

denotes when an authorization may need to be modified.

The condition part verifies that the occurred event

actually requires modifications of authorizations, and

determines the involved agents, roles, tasks and

processes. The action part enforces authorizations and

prohibitions. This authorization model does not take into

consideration the properties of process and staffs on task

assignment. EROICA framework [5] extends the syntax

of the ECA rules, but it does not provide an

organizational rule modeling and enforcement

architecture for dynamic business processes.

 In order to add a team concept to current workflow

management systems, the Object Constraint Language

(OCL) to define the relationships among persons is

proposed [19]. OCL is part of the UML language to

describe the relationship among classes. Since OCL

provides a modeling mechanism to the static relationship

among classes and objects, it can be used to define the

structure of a team. However, OCL is complex and

non-descriptive. Processing OCL for task assignment

requires a special parser.

Bussler is the first researcher who proposed a

policy-based task assignment architecture [20]. It is

further be expanded to the resource query language RQL

proposed by HP lab [21]. The access control language

described in the paper is quite similar to the RQL. RQL is

a SQL-like language and is able to specify three types of

policies: qualification, requirements and substitution

policies. The functions of requirement and substitution

policies are similar to the ones described in the paper. A

qualification policy is used to state the type of resources,

which is qualified to do an activity type. TAPL provides a

few new features. First, a ―when‖ clause is provided to

represent current allocation status and process status.

Second, functions are introduced to express complicated

resource allocation conditions. Third, a new type policy,

i.e., scenario policy is introduced to confine the search

scope according to some important criteria, for example,

the separation of duty in workflow. In addition to these

differences in the policy language, we also present an

architecture for organizational access control modeling

and enforcement to support dynamic business processes.

Furthermore, a policy search algorithm and enforcement

methods are developed to adapt to the features of

dynamic business processes such as team work and

dynamic decomposition of activity.

Recent years, to make extensions for the industry

process model languages such as BPEL4WS and

Business Process Modeling Notation (BPMN) to express

task authorizations becomes a research focus. For

example, in [22] formal architecture that integrates

RBAC into BPEL and allows expressing authorization

constraints using temporal logic is presented. In this

architecture model-checking can be applied to verify that

a given BPEL process satisfies the security constraints.

Although it can make use of available model-checking

tools for constraint satisfaction check, the common users

can not apply temporal logic to represent related

authorization constraints directly. In [23], an extension

for the BPMN to express authorizations within the

workflow model is proposed. It enables the support of

resource allocation pattern, such as separation of duty,

role-based allocation, case handling, or history-based

allocation in BPMN. Comparing with their work, our

architecture supports access control modeling in different

scope and the enforcement of policies for dynamic

business process are also provided while this topic is not

covered in [23].

In [24], multi-criteria assessment model capable of

evaluating the suitability of individual workers for a

specified task according to their capabilities, social

relationships, and existing tasks has been proposed.

Candidates are ranked based on their suitability scores to

help administrators to select qualified workers to perform

the tasks assigned to a given role. The task assignment

policy described in this paper focuses on the

role-assignment for a task while at the same time defines

the specific requirements for a role based on either

workers’ capabilities or process properties. The result can

be the input into a multi-criteria assessment model for

selecting qualified staffs.

[25] discuss workflow management and verification

and validation issues where authorization control is also

an important issue. But the authorization issue is stated

simply there without further investigation.

8. Conclusions and future work

There is a need to develop tools and models for

supporting dynamic business processes. This paper

focuses on providing an effective task assignment

strategy for dynamic business processes. An architecture

is proposed to support dynamic access control modeling

and enforcement in a business process environment

where assignment policies come from different sources.

The mechanism for facilitating access control is based on

an SQL-like language called TAPL, which can be

rewritten into SELECT sentences in SQL. TAPL can

describe complex role constraints in a business process.

Using standard SQL technology eliminates the need for

developing a complex parser and executing components.

In the current version of TAPL, a particular function is

interpreted as an SQL sub-clause by a template that is

developed as a part of pre-defined TAPL transforming

program. A scalable TAPL transforming program

architecture that allows functions to be added and

templates integrated into the architecture should be

investigated in the future.

References

[1] Becker, J., zur Muehlen, M., 2002. ―Workflow

application architectures: classification and

characteristics of workflow-based information

systems‖. Workflow handbook, pp. 39–50.

[2] Zur Muehlen, M., 2004. ―Organizational

management in workflow applications—issues and

perspectives‖,

http://www.workflow-research.de/Publications/PD

F/MIZU-ITM (2004).pdf.

[3] Moore, C., 2002. ―Common mistakes in workflow

implementations, Giga Information Group

RIB-062002-00118”, Cambridge, MA.

[4] Casati, F., Castano, S. and Fugini, M.G., 2001.

―Managing workflow authorization constraints

through active database technology‖, Journal of

Information Systems Front (Special Issue on

Workflow Automation and Business Process

Integration), 3 (3), pp. 319–338.

[5] Akhil, K. and Zhao, L.J, 2002. ―EROICA: A

rule-based approach to organizational, policy

management‖. Workflow systems, WAIM 2002, vol.

2419 pp. 201–212.

[6] Botha, R.A., Eloff, J.H.P., 2001. ―Separation of

duties for access control enforcement in workflow

environments‖, IBM System Journal 40 (3), pp.

666–681.

[7] van der Aalst, W.M.P., 2001. ―A reference model for

team-enabled workflow management systems‖,

Data Knowledge Engineering, 38 (3), pp. 335–363.

[8] Workflow Management Coalition, 2004.

http://www.wfmc. org

[9] Workflow Management Coalition, 1999.

WFMC-TC-1011,

http://www.wfmc.org/standards/docs/TC-1011_term

_glossart _v3.pdf,

[10] Duenren, L. and Minxin, S., ―Workflow modeling

for virtual processes: an order-preserving

process-view approach‖, Information Systems, 28

(6), 2003, pp. 505–532.

[11] van der Aalst, W.M.P. and Jablonski, S., 2000.

―Dealing with workflow change: identification of

issues and solutions‖, Computer Systems Science

and Engineering 15 (5), pp. 267–276.

[12] Chung, P.W.H., Cheunga, L. and Stader, J., 2003.

―Knowledge-based process management—an

approach to handling adaptive workflow‖,

Knowledge-Based Systems, 16 (3), pp. 149–160.

[13] Myungjae, K., Dongsoo, H., Jaeyong, S., 2002. ―A

framework for dynamic workflow interoperation

using multi-subprocess task‖. In Proc. of the 12th

international workshop on research issues in data

engineering: engineering e-commerce/e-business

systems (RIDE.02), pp. 99–130.

[14] Willaert, P., Van den Bergh, J., Willems, J.,

Deschoolmeester, D., 2007. ―The process-oriented

organisation: a holistic view developing a

framework for business process orientation

maturity‖, Business process management, 5th

international conference, BPM 2007, Proceedings,

lecture notes in computer science, vol. 4714,

Brisbane, Australia, September 24–28, pp. 1–15.

[15] Qiu, J., Ma, C., 2008. ―A flexible access control

model for workflows‖. In Proc. Computer Supported

Cooperative Work in Design, 2008. CSCWD 2008.

12th International Conference on 7, Xian, China, pp.

606-612.

[16] Bussler, C., 1998. ―Organisationsverwaltung in

workflow- management-systemen‖, Deutscher

Universit.ts-Verlag, Wiesbaden, Germany.

[17] Bertino, E., Ferrari, E., 1999. ―The specification and

enforcement of authorization constraints in

workflow management systems‖, ACM Transaction

on Information System and Security 2 (1), pp.

65–104.

[18] Atluri, V., Wei Kuang, H., 2000. ―A petri net based

safety analysis of workflow authorization models‖,

Journal of Computer Security 8 (2/3), pp. 209–240.

[19] van der Aalst, W.M.P. and Jablonski, S., 2000.

―Dealing with workflow change: identification of

issues and solutions‖, Computer Systems Science

and Engineering 15 (5), pp. 267–276.

[20] Bussler C, and Jablonski, S., 1995. ―Policy

resolution for workflow management systems‖.,

28th Hawaii international conference on system

sciences, hicss, pp. 831–840.

[21] Yan-Nong, H., Ming-Chien, S., 1998. ―Policies in a

resource manager of workflow systems: modeling,

enforcement and management‖, HPL-98-156,

http://www.hpl.hp.com/

techreports/98/HPL-98-156.pdf.

[22] Xiangpeng, Z., Cerone, A., Krishnan, P, 2006.

―Verifying BPEL workflows under authorization

constraints‖. Business process management, 4th

international conference, BPM 2006, , Proceedings,

lecture notes in computer science, vol. 4102, Vienna,

Austria, September 5–7, pp. 439–444.

[23] Lu, Y., Zhang, L., Sun, J., 2009. ―Task-activity

based access control for process collaboration

environments‖. Computers in Industry, Elsevier

Science. In Press.

[24] Minxin, S., Gwo-Hshiung, T., and Duen-Ren, L.,

2003. ―Multi-criteria task assignment in workflow

management systems‖. In Proc. of the 36th Hawaii

international conference on system sciences

(HICSS’03), p.p. 202–210.

[25] Chen, J., Yang, Y., 2007. ―Adaptive selection of

necessary and sufficient checkpoints for dynamic

verification of temporal constraints in grid workflow

systems‖. ACM Transaction on Autonomous

Adaptive Systems, 2(2), Article 6.

