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Abstract. Abstract State Machines (ASMs, for short) provide a practical new computational model
which has been applied in the area of software engineering for systems design and analysis. However,
reasoning about ASM models occurs, not within a formal deductive system, but basically in the classical
informal proofs style of mathematics. Several formal verification approaches for proving correctness
of ASM models have been investigated. In this paper we consider the use of the TLA+logic for the
deductive verification of a certain class of ASMs, namelybasic ASMswhich have successfully been
applied in describing the dynamic behavior of systems at various levels of abstraction. In particular, we
base our verification purpose on a translation of basic ASMs to the Temporal Logic of Actions (TLA)
used as a formal basis to formally specify and reason about temporal behaviors of basic ASM models.
The temporal deductive approach is illustrated by the formal correctness proof of a producer-consumer
system formalized in terms of basic ASMs.
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1 Introduction

Abstract State Machines (ASMs), previously calledEv-
olving Algebrasand introduced by Y.Gurevich in [10],
constitue the formal foundation of a practical method-
ology in modeling and analyzing various kinds of com-
plex dynamic systems. The ASMs method has been
successfully applied in different areas, such as software
and hardware systems, programming languages, com-
munication protocols and distributed algorithms (see [2,
3] for a comprehensive overview). It provides a flexi-
ble formalism to specify the operational semantics of a
system at a natural abstraction level in a direct and in-
tuitive way [3]. The ASM approach belong to the fam-
ily of state-based methods, which model a system as a
transition system. An ASM model describes the state
space of a system by means of universes (i.e. basic
sets) with functions and relations interpreted on them,
and the state transitions by means of transition rules
by which the system is driven from state to state. In

ASMs, states are represented as first-order structures
(Algebras) over the same signature (Vocabulary), and
transition rules define the changes over time of the states.
In applications, abstract state machines are considered a
suitable specification formalism for giving semantics of
a system in terms of its set of possible executions (i.e.
state sequences).

Besides the standard mathematical techniques un-
derlying the ASM approach that naturally support in-
formal mathematical proofs of ASM model properties,
there has been work on formal proof systems for ASMs,
using various formal verification tools [1, 6, 7, 9, 13, 14,
15, 16]. For instance, [14] use the KIV (Karlsruhe Inter-
active Verifier) system to mechanically verify the proof
of correctness of ASM refinements, both references [4]
and [7] show how ASMs can be encoded in the PVS for-
mal system in order to perform mechanical verification
of the correctness of ASM specifications or to mechan-
ically check hand proofs using the PVS proof system.
While in [16, 15] algorithmic verification approaches
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based on model checking techniques have been applied
for proving correctness of ASM specifications automat-
ically.

In this paper, which is an extended version of our
outlined work presented in [5], we propose to adopt
Lamport’s Temporal Logic of Actions (TLA) [11] as
an appropriate alternative to the logic-based approaches
[1, 6, 9, 7, 13, 15], to formally reason about basic ASM
specifications (models) of dynamic systems. TLA is a
state-based logic which provides the means for describ-
ing transition systems (i.e. states, state transitions and
thereby the resulting state sequences) and formulating
their properties in a single logical formalism, equipped
with a relatively complete set of proof rules for reason-
ing about safety and liveness properties that can be re-
quired for systems. The operational behavior (seman-
tics) of a basic ASM specification is directly defined
by TLA-logical formulas and the TLA-proof techniques
can be applied to formally prove the correctness of basic
ASM specifications. Using this framework, both basic
ASM specifications and required properties are repre-
sented by formulas in the same logic. In particular, we
provide some basic rules to translate basic ASM mod-
els into TLA+ specifications. TLA+ is a formal spec-
ification language based on Zermelo-Fränkel set the-
ory, first-order logic and the linear-time temporal logic
TLA[12]. In addition to the operators of TLA, it con-
tains operators for defining and manipulating data struc-
tures and syntactic structures for handling large specifi-
cations. The TLA+ framework offers a potential math-
ematical logic framework into which ASM model ele-
ments are directly translated to their most natural equiv-
alents in TLA+.

The remainder of this paper is organized as follows:
Section 2 we give a brief overview of related works.
Section 3 briefly presents the basic notions of the ASM
approach. In section 3, we give an overview of the main
features of the TLA logic and the specification language
TLA+. Section 4 is mainly about the translation pro-
cess of a basic ASM model into a TLA+ specification.
this section provides a description of how each element
of a basic ASM model has to be encoded in TLA+ ex-
pression. In section 5, we present a case study to il-
lustrate the process of formal modelling and analysis of
basic ASM model using the TLA+-logical framework.
Finally, in section 6, we conclude our contribution and
outline futur research directions.

2 Related Work

Several attempts of applying formal verification tech-
niques to ASM models have been investigated. In this
section, we only report some deductive verification ap-

proaches for basic ASM models because they are the
closest to our work.

In [13], Antje Nowack has suggested to use monodic
fragments of First-Order Temporal Logic (FOTL) to ver-
ify ASMs. In particular, he proposed the definition of
guardedASMs and has shown that verification of the
properties of such specific ASMs expressed in the guar-
ded monodic fragment of FOTL is decidable. A re-
duction to the finite satisfiability problem of guarded
monodic fragment is used. In this approach, the trans-
lation schemas address a restricted subset of the stan-
dard ASM language. The rules supported areassign-
mentandconditionalrules. Also, only functional sym-
bols of arities at most one are supported. These are con-
siderable limitations on the power and flexibility of the
ASM specification language.

In more recent work [6], Fisher and Lisitsa present
a method for verifying basic ASM model by translating
them to an appropriate fragment of First-Order Tem-
poral Logic(FOTL). The work presented is very much
in spirit of the work done by Nowack. They have de-
fined restrictions on basic ASM specifications (ASM-
programs) which ensure that temporal translation falls
into monodic fragment of FOTL, which is, in general,
undecidable, but finitely axiomatizable. This allows th-
em to use temporal translations for (semi-)automatic
verifications of restricted basic ASM specifications ei-
ther by decision procedures, or by theorem proving for
restricted fragments of FOTL. Technically, Fisher’s def-
inition of monodicASMs is less restrictive than that of
guardedASMs. On the other hand they can only guar-
antee existence of semi-decision procedure formonodic
ASMs as opposed to decision procedure forguarded
ASMs.

In the work on real-time systems by Beauquier and
Slissenko [1], basic ASMs are represented by an exten-
sion of the theory of real addition and then the verifica-
tion problem is discussed. The main open question in
this work is to find a complete axiomatization for the
proposed extension.

Work in [9], introduces a formal language for ASMs
called FLEA, a system for formal reasoning about ASM
behaviors. It has adopted a modal view, intended to
catch the main ideas behind ASMs. FLEA has been
extended to modal FLEA�, for which a preliminary ax-
iomatization is presented.

The work presented in this paper is similar to the
work done by Fisher and Lisitsa, as our work presents
a methodology for the deductive verification of basic
ASM models based on a translation of basic ASMs to
the Temporal Logic of Actions (TLA) as a formal ba-
sis. In contrast, our formalization approach to formally



reason about basic ASM behaviors does not impose re-
strictions on the basic ASM specifications. Further-
more, the translation schemas support all basic ASM
rules, as well as arbitrary n-ary functions. This is due to
the expressive power and flexibility of the TLA+ log-
ical formalism equipped with a complete set of proof
rules for reasoning about temporal properties that can
be required for modeled systems in basic ASMs.

3 Basic Concepts of Abstract State Machines

Abstract State Machines (ASMs) [3] are used for mod-
elling systems as transition systems. They define a state-
based computational model, where computations(runs)
are finite or infinite sequences of states< Si >i≥0, ob-
tained from a given initial stateS0 by repeatedly exe-
cuting transition rules. In ASMs, states are defined as
many-sorted first-order structures over a given signature
Σ (a vocabulary), and the transition relation is speci-
fied by transition rules for describing changes to states.
States are implicitly given in an ASM model, and are
usually described in terms of functions in the underly-
ing signature. Abstract state machines are considered
appropriate for giving semantics of a system in terms of
its set of possible executions.

3.1 The Basic Model

An abstract state machine model,M , can be defined as
a tuple of the formM = 〈 Σ, Prog , Init 〉, whereΣ
is a signature,Init is a closed formula overΣ describ-
ing the initial state andProg is a finite set of transition
rules.

3.1.1 States :

States ofM are variants of first-order structures over a
given signatureΣ. They are also calledΣ-Algebras. A
signatureΣ consists of a collection of domain names
(also called universe or set) and a collection of function
names, each function namef coming with a fixed arity
n and profileT1× ...× Tn → Tk whereTi(1 ≤ i ≤ n)
andTk are universe names (writtenf : T1× ...× Tn →
Tk), or simplyf : → Tk if n = 0.

A Σ-Algebra (or state )S consists of a nonempty
setTS for each universeT (the carrier set ofT ), and a
functionfS : TS

1 × ... × TS
n → TS

k for each function
namef : T1× ...× Tn → Tk in Σ.

The universe names may be marked asdynamicor
staticaccording to whether or not the set of objects they
contain may vary. Function names inΣ can be declared
as :

- Static : static function names have the same fixed
interpretation in each computation state; that is,
static functions never change during a run.

- Dynamic : the interpretation of dynamic function
names can be changed by the transitions occurring
in a given computation step; that is, dynamic func-
tions change during a run as a result of the speci-
fied system’s behavior. Dynamic functions repre-
sent the internal state of the system.

Every ASM-signatureΣ is assumed to contain the
following logic symbols: static nullary functionsTrue
, False , Undef , the equality sign=, and the sort (uni-
verse)Boolean with its usual boolean operators (¬, ∧,
∨, etc.)

3.1.2 Basic ASM Transition Rules :

Transition rules describe how transitions between states
(algebrasof signatureΣ) can occur. They define the
changes over time of the states of ASMs. The basic
ASM transition rules are syntactic expressions gener-
ated as follows :

- Skip rule : the skip rule is the simplest transition
rule. This rule causes no change to any function
value. It is denoted asSkip

- Update rule : The update rule is an atomic tran-
sition rule, also called a local function update or
simply update and has the formc := t wherec
is a variable (a dynamic nullary function in ASM
terminology) andt is a closed term overΣ. The
updatec := t transforms the current state into a
new state, in which the denotation ofc has been
changed into the current denotation oft .

Likewise, if f is a dynamic function of arityn, and
t1, ..., tn, t are terms overΣ, then f( t1,
...., tn):= t is also a function update. The ef-
fect of this update is that the denotation off in the
next state is equal to its denotation in the old state,
except that the function value on the current values
of t1, ..., tn is changed into the current value
of t. This update also transforms the current state
into a new state.

- Conditional rule : The conditional rule is a con-
ditional update rule which specify a precondition
for updating. It has the formIf g Then RT

Else RF whereg, the guard, is a boolean ex-
pression andRT , RF are arbitrary update rules.



TheElse part in a conditional rule may be omit-
ted, implicitly makingRF = Skip . The mean-
ing of this rule is that whenever the guardg eval-
uates totrue then applyRT at the current state
otherwise applyRF . Note that the rulesRT and
RF can take the form of a block rule (see below).

- Block rule : the block rule has the form

block
R1

R2

....
Rn

endblock

WhereRi for 1 ≤ i ≤ n are transition rules. The
block rule groups a set of transition rules and fires
them simultaneously. In ASMs, with the block
rule we construct the overall ASM-program (Prog),
and for brevity we always omit the keywords “blo-
ck” and “endblock”, and use indentation to elimi-
nate ambiguity.

3.1.3 Computations :

A computation (run) of an ASMM is a finite (or infi-
nite) sequence of states〈S0, S1, ...,Sk, ...〉 such thatS0

refers to some given initial state and each stateSi+1(i ≥
0) is obtained as the result of firing the programProg
atSi.

S0
Prog→ S1

Prog→ S2
Prog→ ...

Prog→ Sk
Prog→ ...

In this way, an ASM specificationM which can be con-
sidered as given by a programProg together with an
initial stateS0, models computations of dynamic sys-
tems through finite or infinite ASM runs.

4 Overview of TLA and TLA +

The Temporal Logic of Actions (TLA) was proposed
by Lamport [11] as a logic for specifying and reasoning
about reactive, distributed, and particular asynchronous
systems. TLA uses a single logical formalism for de-
scribing transition systems and formulating their prop-
erties. It is an extension of classical first-order logic by
some linear-time temporal logic operators with a rel-
atively complete set of proof rules. The semantics of
TLA is defined in terms of states and behaviors. A state
is an assignment of values to variables, and a behav-
ior is an infinite sequence of states. A TLA formula is
interpreted as a boolean function on behaviors.

In TLA we distinguish two classes of variables called
rigid variablesandflexible variables. The rigid vari-
ables represent quantities that do not change with time,
they are also called constants. The flexible variables
represent quantities that may change with time, and are
just called variables.

TLA formulas are built up fromstate functionsus-
ing the usual boolean operators (∧ , ∨ ,¬ ,⇒ ) and the
operators′ (prime) and� (read as always). Astate
function is defined as a non-boolean expression built
upon variables and constant symbols.State functions
are interpreted over single states. For example, the value
of the state functionx + 1 is 3 at a states in which
the value ofx is 2. A state predicateis a boolean ex-
pression built from variables and constant symbols. For
example,x > 1 is true in the states. An action is
a boolean-valued expression which can be made from
variables, primed variables and constant symbols.Ac-
tionsare interpreted over pairs of states. The unprimed
variables are interpreted in the first state of a state pair
and the primed variables in the second. For example,
theaction y′ = x + 1 is true over the pair of states〈s
, t〉 iff the value ofy in t is equal to the value ofx in s
plus1. A pair of states satisfyingactionA is called anA
step. We writef ′ for the expression obtained by prim-
ing all the variables of the tuple (i.e. astate function) f ,
and[A]f for (A ∨ Unchanged f) where Unchanged

f , (f ′ = f), so an[A]f stepis either anA stepor a
step that leavesf unchanged.

As usual in temporal logic, ifF is a formula then
�F is true of a behavior iff it is true in every state of
it. So, � [A]f holds over a behavior iff every pair of
consecutive states in it is either anA stepor astepthat
leavesf unchanged.

The standard way of specifying a system in TLA is
with a formula in the “canonical form”:
Init ∧ � [Next]f , where

. Init is the initial-state predicate, a formula describing
all legal initial states of the system

. Next is the next-state relation, which specifies all
possible steps (pairs of successive states) in a be-
havior of the system. It is a description of actions
that describe the different system operations.

. f consists of the variables the system operations can
change.

TLA+ is a formal specification language based on
(untyped) Zermelo-Fraenkel set theory in which every
value is a set, first-order logic, and TLA logic [12].
TLA+ supplements TLA with operators for defining



and manipulating data structures and mechanisms (syn-
tactic structures) for writing specifications modularly.
A TLA + specification is organized as a collection of
modules. Logically, a TLA+ module consists of a list
of statements, where a statement can be adeclaration,
a definition, anassumptionor a theorem. It has the fol-
lowing form:

MODULE 〈Name〉
CONSTANTS 〈List of constant parameters〉
VARIABLES 〈List of variable parameters〉
ASSUME 〈Properties of constants〉
TYPE INVARIANT 〈Properties of variables〉
INIT 〈Initial values of variables〉
SPEC〈A formula describing possible behaviors〉
THEOREM 〈A formula stating properties of spec〉
END.

Below are some of the TLA+ notations used to rep-
resent functions :

. The TLA+ expression[x ∈ S 7→ e(x)] defines the
function f whose domain is the setS such that
f [d] = e(d) for everyd ∈ S.

. The TLA+ notation[A → B] represents the set of all
functions from the setA into the setB.

. If f is a function, the TLA+expression [f EXCEPT![i]
= j ] defines a new function which is equal tof
except ini where the returned value isj. So, the
assertionf ′ = [f EXCEPT![i] = j] meansf ′[i] =
j ∧ ∀ d 6= i : f ′[d] = f [d].

. The function application is expressed using square
brackets, so the notationf [i] represents the value
obtained from functionf with argumenti.

5 TLA+Interpretation of Basic ASM Models

TLA+ provides a unified logical framework for formal-
izing the execution semantics of ASM descriptions, and
in which we are able to formally representing runs of
ASM-programs in logical terms. In this section, we
present a translation method for the formalization of
basic ASM models. This defines a logical semantics
which enables the deductive verification of systems mod-
eled in ASMS. The generic translation rules show how
each aspect of a basic ASM model has to be encoded
into an equivalent TLA+-expression. Through this trans-
lation process, we assume that the signature of a basic
ASM model is thought of as being embedded in TLA+-
language. Hereafter we summarize the TLA+translatio-
ns of the different aspects of a basic ASM model.
An ASM model translates into a TLA+module, a spec-
ification unit in the TLA+language.

Sorts Representation : sorts have different TLA+en-
coding depending on their being static or dynamic :

. A static sortU , i.e. a sort which does not change
during computation, is translated as a TLA+ con-
stant parameter (rigid variable) U , declared in the
TLA+module with the CONSTANTS statement,
as follows :ConstantsU . In TLA+, we can give
the definition of the constant value in theASSUME
statement, in terms of the TLA+ build-in opera-
tors.

. A dynamic sortD, i.e. a sort which may change dur-
ing computation, is encoded as a TLA+variable
parameter (flexible variable) D, declared with the
VARIABLES statement, as follows:Variables
D.

Functions Representation : ASM basic functions are
classified in static functions which remain constant, and
dynamic function which may change interpretation dur-
ing computation.

. A static functionf together with its signature (e.g.f :
S → T ) that provides the type information of the
function symbolf , is encoded as a TLA+constant
parameterf together with a set membership as-
sumption (such asf ∈ [S → T ]) declared in the
ASSUME statement of the TLA+module, assert-
ing that its value is a function in the set of all func-
tions (with domainS and range a subset ofT ), de-
scribed by the TLA+construct[S → T ]. Further-
more, the definition of static function bodies can
be given in theASSUME statement.

. A dynamic functionh together with its typing infor-
mation, is encoded as a TLA+variable parameter
h. The type property of the variableh will be
specified by a TLA+ typing predicate namely a
state predicate which has not to be assumed but
to be proved as an invariant of the resulting TLA+

temporal formula identifying behaviors of the ba-
sic ASM model.

Remark : Since First-Order Logic is a subset of both
ASM language and TLA+language, each first-order for-
mula over an ASM-signature is transliterated to a TLA+-
formula with the same corresponding parameters. As a
special case, the initial condition describing the starting
state of an ASM run is transliterated to a TLA+state
formula specifying the initial values of ASM-variables
(dynamic functions in ASM terminology).



TLA +Translations of Basic ASM Rules : We now
describe how ASM transition rules are translated into
TLA+ formulas (actions) which capture their execu-
tion effect upon a given state. In the following, we
will consider translation schemas for the standard basic
ASM rules, namelySkip, Atomic update, Conditional,
and Blockrules. To simplify notation, let considerR
andRi (i ≥ 1) stand for ASM rules,exp for an ex-
pression,g for a boolean expression(condition),x for
a variable(dynamic nullary function),f for a dynamic
function with arityn > 0, V (R) for the set of variables
potentially changed byR, V for the set of all declared
ASM-program variables, and[[R]] for the translation of
R into TLA+, namely the resulting TLA+action which
describes the execution semantics of the ruleR. No-
tice that action[[R]] does not state anything about those
variables that are not used inR; where needed, such an
action is obtained ofV (R) by the stuttering action as
follows : Unchanged(V − V (R)).

. Skip rule of the form,R :: Skip , is a null state-
ment(i.e., a no-op statement). It does nothing. In
TLA+ this expressed by an action formula that is
identicallytrue, where:[[R]] , true, andV (R)=∅.

Basic update rules : The most basic forms of updates
that can appear in an ASM model are called local func-
tion updates. They are similar to assignments in imper-
ative programming languages :

. Updates of the form,R :: x := exp. The effect
of this update upon a state is to change the value
of x into the value ofexp. In TLA+, the corre-
sponding change tox is expressed by the TLA+-
action [[R]] using the prime′ operator as follows :
[[R]] , x′ = exp, whereV (R)={x}.

. Updates of the form,R :: f(t1, ..., tn):= exp, is rep-
resented by the TLA+-action [[R]] using the EX-
CEPT construct, the prime′ operator as follows:
[[R]] , f ′ = [f EXCEPT![t1, ..., tn] = exp] ,
whereV (R)={f }. The TLA+-expression[f EX-
CEPT![t1, ..., tn] = exp ] represents the new func-
tionf ′ that is the same asf except thatf ′ [t1, ..., tn]-
= exp.

. Conditional rule of the form,R :: If g Then R1

Else R2, is the most common means of specify-
ing a precondition for updating. Its TLA+semantics
is expressed by using the logical conditional choice

operator, namely the IFcondition THEN formu-
la1 ELSE formula2 structure which is equiva-
lent to
((condition ∧ formula1) ∨ (¬condition∧ for-
mula2)). The ruleR is translated as follows :

[[R]] , ∧ IF g THEN
∧ [[R1]]∧ Unchanged (V (R2)− V (R1))

ELSE
∧ [[R2]]∧ Unchanged (V (R1)− V (R2)

where[[R1]] and [[R2]] are the TLA+translations
of the sub-rulesR1 andR2, andV (R) = V (R1)∪
V (R2).

. Block rule of the form,R :: Block R1 R2 ... Rn

endblock , groups a set of sub-transition rules.
With a block rule we construct the overall basic
ASM-program namelyProg. Execution of a block
rule amounts to the parallel execution of its sub-
rules, provided these rules are pairwise consistent.
TLA+ provides different specification styles, nam-
ely interleavingandnoninterleavingstyles, for rep-
resenting the concurrent execution of the sub-rules
composing the block rule. With the block rule, we
adopt the noninterleaving representation which al-
lows simultaneity of transitions and simplifies rig-
orous reasoning about basic ASM-programs be-
haviours. According to the noninterleaving model
of execution, the parallel execution semantics of
the sub-rules within a block rule is formally rep-
resented by a TLA+-based noninterleaving spec-
ification. The TLA+-based noninterleaving rep-
resentation associated with a block ruleR is con-
structed from the TLA+translations of the sub-rules
R1, R2, ..., Rn as follows:

[[R]] , ∨ [[R1]] ∧ Unchanged (V (R)− V (R1))
∨ [[R2]] ∧ Unchanged (V (R)− V (R2))
∨ . . .
∨ [[Rn]] ∧ Unchanged (V (R)− V (Rn))
∨ [[R1]] ∧ [[R2]] ∧
∧ UnchangedV (R)− (V (R1) ∪ V (R2)))

∨ . . .
∨ [[R1]] ∧ [[R2]] ∧ [[R3]] ∧
∧UnchangedV (R)−

⋃3
i=1 V (Ri))

∨ . . .
∨ [[R1]] ∧ [[R2]] ∧ ... ∧ [[Rn]]

WhereV (R) = V (R1) ∪ V (R2) ∪ ...∪ V (Rn),
and[[R1]], ...,[[Rn]] are TLA+semantics of the sub-
rulesR1, R2, ..., Rn. The conjunctsUnchanged (-



V (R)−V (Ri))i∈1..n means that all variables wh-
ich are not changed by the current ruleRi remain
constant.

The TLA+formula representing the temporal behav-
iors of a basic ASM model (specification)M is a safety
formulaΦ of the following form :

Φ = [[M ]] , INIT ∧ � [Next]V

whereINIT is the state predicate representing the
initial condition of the basic ASM modelM , Next is
the TLA+ action (semantics) for the basic ASM-program
( Prog namely the block rule) defined as a disjunction
of actions capturing the possible individuals transitions
and multiple simultaneous transitions, andV is the col-
lection of ASM-program variables. The TLA+ formula
Φ describing an ASM model can be used to infer any
safety property of an ASM system specification through
logical reasoning. FormulaΦ = [[M ]] characterizes
the set of all admissible behaviors, i.e. the behaviors
of which it holds. The formulaΦ produced in this way
for an ASM modelM captures the possible runs of this
ASM.

6 Case Study : A Producer-Consumer
System

In this section we use a case study to illustrate the pro-
cess of formal modelling and analysis of a basic ASM
model using the TLA+-logical framework. The case
study is a variant of distributed computing systems which
may originate from quite different areas, including data-
bases, communication protocols, namely a producer-
consumer system, formalized in terms of basic ASM
notation as presented in[8].

The setting is as follows : There are two processes
(producer and consumer) which from time to time want
to use the shared resource(the buffer) which must not be
accessed by the two processes simultaneously. Distin-
guished items are produced, delivered(sent or deposited)
to a buffer by a producer, later removed(received or ac-
cepted) from the buffer, and finally consumed by a con-
sumer. The buffer is assumed to have capacity for one
item.

The basic ASM model of the above informal de-
scription of the algorithm together with its temporal tran-
slation and correctness condition are given below:

6.1 ASM Specification :

The basic ASM modelM = 〈 Σ, Prog , Init 〉 of the
above system is based onto a signature including the
0-ary symbolsx, y, buf . Their value may represent

items to be processed by the system. Furthermore, the
value ofx and ofy may be undefined ( represented by
x−undef andy−undef , respectively), and the buffer
may be empty (represented byb−undef ).

The ASM Signature: The signatureΣ consists of
the following universe and functions together with their
associated sorts :

. Static universe :Items

. Static functions :
x−undef : −→ Items
y−undef : −→ Items
b−empty : −→ Items

. Dynamic functions :
x : −→ Items
item : −→ Items
y : −→ Items
buf : −→ Items

Initial State : Init is a first-order formula specifying
the initial state of any ASM run.
Init ≡ x = x−undef ∧ y = y−undef ∧ buf =
b−empty

Integrity Constraints : these are first-order descrip-
tions which express implicit assumptions about the ap-
plication domain.

C ≡ x−undef 6= y−undef 6= b−empty

The ASM Program : Below is the set of transition
rules describing behavior of the system. The processes
interact as follows: In case the value ofx is undefined,
the value ofitem is assigned tox, then forwarded to the
empty buffer, removed from the buffer and assigned to
y, and finally consumed.The basic ASM-programProg
is as follows:



PROD:: Ifx = x−undef Thenx := item

SEND:: If¬ (x = x−undef ) ∧ buf = b−empty
Then
buf := x
x := x−undef

REC:: If¬ (buf = b−empty) ∧ y = y−undef
Then
y := buf
buf := b−empty

CONS:: If¬ (y = y−undef) Theny := y−undef

6.2 TLA+ Specification :

In the following we present the temporal translation of
the ASM specificationM of the producer-consumer sys-
tem. The TLA+module that encodes the basic ASM
modelM by following the translation schemas is as fol-
lows:

Module ProducerConsumerASM

Constants Items, x−undef, y−undef, b−empty

Assume ∧ Items 6= ∅
∧ x−undef, y−undef, b−empty ∈ Items
∧ x−undef 6= y−undef 6= b−empty

Variables x, y, buf, item

TypeInvariant , ∧ x ∈ Items
∧ y ∈ Items
∧ item ∈ Items
∧ buf ∈ Items

V , 〈x, y, buf, item〉

INIT , ∧ x = x−undef
∧ y = y−undef
∧ buf = b−empty

PROD , IF x = x−undef THEN x′ = item

SEND , IF ¬ (x = x−undef) ∧
∧ buf = b−empty

THEN ∧ buf ′ = x
∧ x′ = x−undef

REC , IF ¬ (buf = b−empty) ∧ y = y−undef
THEN ∧ y′ = buf

∧ buf ′ = b−empty

CONS , IF ¬ (y = y−undef) THEN y′ = y−undef

NEXT , ∨ PROD ∧ Unchanged(V − {x})
∨ SEND ∧ Unchanged(V − {buf, x})
∨ REC ∧ Unchanged(V − {buf, y})
∨ CONS ∧ Unchanged(V − {y})
∨ PROD ∧REC ∧ Unchanged(V − {x, y, buf})
∨ PROD ∧ CONS ∧ Unchanged(V − {x, y})
∨ SEND ∧ CONS ∧ Unchanged(V − {x, y, buf})

Φ = [[M ]] , INIT ∧ � [NEXT ]V

END.

6.3 Correctness Proof of the Basic ASM Model :

The purpose of giving a logical characterization of the
behavior of an ASM specification using the TLA logic
has been to be able to formally state and verify tem-
poral properties using the proof rules of TLA. In TLA
both ASM models and their required properties are rep-
resented in the same logic. The assertion " An ASM
modelM has the propertyP " is expressed in TLA by
the validity of the formula[[M ]] ⇒ P , where[[M ]]
represents the TLA semantics of ASM system specifi-
cation and[[P ]] is the logical expression of the informal
propertyP .
As an example of correctness requirement that the prod-
ucer-consumer system should satisfy is the exclusive
sharing of buffer(mutual exclusion property), meaning
that at any moment there can be at most one process
accessing the buffer. This property of mutual exclusion
for such a system is an example of invariance(safety)
properties, those which are true at every state of the sys-
tem execution. In TLA+, this mutual exclusion prop-
erty can be formally expressed by the temporal formula
�Mutex, whereMutex is a state predicate of the fol-
lowing form:

Mutex , ¬(x = buf ∧ y = buf)

The formal correctness proof of the ASM specifica-
tion M which simulates the producer-consumer system
behavior, is reduced to proving that the corresponding
TLA+-translation[[M ]] satisfies the mutual exclusion
property�Mutex. In TLA+, the assertion that the
TLA+-translation[[M ]] satisfies the property�Mutex
takes the form of the following theorem(a TLA for-
mula) :



THEOREM:[[M ]] ⇒ �Mutex

Which asserts that every behavior satisfying the TL-
A+specification[[M ]] also satisfy the property�Mutex,
i.e. the predicateMutex is true through every behavior
satisfying this specification[[M ]] .

6.3.1 Correctness proof :

The proof of[[M ]] ⇒ �Mutex is a relatively straight-
forward application of classical first-order reasoning and
simple temporal facts which are embodied in the TLA
proof rules [11]. In order to prove this property, we will
take advantage of one of the rules of TLA, namely the
rule INV 1:

INV 1 :
I ∧ [N ]f ⇒ I ′

I ∧� [N ]f ⇒ �I

In the case of our specification,I is the state pred-
icateMutex which is an invariant,N is the next-state
actionNEXT andf is the tupleV of variables. The
rule INV 1 tells us that we must prove the following
statements :

INIT ⇒ Mutex : (1)
Mutex ∧ [NEXT ]V ⇒ Mutex′ : (2)

from which we can deduce[[M ]] ⇒ �Mutex as
follows :

[[M ]] ⇒ { By definition of[[M ]] }
INIT ∧� [NEXT ]V

⇒ { By the implication (1)}
Mutex ∧� [NEXT ]V

⇒ { By the implication (2) and the rule INV1}
�Mutex.

To complete the proof, we must prove the statements
(1) and (2), which involve simple predicate logic.

7 Conclusion and Further Work

In this paper we have presented a translation-based ap-
proach to formalize the operational semantics of basic
ASM models in terms of TLA+-logic. Though this for-
malization approach gives a temporal description of ba-
sic ASM models behaviors, it enables us to prove in
a formal way correctness properties of systems speci-
fied in basic ASMs formalism. The proposed method
has been illustrated by hand-translating the basic ASM
specification of the producer-consumer system into a
TLA+specification. Moreover, we have shown how to
formally prove required properties such as safety prop-
erties of basic ASM models by applying the deductive

proof system of TLA. Futur development of this work
includes the design and the implementation of a model
translator, namely ASM2TLA+ translator, to support
the automatic translation of basic ASM specifications
into TLA+ specifications which can be verified auto-
matically using the TLA+ model checker called TLC[12].
On the other hand, we have in mind to extend the pro-
posed approach to cover the specific cases of ASMs
such as distributed ASMs, non-deterministic ASMs, and
concurrent ASMs with the await construction.
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