
Software Quality achieved through Coverage Metrics in Database
Testing

MS.A.ASKARUNISA 1

MS.P PRAMEELA 2

DR.N.RAMARAJ 3

Thiagarajar College of Engineering, Madurai
Thiagarajar College of Engineering, Madurai

GKM Engineering College, Chennai
1(aacse)@tce.edu

2(prameela)@tce.edu
3nishanazer@yahoo.com

Abstract. Code coverage is often defined as a measure of the degree to which the source code of a
program has been tested. Various metrics for measuring code coverage exist.The number of defects is
an important measure of software quality which is widely used in industry. Software test coverage tools
can easily and accurately measure the extent to which the software has been exercised .Both testing
time and test coverage can be used as measures to model the defect finding process. However test
coverage is a more direct measure of test effectiveness and can be expected to correlate better with the
number of defects found.In majority of software applications,Database systems play an important role.
In literature there is good amount of work done in testing database applications [3, 5, and 6]. The levels
of quality, maintainability, testability,and stability of software can be improved by performing measures
of the testing process and calculating its metrics. In most of the applications coverage metrics plays
a major role in predicting the quality of the software.The accuracy of database testing is improved by
calculating the coverage percentage of the frequently used SELECT statements.This paper proposes two
algorithms for measuring coverage of the SQL queries. An analysis of the two algorithms also performed
as to which metric is better so that it would help the test manager to take effective decisions.Our work in
this paper details on importance of coverage metrics required to achieve quality of a database application
and presents the various coverage metrics that are used for achieving the testing efficiency of a database
application. We have considered six different database applications and calculated the various coverage
metrics thereby achieving quality and efficiency in testing.

Keywords: Software Metrics, Database Testing, Test Cases, Coverage Tree, Command form metrics

(Received April 01, 2009 / Accepted July 04, 2009)

1 Introduction

Testing determines the validity of the computer
solution to a business problem. Testing is used as the
demonstration of the validity of the software at each
stage in the system development life cycle. Database
systems have major important and wide popularity among
the worlds software industry. As a result they are be-

coming very complex.
Measurement plays a critical role in effective software
development. It provides the scientific basis for soft-
ware engineering to become a true engineering disci-
pline. As the discipline has been progressing toward
maturity, the importance of measurement has been gain-
ing acceptance and recognition. The increase in both

(aacse)@tce.edu
(prameela)@tce.edu
nishanazer@yahoo.com

application complexity and reliability expectation has
contributed to great demands on software testing activ-
ities. Efficient and effective software testing is crucial
within the software development and maintenance cy-
cle. In Database testing metrics provide information
to support a quantitative managerial decision-making.
Among the various metrics like cost, execution time, re-
liability, complexity etc., Coverage metric is considered
as the most important metric often used in software in-
dustries for testing [7]. Coverage analysis helps in the
testing process by finding the areas of a database not
exercised by a set of test cases, creating additional test
cases to increase coverage, and determine the quanti-
tative measure of the database. This metric indirectly
helps in measuring the quality of the test process. The
test manager uses this coverage metric in making deci-
sions while selecting test cases for testing of the soft-
ware . To ease the job of the database test manager
and to achieve quality in testing databases, this paper
proposes two algorithms that calculate the coverage of
the database SELECT queries. An analysis between the
two metrics is also performed and results obtained give
an idea of which metrics would be better to the test man-
ager.
In section2 review of the related work in database test-
ing is detailed. Section3 describes the testing a database
application. In section4 describes the measurement of
coverage. Section5 details the implementation of cov-
erage metric in testing database applications. Section6
described the conclusion and future work.

2 Related Work

In [1], Yuetang Deng et. al. has performed
testing of database applications In their work, in order
to check a state constraint that is not enforced by the
DBMS, a tool named AGENDA (A (test) GENerator
for Database Applications)creates temporary tables to
store the relevant data and converts the assertion into a
check constraint at attribute/row level on the temporary
tables. In particular, constraints involving aggregation
functions, constraints involving multiple tables, and dy-
namic constraints involving multiple database states are
transformed into simpler constraints on temporary ta-
bles, and code to automatically insert relevant values
into the temporary tables is generated and executed .

As an extension, in [2] , Eric Tang, Phyl-
lis G. Frankl, Yuetang Deng extended AGENDA to aid
in testing database applications. In addition to the tools
that AGENDA currently had three additional tools were
made to enhance testing and feedback [2]. They are the
log analyzer, attribute analyzer, and query coverage.

In [3] , Gregory M. Kapfhammer, Mary
Lou Soffa’s work, a family of test adequacy criteria
are used to assess the quality of test suites for database
driven applications [3]. A unique representation of a
database-driven application that facilitates the enumera-
tion of database interaction associations was developed.
These associations can reflect an application’s defini-
tion and use of database entities at multiple levels of
granularity.

In [5], dataflow and control flow analysis
and the dependences between components of a database
application were used to determine the components that
should be tested when any change was produced and to
minimize the set of test cases during regression testing,
but its aim was not to design test cases.In [9], an auto-
mated tool that provides the measurement of the cover-
age of SQL queries is presented.In [8], an analysis that
computes the corresponding testing requirements and
an efficient technique for measuring coverage of these
requirements is detailed.

Our work in this paper details on impor-
tance of coverage metrics required to achieve quality of
a database application and presents the various cover-
age metrics that are used for achieving the testing effi-
ciency of a database application. We have considered
six different database applications and calculated the
various coverage metrics thereby achieving quality and
efficiency in testing.

3 Testing a Database Application

A statement of Structured Query Language(SQL) a
powerful declarative query language, is embedded in
programs written in any general-purpose language. This
is referred to as the host language [5].

In most of the applications, queries and modifi-
cations of data are written as the embedded SQL state-
ments. Other functionality like interacting with users
and sending results to a graphical user interface is writ-
ten in GPL (General Purpose Language). In this paper,
we concentrate on testing this database application only
and not the host language. Testing of database applica-
tions is different from the testing of structural programs
like C, C++, java etc. [6].

The inputs for database applications involve both
the user inputs and the database instances. In addition
to checking the outcome with the expected result, pro-

grammers or testers should also check if the database
is consistent and reflects the original environments dur-
ing database application testing [4]. The steps involved
in database application testing are the problems of Test
Cases Generation, Test Data Preparation, and Test Exe-
cution and Output Verification. The tests should cover
all the query situations and avoid producing undesired
results so as to obtain their maximum possible cover-
age.
Problem Statement

The main aim of the paper is to:

• Define a measurement of coverage of SQL SE-
LECT queries in relation to a database loaded with
test data that can be used as an adequacy criterion
to carrying out the testing of applications with ac-
cess to databases.

• Present algorithms that calculate the coverage in
order to help the software tester/manager.

• Extract a subset of database information that al-
lows the obtainment of at least the same result as
the original set for the established adequacy crite-
rion

4 Software Metrics

Software metrics is defined as the current state
of art in the measurement of software products and pro-
cess [13].Measurement is the process by which num-
bers or symbols are assigned to attributes of entities in
the real world in such a way as to describe them ac-
cording to clearly defined unambiguous rules. Metrics
strongly support software project management activi-
ties mainly test management. They relate to the four
functions of management as follows:

1. Planning - Metrics serve as a basis of cost esti-
mating, training planning, and resource planning,
scheduling, and budgeting.

2. Organizing - Size and schedule metrics influence a
project’s organization.

3. Controlling - Metrics are used to status and track
software development activities for compliance to
plans.

4. Improving - Metrics are used as a tool for process
improvement and to identify where improvement
efforts should be concentrated and measure the ef-
fects of process improvement efforts.

4.1 Importance of Metrics

Deriving metrics in every phase of the SDLC has a
major importance through out the life cycle of Software
for management, Managers, Developers and Customers
[14].

4.1.1 Metrics in Project Management

1. Metrics make the project’s status visible.Managers
can measure progress to discover if a project is on
schedule or not.

2. Metrics focus on activity. Workers respond to ob-
jectives, and metrics provide a direct objective for
improvement.

3. Metrics help to set realistic expectations. By as-
sisting in estimation of the time and resources re-
quired for a project,metrics help managers set achiev-
able targets.

4. Metrics lay the foundations for long-term improve-
ment. By keeping records of what happens on var-
ious projects, the beneficial activities can be iden-
tified and encouraged, while the detrimental ones
are rejected.

5. Metrics also help the management in reducing var-
ious resources namely people, time and cost in ev-
ery phase of SDLC.

4.1.2 Metrics in Decision Making Metrics will
not drive a return on investment unless managers use
them for decision making. Some decisions in which
software metrics can play a role include

• Product readiness to ship/deploy,

• Cost and schedule for a custom project,

• How much contingency to include in cost and sched-
ule estimates?

• Where to invest for the biggest payback in process
improvement, and

• When to begin user training.

Managers should demand supporting metrics data
before making decisions such as these. For example,
they can use fault-arrival-and-close-rate data when de-
ciding readiness to deploy. Knowing the Overall project
risk through metrics can help managers decide how much
contingency to include in cost and schedule estimates.

4.2 Procedural (Traditional) Software Metrics

Support decision making by management and en-
hance return on the IT investment [15]. Once business
goals have been identified, the next step is to select met-
rics that support them. Various types of Metrics [16]
found in literature are:

Lines of Code namely Total Lines of Count(TLOC),
Executable Lines of Count (ELOC),Comment Lines of
Count (CLOC)

Hallstead’s Metrics namelyProgram Length (N),
Program Volume(V),Effort to Implement(E),Time to Im-
plement (T),Number of Delivered Bugs (B).

Function point (FP) [17] is a metric that may be ap-
plied independent of a specific programming language,
in fact, it can be determined in the design stage prior to
the commencement of writing the program.

4.3 Object Oriented Metrics:

The most commonly cited software metrics to
be computed for software with an object-oriented de-
sign are those proposed by Chidamber and Kemerer
[17],[18]. Their suite of metrics consists of the fol-
lowing metrics: weighted methods per class, depth of
inheritance tree, number of children, coupling between
object classes, response for a class, and lack of cohesion
in methods.

4.4 Coverage Metrics:

To measure how well the program is exercised
by a test suite, coverage metrics are used. [14, 15] There
exists a number of coverage metrics in literature. Fol-
lowing are descriptions of some types of coverage met-
rics.

Statement Coverage
This metric is defined as"The percentage

of executable statements in a component that have been
exercised by a test case suite."

Branch Coverage
This metric is defined as"The percentage

of branches in a component that have been exercised by
a test suite."

Loop Coverage
This metric is defined as"The percentage

of loops in a component that have been exercised by a

test suite."

Decision Coverage
This metric is defined as"The percentage

of Boolean expressions in a component that have been
exercised by a test suite." [19]

Condition Coverage
This metric is defined as"The percentage of

decisions in a component that have been exercised by a
test suite." [20]

Function Coverage
This metric is defined as"The percentage of

functions in a component that have been exercised by a
test suite."

Path Coverage
This metric is defined in [10] as"The per-

centage of paths in a component that have been exer-
cised by a test suite."

5 Coverage Measurement for a Database

Various coverage’s mentioned in section 4 are
mostly applicable to software programs written in high
level languages. These coverage metrics cannot be cal-
culated for database applications. Hence there is a re-
quirement of other new metrics exclusively for databases.

The approach proposed in this paper is to
establish a way of measuring the coverage of an SQL
query based on the coverage concept whereby the con-
ditions take into account the true and false values during
the explorations of their different combinations.

This paper proposes two algorithms that cal-
culate the metrics exclusively for database applications
viz. Coverage tree and command form. We have con-
ducted experimental analysis in comparing the two cov-
erage metrics for various database applications A database
application contains many queries viz. DDL (Data defi-
nition language),DML (data Manipulation Language)
statements and the various SELECT queries. In our
work, we have concentrated only on testing and find-
ing coverage’s for SELECT queries.
The BNF notation for a SELECT query is as shown in
Figure 1

5.1 Coverage Tree Metric

The algorithm to calculate the coverage tree
metric, searches for SQL query situations covered with

Figure 1: Simplified BNF grammar of SELECT query

the data stored in the database. It evaluates the condi-
tions of SELECT queries that are in the FROM clause,
when they include JOIN, and in the WHERE clause.
Moreover, the null values will be verified the same time
as the conditions are evaluated. The flow of coverage
algorithm is shown in Figure2.

In Figure 2, from the tables present in the
database, SELECT queries are generated based on the
reports required by the Test Manager. The SELECT
queries are issued to the condition evaluation block where
the conditions are evaluated based on the number of

Figure 2: Flow of Coverage Tree Algorithm

conditions and the coverage tree constructed. The cov-
erage percentages of the SELECT queries are calcu-
lated by the coverage percentage evaluation block.

The output obtained by the process is
The percentage of coverage of the SELECT

query is determined using the coverage tree, achieving
100% coverage if all possible situations have been ver-
ified at a particular time.

5.1.1Condition Evaluation
Conditions are evaluated between sets of

values, where the information in each field corresponds
to a column from a table and several rows in the database
as shown in Figure3 than between a single pair of val-
ues.

Figure 3: Operation between values of two fields.

5.1.2 Coverage Tree construction

A tree structure, called Coverage Tree (CT),
is created prior to coverage evaluation, in which each
level represents a condition of the query beginning with
the conditions of the JOIN clause, if it exists, and then
with those of the WHERE clause, in the same order in
which they are found in the query. The node structure
of the coverage tree is shown in below Fig 4.

Figure 4: Structure of node in a Coverage Tree

NL NB NR FL T FR

Where:

NL - NULL LEFT
NR - NULL RIGHT
NB - NULL BOTH
FL - FALSE LEFT

FR - FALSE RIGHT
T - TREE NODE

The condition evaluation is as follows:

• A condition will be true if it is verified for a pair
of values from the fields to compare. It is the same
result if the condition is evaluated from left to right
or from right to left.

• A condition will be false from left to right, Fl,
if none of the values from the second field veri-
fies the condition with a value from the first field.
While there are values from the second field for
comparing and the condition remains false, the eval-
uation is considered temporarily NOT true, because
it is not true, although it is not yet known whether
it is false.

• A condition will be false from right to left, Fr,
if none of the values from the first field verifies
the condition with a value from the second. As
in the previous case, while there are values from
the first field for comparing and the condition re-
mains false, the evaluation is considered temporar-
ily NOT true.

• A condition will have null values when a value
from the first field is null, Nl, when a value from
the second field is null, Nr, or when both values,
from the first and second fields, are null, Nb.

5.1.3 Coverage evaluation from coverage Tree
The complete evaluation of the query is car-

ried out by crossing over the tuples of the tables that
participate in the conditions at each level of the cover-
age tree. The evaluation finishes when the entire tree
has been covered, i.e. 100% coverage has been cov-
ered, or when there are no more values for comparing.
For each particular node, the condition is evaluated for
a tuples from the first field and another from the second,
and:

• If the result is true, these tuples are fixed in order
to evaluate the conditions of the lower levels of the
tree via the T branch.

• If the result is false from left to right, only the tu-
ples from the first field is fixed and, if it is false
from right to left, the tuples from the second field
is fixed, in order to evaluate the lower levels of the
tree, via the branch at which the condition is false,
Fl or Fr respectively.

From the evaluation the coverage measures
are established and automatically calculated based on
Theoretical coverage.

Figure 5: Sample Coverage Tree

Theoretical coverage:

This coverage takes into account all possi-
ble values present in every node of the coverage tree.

The percentage of theoretical coverage is
calculated using the formula shown in equation (3).

V: number of cases (elements of a node) that it has been
possible to verify (those marked with Y).
s: number of child-nodes that a node can have.
P: number of possible values that a condition can adopt
once it is evaluated, which in the coverage measurement
presented here will have six values (Nl, Nr, Nb, T, Fl,
Fr).
n: number of levels of the coverage tree; i.e. the num-
ber of conditions in the query

The application of the above SQL coverage
measurement is described below with a real database
and an SQL query. We have used three databases namely
Employee(EMP), Department(DEPT) and Location. The
tables corresponding to the entities and their primary
keys (PK) are shown in Figure6. The field "empid" of
the tables "dept" and "location" should be a foreign key
of the identically named field in the table "emp". More-
over, as it is not mandatory for location to stay in a dept,
the field "depid" of the table "location" can be null, but
the empid of location will always be not null.

For coverage implementation, we have con-
sidered the query as shown in Figure7. It obtains in-
formation about all Employees and their respective De-
partment, if any, and the Location that are working in

Figure 6: Tables, primary keys and possible null fields.

the organization at a particular moment.
It seems adequate to use two "LEFT JOIN"

Figure 7: SELECT query for emp, dept and location.

clauses: one for the tables "emp" and "dept", so that
all emp are obtained with or without dept and another
for "dept" and "location", with the goal of obtaining all
dept, with or without location.

From these tables, the coverage tree for
the SELECT query using the coverage algorithm. The
coverage tree is shown in Figure8. The first

Figure 8: Coverage Tree for Select Query.

level node creation of the algorithm uses the two table’s
EMP and DEPT. It checks for the first condition creates
the first node using the algorithm as given in section
5.1.3. For each value of T, FL, and FR it creates again
nodes with the first condition result table and location
table. The level of the tree depends on the number of
condition in the query., as a result we have three levels.
The coverage percentage of the query is calculated by
the equation (3) using the coverage tree.
Similarly we have calculated the coverage’s for various
SELECT statements with different conditions and the
results given in TABLE 1.From the TABLE it is clear
that the coverage percentage for select queries for three
conditions is 17.94%, for two conditions is25% and for

one condition is 50% when three different tables are
considered.

5.2 Command Form Algorithm

The second approach we have considered in
calculating the coverage metrics is through command
form algorithm. The command form algorithm

Table 1: Calculated Coverage Percentage by Coverage Tree

Tables Conditioninthequery CoveragePercentage
bycoveragetree

One One 50.0
One Two 25.0

Three One 2.56
Three two 7.79
Three Three 17.94

searches for SQL query situations covered with the data
stored in the database. Evaluates the conditions of SE-
LECT queries that are in the FROM clause, when they
include JOIN, and in the WHERE clause. Moreover,
the null values will be verified at the same time as the
conditions are evaluated. The flow of coverage algo-
rithm is shown in Figure9.

From the tables present in the database, se-
lect queries are generated based on the reports required
by the test manager. The select queries are issued to the
command form generation block where the conditions
are evaluated and the command form constructed. This
coverage information is used to calculate the coverage
percentages of the select queries.
5.2.1 Command Form

Figure 9: Flow of Command form Algorithm

The main challenge when generating com-
mand forms is the accurate identification of the pos-
sible SQL commands that could be issued at a given
database interaction point. The set of testing require-
ments for Command form coverage consists of all the
command forms for the database interaction points in
the application under test. The main goal is to exer-
cise the interactions between an application and its un-

derlying database. Command forms represent a model
of the database application at the right level of abstrac-
tion. They model all the possible commands that the
application can generate and execute on the database.
Therefore, the number of command forms exercised by
a test suite is likely to be a good indicator of the thor-
oughness of the testing of the interactions between the
application and its database. The command form for the
sample query:

SELECT * FROM EMP WHERE empid=10;
is shown in Figure10.

Figure 10: Command form for the sample select query

We have developed an automated tool that generates the
command form for any given sql query and also calcu-
lates the command form coverage metric.

5.2.2 Coverage evaluation from Command Form
To measure the adequacy of a test suite with

respect to our coverage criterion, we monitor the execu-
tion of the application and determine which command
forms are exercised. We consider a command form as-
sociated with a database interaction point to be cov-
ered if, during execution, an SQL command that cor-
responds to the command form is issued at that point.
The algorithm for calculating command form coverage
is as follows. The coverage information is collected by
inserting a call to a monitor immediately before each
database interaction point. At runtime, the monitor is
invoked with two parameters: the string that contains
the actual SQL command to be executed and a unique
identifier for the interaction point. First, the monitor
parses the command string into a sequence of SQL to-
kens. Second, using the interaction point’s identifier, it
retrieves the corresponding SQL command form model.
To find which command form corresponds to the com-
mand string, the monitor traverses the model by match-
ing SQL tokens and transition labels until it reaches an
accepting state. At the end of the traversal, the path
followed corresponds to the command form covered by
the command string, and the ID of the command form is
given by the sum of the edge values associated with the
transitions in the traversed path. At this point, the mon-
itor adds to the set of coverage data a pair consisting of
the ID of the covered command form and the ID of the

database interaction point. Given a set of coverage data,
the database command form coverage measure can be
expressed as in equation (4).

The number of command forms covered

is simply the number of unique entries in the cover-
age data. The total number of command forms is given
by the sum of each database interaction point’s maxi-
mum command form ID. All command form IDs that
do not appear in the coverage data correspond to com-
mand forms that were not covered during testing. Given
an ID, we can easily reconstruct the string representa-
tion of the corresponding command form and show it to
the testers. For the tables shown in Figure6 and the SE-
LECT query shown in Figure7, the command form cov-
erage is as shown in Figure11.The command form cre-
ation for the database considers two tables - employee
and department. It takes into account the first condi-
tion present in the SELECT query and continues with
second, third conditions and so on.

Figure 11: Command Form for Select Query

The coverage percentage is then calculated
using equation (4) by counting the number of command
forms covered for the select queries. TABLE 2 details
some command form coverage’s calculation for various
SELECT queries with three, two and one condition.

From the TABLE 2 it is clear that the cover-
age percentage for select queries for three conditions is
68.42%, for two conditions is 69.23% and for one con-
dition is 71.42% when three different tables are consid-
ered.

Table 2: Calculated Coverage Percentage by Command form

Tables Conditioninthequery Coverage
ByCommandForm

One One 78.11
One Two 77.64

Three One 71.42
Three two 69.29
Three Three 68.42

6 Experimental Databases used for Coverage
Metrics Computation

For experimental purpose we have considered
four databases created by the under graduate students
and two database from UCI Machine Learning Repos-
itory [http://archive.ics.uci.edu/ml/].The details of the
above databases are shown in TABLE 3 as follows.

In TABLE 3, for testing the various databases

Table 3: Details of the Databases

DB A R P F SQ Size
Application K K (KB)

Census(UCI) 14 682 4 2 25 62
Employee 12 425 5 1 30 53

Department 10 321 3 1 15 46
Location 8 425 2 1 20 51

Tax 11 250 3 1 18 32
University 17 285 7 3 22 37

DataSet(UDS)

we have considered 15 testcases for department database
and 22 testcases from university dataset etc. For each
and every database, the testcases were executed using
the DbUnit tool. DbUnit is an open source Framework
created by Manuel Laflamme. This is a powerful tool
for simplifying Unit Testing of the database operations
[11]. It extends the popular JUnit test framework that
puts the database into a known state while the test exe-
cutes. This strategy helps to avoid the problem that can
occur when one test corrupts the database and causes
subsequent test to fail. DbUnit provides a very simple
XML based mechanism for loading the test data, in the
form of data set in XML file, before a test runs. More-
over the database can be placed back into its pre-test
state at the completion of the test [12].

7 Result Analysis

For calculating the various coverage metrics
like coverage tree and command form we have con-
sidered test cases (SELECT queries) which have con-
ditions based on one or more tables as shown in Fig-

Figure 12: Calculation of the Various Coverage Metrics

ure 12.From Figure 12 it is clear that as the number
of tables and the conditions in the SELECT queries in-
creases, the coverage percentage for both coverage tree
and command form gets decreased. For example con-
sidering testcase4, 5 which contains 1 table 1 condi-
tion,has a coverage tree percentage of 49.61%, 45.66%
and command form percentage of 82.56%, 79.45% re-
spectively.For testcase23,24 which has 2 Figure 12 con-
ditions, the percentages is reduced to 21.69%,24.87%
and 68.22%,69.63% respectively. The results of two

Figure 13: Performance analysis of two Coverage algorithms

Coverage algorithms namely coverage tree and com-
mand form were analyzed for different kinds of select
statements with varying tables and conditions as shown
in TABLE4 and the graphical representation in Fig 12.

8 Conclusion and Future Enhancement

Well-designed metrics with documented ob-
jectives can help an organization obtain the informa-
tion it needs to continue to improve its software prod-
ucts, processes, and services while maintaining a focus
on what is important.In this paper we have evaluated
the two coverage algorithms namely coverage tree and
command form for database applications and from the
analysis it is clear that the coverage percentage calcu-
lated using command form is better than the coverage
tree algorithm. Thus for database testing these cover-
age metrics may help the test manager to calculate the
effectiveness of the various test cases there by achieving
quality in the testing process.This work can be extended
by calculating the coverage for other DML statements
for database applications. In order to attain the better
accuracy of testing, use of SQL mutation operators for
SQL queries that covers a wide range of the SQL syntax
and semantics can be computed.

9 References

[1] Yuetang Deng, Phyllis Frankl, David Chays.
Testing Database Transactions with AGENDA. ICSE’05,
May 15-21, 2005, St. Louis, Missouri, USA.2005 ACM.

[2] Eric Tang,Phyllis G. Frankl,Yuetang Deng, Test
Coverage Tools for Database Applications. Proceed-
ings of MASPLAS’06 Mid Atlantic Student Workshop
on Programming Languages and Systems Rutgers Uni-
versity, April 29, 2006.

[3] Gregory M. Kapfhammer, Mary Lou Soffa. A
Family of Test Adequacy Criteria for Database-Driven
Applications. ESEC/FSE’03, September 1-5, 2003,
Helsinki, Finland.2003 ACM .

[4] Daou, B., Haraty, R.A. and Mansour, N. Re-
gression testing of database applications. Symposium
of Applied Computing.ACM. 2001

[5] M.Y.Chan and S.C.Cheung, Testing Database Ap-
plications with SQL Semantics,Proceedings of 2nd In-
ternational Symposium on Cooperative Database Sys-
tems for Advanced Applications(codas’99), March 1999,pp.
363-374.

[6] W.K. Chan, S.C. Cheung and T.H. Tse, "Fault-
Based Testing of Database Application Programs with
Conceptual Data Model", Proceedings of the 5th Inter-
national Conference on Quality Software, 2005.IEEE

[7] Zhu, H., Hall, P. A. V., May, J. H. R. Software
Unit Test Coverage and Adequacy. ACM Computing
Surveys, 49(4) 366-427. 1997

[8] William G.J. Halfond and Alessandro Orso.
Command-Form Coverage for Testing Database Appli-
cations. 21st IEEE International Conference on Auto-
mated Software Engineering (ASE’06) 2006 IEEE

[9] María José, Suárez-Cabal and Javier Tuya,
Using an SQL coverage measurement for testing database
applications, ACM SIGSOFT Software Engineering Notes,
Volume 29, Issue 6, Pages: 253 262, November 2004.

[10] Woodward, M.R., Hedley, D. and Hennell, M.A.,
"Experience with Path Analysis and Testing of Programs",
IEEE Vol. SE-6, No. 3, pp. 278-286, May 1980

[11] www.dbunit.org

[12] www.sourceforge.net

[13] Norman E Fenton, Martin Neil, "Software Met-
rics: Roadmap".

[14] Qaiser Durrani, " Role of Software Metrics in
Software Engineering and Requirements Analysis ", 2005
IEEE

[15] Grady, R.B, Practical Software Metrics for Pro-
jectManagement and Process Improvement,1992.

[16] Roger S. Pressman, Software Engineering: A
Practitioner’s Approach

[17] Dekkers, C. Demystifying function points: Let’s
understand some terminology. IT Metrics Strategies,
Oct. 1998.

[18] Chidamber, S. R. and Kemerer, R. F. A metrics
suite for object-oriented design. IEEE Trans. Software
Eng. 20, 6 (June 1994), 476-493.

[19] John Joseph Chilenski and Steven P. Miller,
"Applicability of Modified Condition/Decision Cover-
age to Software Testing", Software Engineering Jour-
nal, Sept 1994, Vol. 9, No. 5, pp.193-2000.

[20] Howden, "Weak Mutation Testing and Com-
pleteness of Test Sets", IEEE Trans. Software Eng.,
Vol.SE-8, No.4, July 1982, pp.371-379

