
An Efficient Approach to Task Scheduling in Computational Grids

G SUDHA SADASIVAM 1

VIJI RAJENDRAN V 2

1Dept of CSE, PSG College of Technology, Coimbatore, Tamilnadu

2Dept of CSE, NSS College of Engineering, Palghat, Kerala

1sudhasadhasivam@yahoo.com
2vijirajv@gmail.com

Abstract. Resource management in a grid environment is complex. Scheduling strategy plays an im-
portant role in the grid environment to schedule the user jobs, and dispatch them to appropriate grid
resources. A good task scheduling method is essential to reduce the total time taken for job execution in
the grid. In a grid environment, the jobs are processed at the grid resources in a fine-grained form that
results in a low computation-communication ratio. So an efficient job grouping-based scheduling system
is required to dynamically assemble the individual fine-grained jobs of an application into a group of
jobs and then transmit these coarse-grained jobs to the grid resources. The objective of this paper is to
develop a scheduling strategy using job groups that optimizes the utilization of processing capabilities of
grid resource and reduces the total time taken to process user jobs.

Keywords: scheduling, grid computing, particle swarm optimization, job grouping.

(Received May 29, 2008 / Accepted January 19, 2009)

1 Introduction

A grid coordinates resources that are not subject to cen-
tralized control. The creation of large resources through
pooling of individual resources from different locations
enables the grid to provide powerful computing infra
structure. In the grid environment the utility of the com-
bined system is significantly greater than that of the sum
of its parts. The term Grid is an analogy to a power grid
that provides consistent, pervasive, dependable, trans-
parent access to electricity irrespective of its source [1].

This paper proposes a novel job grouping method
using Particle Swarm Optimization (PSO) to reduce the
communication overhead and hence enhance the speed
of completion of the processes and improve resource
utilization. The proposed method improves the compu-
tation communication ratio.

The unorganized deployment of applications in the
grid environment with a large number of fine-grain jobs

increases the communication overhead and results in a
low computation-communication ratio. Gridâs dynamic
nature complicates the planning of the job scheduling
activity for minimizing the application processing time.
Hence a scheduling strategy is essential to optimize the
utilization of grid resource processing capabilities, and
reduce total time taken to process user jobs. The grid
scheduler should reduce the total transmission time of
user jobs to/from the resources, and the overhead pro-
cessing time of the jobs at the resources. To achieve
this, the jobs should be sent to the resources in a coarse-
grained form. In other words, the scheduling strategy
should group a number of user jobs (small jobs) to-
gether according to a particular grid resource’s process-
ing capabilities, and then send the grouped jobs to the
resources in parallel.

Granularity size is used to measure the total amount
of jobs that can be completed within a specified time
in a particular resource. Relationship between the to-

tal number of jobs, processing requirements of those
jobs, total number of available grid resources, process-
ing capabilities of those resources, and the granularity
time should be determined in order to minimize the job
execution time, and optimize the utilization of the grid
resources. GridSim Toolkit [16] is used to model coarse
grained Grid application by developing an efficient and
effective task scheduling method.

2 Related Work

In a cluster a set of nodes is placed in one location. A
grid is composed of many clusters. A study of schedul-
ing heuristics was conducted by James, Hawick and
Coddington [2]. Round-robin scheduling, minimal adap-
tive scheduling, continual adaptive scheduling and first-
come-fist-served scheduling algorithms were discussed
and compared for various job distributions. In a grid en-
vironment, the jobs are processed at the grid resources
in a fine-grained form. In some algorithms, jobs were
grouped in equal numbers, while in other algorithms
the nodes were made to synchronize after each round
of execution [2]. In our proposed approach, the jobs
are grouped according the ability of the remote nodes.
There are no synchronization steps involved as the grou-
ped jobs are dispatched when the remote resources be-
come available. This eliminates the synchronization
overhead.

Gerasoulis and Yang [3] in the context of Directed
Acyclic Graph (DAG) scheduling in parallel comput-
ing environments, grouped jobs into clusters to reduce
communication dependencies among them. The aim of
this clustering is to reduce the inter-job communication
and thus, decrease the time required for parallel execu-
tion. Cluster mapping heuristics [4] aim to maximize
the number of jobs that can be executed in parallel on
different processors.

As stated by Buyya, Date, et. al. [5], the need
for a job grouping method became an imperative re-
search area after the emergence of distributed analysis
of brain activity data. The Magneto encephalography
(MEG) helmet is used for recording information about
brain activities. A 64-sensored MEG instrument pro-
duces 0.9 GB of data in an hour and the data is used to
generate 7,257,600 analysis jobs which take about 102
days on a commodity computer. Global grids enable
the partnering doctors to share the MEG instrument and
allow the analysis jobs to be computed among the dis-
tributed computing resources. Large amount of compu-
tation power reduces the total time taken for completing
the analysis jobs. The main issue is the expense caused
from the overhead communication time. This necessi-
tates grouping of jobs.

GridSim based simulations on grouping the grid jobs
have been conducted at GRIDS laboratory, University
of Melbourne [6] and at the Department of Computer
System and Technology, University of Malaya [7]. In
these simulations, jobs were merged based on each re-
sourceâs Million Instructions Per Second (MIPS) and
each jobâs Million Instructions (MI). Job MI, resource
MIPS and a fixed network bandwidth are not static val-
ues and greatly depend on the surrounding influences.

MIPS or MI are not the preferred benchmarks as
the execution times for two programs of similar MI but
with different program locality (e.g. program compi-
lation platform) can differ [8]. Moreover, a resourceâs
full MIPS may not be available all the time because of
the I/O interrupt signals. N.Muthuvelu [9] presents a
grid job scheduling algorithm, based on a parameter-
ized job grouping strategy, which is adaptive to the run-
time grid environment. Intervalized average analysis is
implemented by the grid broker to determine the current
status of the grid before performing the job grouping
task.

Task scheduling is a challenging problem in grid
environment [10]. Grid scheduling is a NP Complete
problem. Heuristic optimization algorithm can be used
to solve a variety of NP complete problems. Abraham et
al [11] and Braun et al [12] present three basic heuristics
implied by Nature for Grid scheduling, namely Genetic
Algorithm (GA), Simulated Annealing (SA) and Tabu
Search (TS), and heuristics derived by a combination of
these three algorithms.

Particle swarm optimization (PSO) [13] is one of the
latest evolutionary optimization techniques inspired by
nature. It simulates the process of a swarm of birds in
their preying activity. Its ability for global searching has
made PSO highly suitable for neural network training,
control system analysis and sign, structural optimiza-
tion and so on. It also has fewer algorithm parameters
than either GA or SA [14].

This paper proposes an efficient job scheduling ap-
proach that uses job grouping to improve computation
communication ratio and utilization of the resources. It
also proposes the use of PSO to select the resources to
minimize makespan and to bring about efficient load
balancing.

3 Design of the System

3.1 Overall System Architecture

Gridlet is a package that contains all the information
related to the job and its execution management details
such as job length expressed in MI, the size of input
and output files, and the job owner id. From GridSim

3.1, classType attribute have been added to provide dif-
ferentiated service to scheduling gridlets on a resource.
The higher the classType means the higher the priority
of scheduling this Gridlet on the resource.

After initializing the GridSim entities, the system
creates the gridlets and the grid resources as specified
by the user for processing the gridlets. Details of the
grid resources are obtained from a file containing a list
of resources with their characteristics. Total PEs (Pro-
cessing Elements), and MIPS of each PE are created
based on the details found in the file, and therefore, each
resource is built with different MIPS rating. GridSim
PE class represents CPU unit, defined in terms of MIPS
rating.

3.2 Architecture of gridlet Scheduler

Figure 1 depicts the architecture of the gridlet sched-
uler used in the proposed system. The system accepts
total number of user jobs, processing requirements or
average MI of those jobs, allowed deviation percentage
of the MI, processing overhead time of each user job
on the grid, granularity size of the job grouping activity
and the available grid resources in the grid environment
(step 1-2).

After gathering the details of user jobs and the avail-
able resources, the system randomly creates jobs with
priority assigned to it according to the given average MI
and MI deviation percentage (step 3). The scheduler
will then select a resource and multiplies the resource
MIPS with the given granularity size (step 4).

The jobs are then gathered or grouped according to
the resulting total MI of the resource (step 5), and each
created group is stored in a list with its associated re-
source ID (step 6). After grouping all jobs, the sched-
uler submits the job groups to their corresponding re-
sources (step 7) which then process the received job
groups, and send back the processed groups to the grid
user.

3.3 Operation of Scheduling Framework

The scheduling framework illustrated in figure 2 depicts
the design of the job scheduler and its interactions with
other entities. When the user creates a list of jobs in the
user machine, these jobs are sent to the job scheduler
for scheduling arrangement. The information collector
gathers resource information from the Grid information
service (GIS).

The GIS is a facility that provides information about
all the registered resources in a grid. Based on the in-
formation, the job scheduling algorithm is used to deter-
mine the job grouping and resource selection for grouped

Figure 1: Architecture of the Gridlet Scheduler.

jobs. Once all the jobs are put into groups with selected
resources, the grouped jobs are dispatched to their cor-
responding resources for computation.

Figure 2: Scheduling Framework for Job Grouping.

The grouping and selection service serves as a site
where matching of jobs is conducted. The strategy for
matching jobs is based on the information gathered from
the information collector. There are two steps involved
during the matching of jobs. They are job grouping and
job selection. In the job grouping process, jobs sub-
mitted by the user to the scheduler are collected and
they are grouped together based on the information of
resources. The size of a grouped job depends on the
processing requirement length expressed in MI. When
a resource is chosen from the resource list, its process-
ing capability expressed in the amount of MI processed
in a second is used as the maximum limit for a grouped
job. At the same time, job selection is also being con-

ducted where a grouped job corresponds to the resource
in question. The process is performed iteratively until
all the jobs are grouped according to their respective re-
sources.

The dispatcher functions as a sender that transmits
the grouped jobs to their respective resources. The dis-
patcher forwards the grouped jobs based on the sched-
ule made during the matching of jobs with resources.
The dispatcher also collects the results of the processed
jobs from the resources through input ports.

Figure 3: Sequence Diagram for Job Grouping based Scheduling
Framework.

Figure 3 depicts the sequence diagram for the job
grouping-based scheduling framework. Initially the re-
sources register themselves to the GIS. When the fine-
grained jobs arrived at the job scheduler, the job sched-
uler performs query to the GIS to obtain information on
available resources. It also gathers resource characteris-
tics from the available resources. The job scheduler car-
ries out the job grouping and selection process. Subse-
quently, the grouped jobs are sent to their respective re-
sources and are collected back after the resources have
completed the job execution. Finally, the job schedul-
ing statistics are recorded for evaluation purposes.

3.4 Gridlet Grouping Algorithm

The following is a listing of steps in gridlet grouping.

1. The scheduler receives the Gridlet_List, J [] and
the Resources_List, R [].

2. Sort the gridlets according to the priority.

3. Set the Total_Length of gridlet to zero. Set the
resource number i to 1.

4. Get MIPS of the resource i and multiply the Re-
source_MIPS with Granularity Time specified by
the user.

5. Get length (MI) of the first gridlet.

6. If Resource_MIPS is less than the Gridlet_Length
BEGIN
The gridlet cannot be scheduled for the resource.
Increment i and proceed to step 4.
END

7. If Resource_MIPS is more than Gridlet_Length
BEGIN

7.1 While Total_Length is less than or equal to
Resource_MIPS, and while there are ungrouped
gridlets in the Gridlet_List
BEGIN
Set Total_Length to the summation of previ-
ous Total_Length and current Gridlet_ Length.
Get the length of the next gridlet and repeat
step 7.1.
END

7.2 If the Total_Length is greater than Resource_
MIPS then deduct the length of the last gridlet
from the Total_Length.

END

8. If Total_length is not zero
BEGIN
Create a new gridlet (Grouped_Gridlet) with the
length equals to the Total_Length.
Set User ID for the Grouped_Gridlet.
Add the Grouped_Gridlet to a Gridlet_List_2.
Add the ID of the resource (to which gridlet is to
be assigned) into a linked list.
END

9. Set the Total_Length of gridlet to zero.

10. Repeat steps through 4 with MIPS of next resource
and the length of next gridlet.

11. Perform the looping until all the gridlets in the Gri-
dlet_List are grouped into Grouped_Gridlet.

12. If the scheduler receives new Gridlet_List from the
user (for dynamic scheduling). The scheduler ma-
nipulates the unutilized MIPS of each resource and
branch to step 4 with the manipulated MIPS taken
as the resource capability.

13. After all the gridlets are scheduled into groups and
each Grouped_Gridlet is assigned with a particu-
lar grid resource, send all the Grouped_Gridlets to
their corresponding resources.

14. After all the Grouped_Gridlets are processed by
the grid resources, and sent back to the I/O queue
of the scheduler / system, collect the Grouped_Grid-
lets from the I/O queue.

15. Set the resource ID, and job execution cost of each
Grouped_Gridlet.

16. Get the total simulation time.

17. Display the details of the processed Grouped_Grid-
lets to the user through GUI.

The overall explanation of algorithm is as follows:
once the user jobs are submitted to the broker or sched-
uler, the scheduler gathers the characteristics of the avail-
able grid resources. Then, it selects a particular re-
source and multiplies the resource MIPS with the gran-
ularity size to get the total MI the resource can process
within a specified granularity size.

The scheduler groups the user jobs by accumulat-
ing the MI of each user job while comparing the re-
sulting job total MI with the resource total MI. If the
total MI of user jobs is more than the resource MI, the
very last MI added to the job total MI will be removed
from the job total MI. Eventually, a new job (job group)
of accumulated total MI will be created with a unique
ID and will be scheduled to execute in the selected re-
source. This process continues until all the user jobs
are grouped into few groups and assigned to the grid
resources. The scheduler then sends the job groups to
their corresponding resources for further computation.
The grid resources process the received job groups and
send back the computed job groups to the grid user.

Even though the above mentioned approach enhances
the computation-communication ratio, it does not en-
hance the utilization of the entire grid. So an evolution-
ary approach to job grouping in the grid environment is
proposed.

4 Evolutionary approach to job grouping

4.1 PSO approach for Scheduling Problem in Com-
putational Grid

PSO is used to address independent task assignments
problems in parallel distributed computing systems. Con-
ducting search uses a population of particles. Each par-
ticle corresponds to an individual in evolutionary algo-
rithm. To start with, a flock or swarm of particles is
randomly generated. Each particle has an updating po-
sition vector iXand updating velocity vector iVby mov-
ing through the problem space. Kennedy and Eberhart
[25] proposed the formula of updating position vector:

Xi : Xi
K+1 + V i

K+1 (1)

and the formula of updating velocity vector

V i : V i
K+1 = wkV i

k+c1r1(pi
k−xi

k)+c2r2(pg
k−

xi
k (2)

where C1 and C2 are positive constant and r1 and r2

are uniformly distributed random number in [0, 1]. The
velocity vector V i is in the range [-Vmax, Vmax] [13].
The vector P i represents the best ever position of each
particle and P g represents the best position obtained so
far in the population. Changing velocity this manner
enables the particle to search around its individual best
position P i, and also updates its global best position
P g , until the global optimum is reached.

The aim of the scheduling is to improve the effi-
ciency of resource and to minimize the job completion
time. Task scheduling method uses the Small Position
Value (SPV) rule [15] to convert the continuous posi-
tion values to its permutation. Each particle denoted
as Xi (i = 1, 2, 3, · · · , n) with its position, velocity
and fitness value represents a potential solution to re-
source scheduling. The position of each particle can
be represented in ânâ number of dimensions as Xi

k =
[Xi

1, X
i
2, ..., X

i
n] where Xi

k is the position value of
particle i with respect to the n dimension, and the veloc-
ity is represented by V i

k = [V i
1, V

i
2, ..., V

i
n] where

V i
k is the velocity of particle i with respect to the n

dimension.
The fitness value evaluated by fitness function rep-

resents the particleâs quality based on the current se-
quence Ri. The fitness function is to minimize. The
personal best value denoted as P i represents the best
searching position of the particle so far. For each parti-
cle in the population, P i can be determined and updated
at each iteration step.

In grid resource scheduling with the fitness func-
tion f(Ri) where Ri is the corresponding sequence of

particle Xi, the personal best P i of the ith particle is
obtained such that f(Ri

k) ≤ f(Ri
k − 1), where Ri

is the corresponding sequence of personal best P i.For
each particle, the personal best is denoted as pi

k =
[pi

1, p
i
2, ..., p

i
n], where pi

k is the position value of the
ith particle best with respect to the n dimension.

The best particle in the whole swarm is assigned to
the global best denoted as Gi. Gi can be obtained such
that f(Ri

k) ≤ f(Ri
k), for k = 1, 2, 3, m, where Ri is

the corresponding sequence of particle best P i. In gen-
eral, we define the fitness function of the global best as
f(Ri

gbest) = f(Ri
best), and the global best is defined

as gi
k = [gi

1, g
i
2, ..., g

i
n], where gi

k is the position
value of the global best with respect to the n dimension.
Each particle updates its velocity vector based on the
experiences of the personal best and the global best in
order to update the position of each particle with the
velocity currently updated in search space. Each parti-
cle keeps track of its own best position and the swarm
keeps track of the global best position. When maximum
number of iteration is reached, the process will be ter-
minated.

A particle represents a possible solution in the popu-
lation and dimension n corresponds to n tasks. For the n
tasks and m resource problem, each particle represents
a reasonable scheduling scheme. Table 1 illustrates the
solution representation of particle Xi of PSO algorithm
for 10 tasks and 4 processors. Based on the SPV rule,
the continuous position vector can be transformed to a
dispersed value permutation Si

k = [Si
1, S

i
2, ..., S

i
n],

where Si
k is the sequence of task of ith particle in the

processing order with respect to the n dimension. Then
the operation vector ri

k = [ri
1, r

i
2, ..., r

i
n] is defined

by the following formula: Ri
k = Si

k mod m(3). This
is used to find the sequence number of computing pro-
cessor. The start of sequence number is defined as zero.

4.2 PSO Algorithm

The formula (1) and (2) are used to construct the ini-
tial continuous position values and velocity value of
each particle. In PSO algorithm, the weight is linear
decreased from 0.9 to 0.4.

The complete flow of the PSO algorithm for the task
scheduling of grid can be summarized as follows:
Step1: Initialization.

• Set the contents about this algorithm: maximum
number of iterations kmax, self-recognition coef-
ficient c1 = 2, social coefficient c2 = 2 and inertia
factor ω to 0.9;

• Initialize position vector Xi
k = [Xi

1, X
i
2, ..., X

i
n]

and velocity vector V i
k = [V i

1, V
i
2, ..., V

i
n] of

Table 1: Solution Representation.
Dimension Xi

k Si
k ri

k

0 1.03 3 3
1 3.81 9 1
2 -0.11 1 1
3 -0.39 0 0
4 3.15 7 3
5 3.41 8 0
6 2.64 5 1
7 3.00 6 2
8 0.89 2 2
9 1.52 4 0

each particle randomly;

• Apply the SPV rule to find the permutation Si
k =

[Si
1, S

i
2, ..., S

i
n];

• Apply the formula (3) to fine the operation vector
ri

k = [ri
1, r

i
2, ..., r

i
n];

• Evaluate operation vector of each particle; find the
best fitness value among the whole swarm f(Ri)
f(). Set the global best value Gi = f(Ri).

Step 2: Update iteration variable. iter = iter +1;
Step 3: Update inertia weight ωiter = ωiter−1∗β where
β is a decrement factor.
Step 4: Apply the formula (2) and (1) to update velocity
and position of each particle;
Step 5: Apply the SPV rule to find the permutation.
Step 6: Apply the formula (3) to fine the operation vec-
tor ri

k = [ri
1, r

i
2, ..., r

i
n].

Step 7: Update personal best. Each particle is eval-
uated by using the operation vector to see if the per-
sonal best will improve. If f(Ri

best) ≤ f(Ri
k), then

f(Ri
best) = f(Ri

k).
Step 8: Update global best. If f(Ri

gbest) ≤ f(Ri
best),

then f(Ri
gbest) = f(Ri

best).
Step 9: Stopping criterion - If the number of iteration
exceeds the maximum number of iteration, then stop;
otherwise go to step 2.

4.3 Gridlet Grouping Algorithms with Load Balanc-
ing

1. The scheduler receives the Gridlet_List, J [] and
the Resources List, R [].

2. Sort the gridlets according to the priority

3. Call the PSO algorithm to assign the gridlets to the
resources.

4. Find the Total_length of the gridlets assigned to
each resource

5. If Total_length is not zero
BEGIN

• Create a new gridlet (Grouped_Gridlet) with
the length equals to the Total_Length.

• Set User ID for the Grouped_Gridlet.

• Add the Grouped_Gridlet to Gridlet_List_2.

• Add the ID of the resource into a linked list.

END

6. If the scheduler receives new Gridlet_List from the
user (for dynamic job scheduling)
BEGIN

• Find the average length of gridlets to be as-
signed to each resource.

• The scheduler manipulates the unutilized MIPS
of each resource.

• Get the length of the first gridlet.

6.1 While there are resources and ungrouped gri-
dlets in the Gridlet_List

BEGIN
While new_Total_Length of gridlet is less than or
equal to
unutilized_Resource_MIPS
BEGIN

• Set new_Total_Length to the summation of
previous new_Total_Length and current Gri-
dlet_Length

• If the new_Total_Length is greater than av-
erage task length to be assigned to resources
then deduct the length of the last gridlet from
the new_Total_Length
END

• If the new_Total_Length is greater than unuti-
lized_Resource_MIPS
BEGIN

• Deduct the length of the last gridlet from the
new_Total_Length

Table 2: Grid Resource List.
Resource MIPS Cost
R1 20 100
R2 24 200
R3 39 300
R4 40 70
R5 50 150
R6 60 400
R7 66 60
R8 72 50
R9 120 210

• Find the total length of the unassigned tasks

• Find the average length to be assigned to the
remaining resources.
END
END

Perform step 5 with this new_Total_Length as the
gridlet length on each resource.

7. After all the gridlets are scheduled into groups and
each Grouped_Gridlets are assigned with a partic-
ular grid resource, send all the Grouped_Gridlets
to their corresponding resources.

8. After all the Grouped_Gridlets are processed by
the grid resources, and sent back to the I/O queue
of the scheduler/system, collect the Grouped_Grid-
lets from the I/O queue.

9. Set the resource ID, and job execution cost of each
Grouped_Gridlets.

10. Get the total simulation time.

11. Display the details of the processed Grouped_Grid-
lets to the user through GUI.

5 Experimental Results

A resource with multiple machines is treated as a dis-
tributed memory cluster and is managed as a space-
shared system using FCFS (First Come First Serve) sche-
duling policy or its variants. The tests are conducted us-
ing nine resources of different MIPS, as shown in Table
2.

The MIPS of each resource is computed as follows:
Resource MIPS = Total_PE * PE_MIPS, where Total_PE
= Total number of processing elements (PE) at the re-
source and PE_MIPS = MIPS of PE. The total pro-
cessing cost is computed based on the actual CPU time

taken for computing the gridlets at the grid resource and
at the cost rate specified at the grid resource.

We have conducted experiments and obtained re-
sults for task scheduling with and without job grouping
and with and without load balancing.

5.1 Experiment 1: Simulation with and without Job
Grouping

Simulations were conducted to analyze and compare
the differences between two scheduling algorithms, na-
mely FCFS and job grouping-based algorithm in terms
of processing time and cost. Figure 4 shows the re-
sults of the simulations with and without job grouping
method conducted with granularity size of 5 seconds,
average gridlet length of 10 MI at a deviation of 10%
and an overhead time of 10 seconds. The total process-
ing time and cost are increasing gradually for simula-
tions without job grouping method compared to simu-
lations with job grouping method.

Without grouping, a simulation from 25 to 150 gri-
dlets yields a massive increase of 489% in Total_Pro-
cess_Time (TPT), whereas simulation with grouping yi-
elds only 233.15% rise in terms of in TPT. As the num-
ber of gridlets grows, the TPT increases linearly for
simulation without job grouping since total communi-
cation time increased with number of gridlets.

In simulation with grouping, the communication time
remains constant and major contribution to the TPT co-
mes from gridlet computation time at the resources. With
150 gridlets, six gridlet groups are created. Here, 28.3%
of the TPT is spent for communication purpose, whereas
in simulation without grouping, 55.4% of TPT is spent
for the same communication purpose.

Figure 4: Simulation Time Taken for with and without Job Grouping.

The time each gridlet spends at the grid resource is
taken into consideration for computing the total Pro-

Table 3: Processing load at grid resources for different granularity
time.

GT Resources
R1 R2 R3 R4 R5 R6 R7 R8 R9

10 193 202 587 295 1194
15 251 346 57 1308
20 387 754 1181 153
25 451 953 1072
30 512 1964

cess_Cost. In simulation with job grouping, only a small
number of gridlets (gridlet groups) are sent to each re-
source and therefore, the amount of total overhead time
is reduced. When processing 25 gridlets individually
at the grid resource, the total Process_Cost comes up
to 5522 units, whereas simulation with job grouping re-
duces this cost to 1079 units. Figure 5 depicts the results
gained from simulation carried out on varying length of
gridlets having average MI of 10 with a granularity size
of 5 seconds.

Figure 5: Processing Cost for Simulation with and without Job
Grouping.

5.2 Experiment 2: Simulation with Job grouping
for different Granularity time

Simulations are conducted using different granularity
sizes to examine the total time and cost taken to execute
gridlets on the grid. Table 3 shows the processing load
at each grid resources when simulations are carried out
on 50 gridlets having an average length of 50 MI using
different granularity sizes.

When granularity size is 10 seconds, 5 job groups
are created (from 50 user jobs) and resource computes
job groups of almost balanced MI. Since the gridlet
computations at the grid resources are done in parallel
and each resource has less processing load (balanced
gridlet MI), all the gridlet groups can be computed ra-
pidly, in 170 seconds. In the case of granularity size of
15 seconds, four gridlet groups are created and 66.67%

of the total gridlet MI is scheduled to be computed at re-
source R9 since it can support up to 1800 MI. Average
gridlet MI percentage at the other resources is 33.7%.
Therefore, R9 spent more time in computing the gridlet
group which leads to higher TPT.

In terms of Process_Cost, the resulting cost highly
depends on the cost per second located at each resource
and total gridlet MI assigned to each resource. In the
simulations, cost per second of using resource R3 (300
units) and R6 (400 units) are more than the other re-
sources. Therefore, involving these resources in gri-
dlet computation will increase the total Process_Cost.
When the granularity size is 20 seconds, assigning a
large number gridlet MI (1181 MI) to R6 results in high
total Process_Cost of 47947 units.

From the experiments, it is clear that job grouping
method decreases the total processing time and cost.
However, assigning a large number of gridlet MI to one
particular resource will increase the total processing time
and cost. Therefore, during the job grouping activity,
a balanced relationship should be determined between
total number of groups to be created from job grouping
method, resources cost per second, and MI distribution
among the selected resources. For this purpose PSO is
used.

5.3 Experiment 3: Processing gridlets within the
Granularity time

The scheduler is tested using different number of re-
sources and granularity time to find out the total number
of grouped gridlets that can be processed successfully
within a particular granularity time. Figure 6 shows
the number of gridlets completed (out of 150 gridlets)
within the granularity time where each gridlet have an
average length of 200 MI. MI deviation percentage is
10gridlet overhead processing time is 2 seconds. All
the 150 gridlets are completed at a granularity time of
65.

5.4 Experiment 4: Simulation of gridlet grouping
using PSO based resource assignment

Table 4 shows the load at the resources when PSO based
resource selection is used for different number of gri-
dlets with an average length of 15 MI and a deviation of
10%. Granularity size is taken as 10 seconds and over-
head time is 1 second. Table 5 shows the load at the
resources when resources are selected randomly under
the same condition.

From the table it is clear that when PSO based ap-
proach is used for resource assignment, load is balanced
at all the resources. Hence task scheduling algorithm

Figure 6: Number of gridlets completed in different granularity time.

Table 4: Load at resources when PSO approach is used.
GT Resources

R1 R2 R3 R4 R5 R6 R7 R8 R9
25 45.39 44.05 44.78 27.68 28.66 44.13 43.29 45.31 46.55
50 92.00 86.02 89.63 77.68 75.88 86.23 73.67 70.58 90.90
75 133.27 135.94 117.33 120.77 120.10 117.37 117.42 121.29 134.79

100 183.43 159.78 159.36 165.64 169.94 162.74 170.29 163.13 161.74

based on PSO algorithm can be used in the computa-
tional grid environment.

5.5 Experiment 5: Comparison of Resource utiliza-
tion of PSO vs. randomly selected resources

Figure 8 shows the load at the resources when resources
are selected randomly and PSO is used for 100 gridlets
with an average length of 15 MI and a deviation of 10%.
Granularity size is taken as 10 seconds and overhead
time is 1 second. When PSO based approach is used,
all the resources have almost equal load. Since all the
available resources are used, the communication over-
head may be increased. Hence parallel transfer of job
groups to resources is required. But the time taken for
actual processing at each resource is reduced very much
when compared with random selection of resources.

Figure 7: Resource Utilization Graph for 100 Gridlets.

Figure ?? shows the percentage of resource utiliza-
tion when gridlets are given to resources selected ran-

Table 5: Load at the resources when resources are selected randomly.
GT Resources

R1 R2 R3 R4 R5 R6 R7 R8 R9
25 189 182
50 194 383 166
75 195 226 208 490

100 196 376 495 420

domly vs. PSO approach. Percentage of resource uti-
lization depends on the capability of the resources. Only
four resources â R1 (98.2%), R3 (96.4%), R5 (98.98%)
and R9 (35.72%) are used when resources are selected
randomly. R1, R3 and R5 are utilized fully. Here the
standard deviation of percentage of utilization of re-
sources is 31.09. The standard deviation is a measure
of how widely values are dispersed from the average
value. When PSO based approach is used, all the re-
sources have equal load. Here the standard deviation is
24.95.

Figure 8: Percentage of Utilization of Resources for PSO vs. Ran-
dom selection of Resources.

6 Conclusion

Grid system is a hot topic in distributed systems re-
search at this moment. If fine grained jobs are assigned
to grid resources which have high computing capabil-
ity the computation-communication ratio becomes low.
So gridlet grouping method where large numbers of gri-
dlets are grouped into a few gridlet groups and sent to
the Grid resources is used. Gridlet grouping reduces
the transition time of each gridlet to the resource, and
the overhead processing time of each gridlet at the re-
source. The proposed framework gives improved per-
formance and better job scheduling compared to a non-
grouping job scheduling framework. Resource selec-
tion based on PSO is used to generate an optimal bal-

anced schedule so as to complete the tasks in a mini-
mum time and to utilize the resources efficiently. From
the simulated experiment, it was found that the PSO
based resource selection enables load balancing. Sim-
ulation results demonstrate that PSO algorithm can get
better effect for a large scale optimization problem.

7 References

[1] Baker.M, Buyya.R, Laforenza.D, Grids and Grid Te-
chnologies for Wide-area Distributed Computing, Soft-
ware-Practice and Experience, Vol 32, No.15, p.1437-
1466, 2002.

[2] James.H.A, Hawick. K.A and Coddington. P.D,
Scheduling Independent Tasks on Metacomputing Sys-
tems, in Proc of Parallel and Distributed Computing
Systems , p. 156-162, 1999.

[3] Gerasoulis A and Yang T, A Comparison of Clus-
tering Heuristics for Scheduling Directed Graphs on Mul-
tiprocessors, Journal of Parallel and Distributed Com-
puting, Vol 16, No. 4, p. 276-291, 1992.

[4] Radulescu A. and van Gemund A, A Low-Cost
Scheduling Algorithm for Distributed-Memory Archi-
tectures, Proc. of the Fifth International Conference on
High Performance Computing, Madras, India, p. 294-
301, IEEE Press, 1998.

[5] Buyya, R., Date, S., Miizuno-Matsumoto, Y.,
Venogopal, S. and Abramson, D., Neuroscience Instru-
mentation and Distributed Analysis of Brain Activity
Data: A case for eScience on Global Grids, Journal
of Concurrency and Computation: Practice and Expe-
rience. Vol 17, No. 15, p.1783-1798, 2004.

[6] Muthuvelu. N, Liu. J, Lin Soe. N, Venugopal.
S, Sulistio. A and Buyya. R, A Dynamic Job Grouping-
Based Scheduling for Deploying Applications with Fine-
Grained Tasks on Global Grids, in Proc of Australasian
Workshop on Grid Computing and e-Research, p. 41-
48, 2005.

[7] Ng. W. K, Ang. T. F, Ling. T. C, and Liew.
C. S, Scheduling Framework for Bandwidth-Aware Job
Grouping-based Scheduling in Grid Computing, Ma-
laysian Journal of Computer Science, Vol. 19, p.117-
126, 2006.

[8] Stokes. J. H, Behind the benchmarks: SPEC,
GFLOPS, MIPS et al., [Online Doc] Jun. 2000,

http://arstechnica.com/cpu/2q99/benchmarking-2.html

[9] Nithiapidary Muthuvelu, Ian Chai and Eswaran.
C, 2008, An Adaptive and Parameterized Job Grouping
Algorithm for Scheduling Grid Jobs, in ICACT 2008,
Feb. 17-20, p. 975 â 980, 2008.

[10] Ian Foster and Carl Kesselman eds., The Grid:
Blueprint for a New Computing Infrastructure, 2nd ed.,
Morgan Kaufmann Publishers, 2004.

[11] Abraham. A, Buyya. R and Nath. B, Nature’s
Heuristics for Scheduling Jobs on Computational Grids,
The 8th IEEE International Conference on Advanced
Computing and Communications, Cochin, India, p. 45-
52, December 2000.

[12] Braun. R, Siegel. H, Beck. N, Boloni. L, Ma-
heswaran. M, Reuther. A, Robertson. J, Theys. M,
Yao. B, Hensgen. D and Freund. R, A Comparison
of Eleven Static Heuristics for Mapping a Class of In-
dependent Tasks onto Heterogeneous Distributed Com-
puting Systems, in J. of Parallel and Distributed Com-
puting, Vol.61, No. 6, p. 810- 837, 2001.

[13] Schute. J. F and Groenwold. A. A, A Study of
Global Optimization using Particle Swarms, Journal of
Global Optimization, Kluwer Academic Publisher, Vol
31, p. 93- 108, 2005.

[14] Lei Zhang, Yuehui Chen and Bo Yang, Task
Scheduling Based on PSO Algorithm in Computational
Grid, Proceedings of the Sixth International Conference
on Intelligent Systems Design and Applications (ISDA
2006).

[15] Tasgetiren. M. F, Sevkli. M, Liang. Y. C, Gen-
cyilmaz. G, Particle Swarm Optimization Algorithm
for Single-Machine Total Weighted Tardiness Problem,
Congress on Evolutionary Computation, Portland, Ore-
gan, USA, CEC 2004.

[16] Rajkumar Buyya, and Manzur Murshed, Grid-
Sim: A Toolkit for the Modeling, and Simulation of
Distributed Resource Management, and Scheduling for
Grid Computing, The Journal of Concurrency, and Com-
putation: Practice, and Experience , Vol 14, Issue 13-
15, Wiley Press, USA, p.1175-1220, 2002.

