A New Multi-Swarm Particle Swarm Optimization and Its
Application to Lennard-Jones Problem

KusuM DEEP!
MADHURI ARYAZ
SHASHI BARAK?

Department of Mathematics,
Indian Institute of Technology Roorkee,
Roorkee-247667, Uttarakhand, India
lkusumfma@iitr.ernet.in

2 (madhuriiitr, shashibarak)@gmail.com

Abstract. Particle swarm optimization (PSO) algorithm is a modern heuristic technique for global op-
timization. Due to its ease of implementation, excellent effectiveness, and few parameters to adjust it
has gained a lot of attention in the recent years. However, with the increasing size and computational
complexity of real life optimization problems it takes long solution times and the solution quality also
degrades, so there is a constant need to improve its effectiveness and robustness to find better solution
in the shortest possible computational time. Parallel computing is a possible way to fulfill this require-
ment. In this paper we propose a multi-swarm approach to parallelize PSO algorithm (MSPSO). The
performance of the proposed algorithm is evaluated using several well-known numerical test problems
taken from literature. Then, it is applied to the challenging problem of finding the minimum energy
configuration of a cluster of identical atoms interacting through the Lennard-Jones potential. Finding
the global minimum of this function is very difficult because of the presence of a large number of local
minima, which grows exponentially with molecule size. Computational results for clusters containing 8
and 9 atoms are obtained. The parallel algorithm shows significant speed-up without compromising the
accuracy, when compared to the sequential PSO.

Keywords: Lennard-Jones potential, Parallel Particle swarm optimization, Parallel Computing.

(Received March 04, 2010 / Accepted September 15, 2010)

Introduction

for large problem instances of some hard problems, (ii)

Particle Swarm optimization (PSO) is an efficient and
powerful population-based stochastic search technique
for solving global optimization problems, which has
been widely applied in many scientific and engineer-
ing fields. It is based on the social behavior metaphor
[8]. It is sometimes regarded as an alternative tool to
genetic algorithms (GAs) and other evolutionary algo-
rithms (EAs). Due to its robustness, efficiency and sim-
plicity PSO is becoming popular day by day. But just
like other population based meta-heuristics PSO suf-
fers from two difficulties: (i) falling into local optima

long execution times for time consuming objective func-
tions. Parallel computing can be used to overcome these
difficulties i.e., to accelerate the solution process and to
improve the exploration capability of PSO. Also PSO
algorithms are population based and so they are natu-
rally suited to parallel implementation. These observa-
tions lead us to consider a parallel version of the Parti-
cle Swarm optimization algorithm. However, the liter-
ature on parallel meta-heuristics shows that finding an
efficient parallel implementation of a sequential meta-
heuristic is not an easy task.

A New Multi-Swarm Particle Swarm Optimization and Its Application to Lennard-Jones Problem 53

With the growing popularity of PSO the researches
concerning its parallelization are also increasing. Gen-
erally meta-heuristics are parallelized for two main rea-
sons: (i) given a fixed time to search, the aim is to in-
crease the quality of the solutions found in that time; (ii)
given a fixed solution quality, the aim is to reduce the
time needed to find a solution not worse than that qual-
ity. In this paper we aim to achieve the second goal.
The strategies used in literature for the parallelization
of PSO can be divided into two main categories. First
are the master-slave parallelization strategies in which
a processor (the master) distributes particles of a sin-
gle swarm to many processors (slaves) for concurrent
fitness evaluation. Master-slave approach is most suit-
able whenever the fitness evaluations are significantly
computationally expensive. The second are the multi-
swarm parallelization strategies which aim to partition
the entire swarm into several sub swarms that are as-
signed to different processors and use some kind of in-
formation sharing among sub swarms.

A parallel version of PSO was first implemented
by Schutte et al. [13]. They used a coarse grained
master-slave parallelization approach. The implemen-
tation was based on a synchronous scheme. They re-
ported excellent parallel performance for problems in
which the individual fitness evaluations require same
amount of time. They concluded that for problems whe-
re the time required for each fitness evaluation varies
substantially, an asynchronous implementation may be
needed to maintain high parallel efficiency. The synchr-
onous approach leads to poor parallel speedup in cases
where a heterogeneous parallel environment is used and-
/or where the analysis time depends on the design point
being analyzed. Motivated by this Venter and Sobieski
[15] introduced a parallel asynchronous PSO (PAPSO)
and compared it with a parallel synchronous PSO (PSP-
SO). They reported that PAPSO significantly outper-
forms PSPSO in terms of parallel efficiency and gives
numerical accuracy comparable to that of PSPSO.

Koh et al. [11] also proposed a PAPSO and com-
pared it with PSPSO in homogeneous and heteroge-
neous computing environments. They reported that PA-
PSO gives excellent parallel performance when a large
number of processors is used and either (1) heterogene-
ity exists in the computational task or environment, or
(2) the computation-to-communication time ratio is rel-
atively small. Chu and Pan [4] presented a parallel ver-
sion of PSO (PPSO) together with three communica-
tion strategies that can be used according to indepen-
dence of the data. They showed the usefulness of PPSO
with their proposed communication strategies. Sahin et
al. [12] implemented the PPSO algorithm on a com-

puter cluster and studied the performance of the dis-
tributed PSO algorithm. Kim et al. [10] applied a par-
allel version of PSO based on coarse grained model
for the solution of optimal power flow problem. In
their model each subpopulation exchanges require in-
formation only between the adjacent subpopulations.
With each processor that could communicate with the
neighboring sub-populations, the best solution of each
processor was transferred to the neighboring proces-
sors. Waintraub et al. [16] proposed three PPSO mod-
els inspired by traditional parallel GA models and ap-
plied them to two complex and time consuming nu-
clear engineering problems. The master-slave, island
(ring topology) and cellular PPSO models were adapted
from PGA. They proposed another PPSO based on a
different approach. The idea was to use the concept
of neighborhood in PSO, to connect islands, avoiding
necessity of defining the “migration interval” parame-
ter. They called it Neighborhood-Island PPSO. In the
master-slave PPSO, the original PSO algorithm is not
modified and no improvement in solutions is obtained.
They found outstanding gains in terms of speedup of the
optimization processes, due to parallelism that occur
in all models. Due to the reduced amount of commu-
nication needed, island (with periodic migration) and
Neighborhood-Island models were demonstrated to be
fastest in all problems considered in their work.

The most common observation in the above-mentio-
ned real-world applications is the focus on speedup due
to parallel processing, which is also the aim of our pro-
posed approach. Our approach is new and different
from the approaches existing in the literature as it does
not use the information sharing strategy among the swa-
rms until some particular stage and after that stage too
it uses a different idea as described in the section 3 of
this paper. We present an implementation of our paral-
lelization scheme based on MPI (Message Passing In-
terface) [14]. MSPSO is simulated to test its efficiency
by solving some benchmark problems and the results
are analyzed. A real life problem namely Lennard-John
(L-J) problem is then considered to test the robustness
of the proposed method. As far as we are aware this
approach has never been used so far for the solution of
L-J problem.

2 Basic PSO

PSO is a relatively newer addition to the class of pop-
ulation based search techniques. The concept of PSO
was first suggested by Kennedy and Eberhart. Since its
development in 1995, PSO has become one of the most
promising optimization techniques for solving global
optimization problems. Social insects (e.g. birds, fish,

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

54 Deep, K. et al.

ants etc.) have high swarm intelligence [9]. The mech-
anism of PSO is inspired by social and cooperative be-
havior displayed by various species like birds, fish etc.
The PSO system consist of a population (swarm) of po-
tential solutions called particles. Each particle has an
associated fitness value. These particles move through
search space with a specified velocity in search of opti-
mal solution. Each particle maintains a memory which
helps it in keeping the track of the best position it has
achieved so far. This is called the particle’s personal
best position (pbest) and the best position the swarm
has achieved so far is called global best position (gbest).
PSO has two primary operators: Velocity update and
Position update. During each generation each particle
is accelerated towards the gbest and its own pbest. At
each iteration a new velocity value for each particle is
calculated according to the following velocity update
equation:

Vig = WViq + c171(Did — Tid) + c2r2(Pgd — Tia) (1)

The new velocity value is then used to calculate the next
position of the particle in the search space, according to
the following position update equation:

Tid = Tid + Vid)

This process is then iterated until some stopping crite-
rion is satisfied.

Here X; = (x;1,...,2;p) represents the position of
the ith particle in a D-dimensional search space, Pyest; =
(pi1y---,piD) 18 ith particle’s pbest position, Pypest =
(Pg1s- -+, xgp)is gbest position and V; = (v;1, ..., v;p)
is the velocity of i*" particle. The inertia component
serves as the memory of previous velocity, cognition
component tells about the personal experience of the
particle and the social component represents the coop-
eration among particles. Acceleration constants c;, ca
and inertia weight w are predefined by the user and 7
and 7, are the uniformly generated random numbers in
the range [0, 1].

In basic PSO search for global optimum solution
is accomplished by maintaining a dynamic balance be-
tween exploration and exploitation. Exploration is the
ability of an algorithm to explore different regions of
the search space in order to locate a good optimum. Ex-
ploitation, on the other hand, is the ability to concen-
trate the search around a promising region in order to
refine a candidate solution [6]. PSO optimally balances
these contradictory objectives by the use of velocity up-
date equation. The social component of velocity update
equation is responsible for exploration while the cogni-
tive component is responsible for exploitation ability of
PSO.

3 Multi-swarm PSO (MSPSO)

The main idea behind the proposed parallelization strat-
egy is to first explore the search space in order to iden-
tify regions with high quality solutions and then to re-
fine these high quality solutions. The proposed algo-
rithm decomposes the search process to work in two
stages. In the first stage of the algorithm the search
space is explored by employing multiple independent
swarms in parallel. So we call this stage the parallel
stage of the algorithm. In the second stage of the algo-
rithm the good solutions obtained at the parallel stage
are refined by a single swarm. So we call it the se-
quential stage of the algorithm. Figure 1 shows the
basic idea that stands behind our algorithm. The al-

Patallel stage
process 0 Q Seguential
Stage
process 1 O_
process 2 Q‘—'_—'_—%
i
i
|
process n-1 O/

Figure 1: Diagrammatic representation of MSPSO.

gorithm starts with multiple independent swarms with
almost equal number of particles. There are as many
processes as there are swarms, one process to perform
calculations for each swarm. The data and calculations
are independent on all processes so different parame-
ters can be used for different swarms even if they are
not experimented (except for the number of particles)
in this paper. Each process runs a PSO with its own
swarm without any communication with other swarms
until termination and then sends its best and second best
particles with function values to the 0 process. Here the
parallel stage of the algorithm ends and the sequential
stage begins when the process 0O receives the best and
the second best particles of all the swarms including it-
self. The received particles constitute the initial swarm
for a new PSO which is now run on the process 0. Then
the best solution obtained by this process is the result of
the algorithm.

Algorithm:

1. Parallel Stage

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

A New Multi-Swarm Particle Swarm Optimization and Its Application to Lennard-Jones Problem 55

(a) Set the number of processes np and assign
each process its rank r.

(b) Initialize for every process
The set of parameters cy,co,w, number of
particles (n,.), maximum number of iterations
(n_it), dimension of search space (D) and
the range for each decision variable.
Randomly initialize the positions and veloci-
ties for each particle (i = 1,2,...,n,).

(c) Optimize for every process
Evaluate function value for each particle.
Find the personal best position for each par-
ticle and the best position of the own swarm.

(d) Update for each process velocities and posi-
tions of each particle using the equations (1)
and (2) respectively.

(e) If the stopping criteria is satisfied go to step
(f) else repeat steps (c) and (d) above until
stopping criterion is met and then go to step

).

(f) Foreach process find the second best particle
of the swarm.

2. Communication step

For each process send the best and second best
particles along with their function values to the
process 0.

3. Sequential Stage

For the process 0

(a) Receive the best and second best particles
along with their function values from all pro-
cesses including itself.

Initialize:

Set the received particles’ positions as the
initial particles’ positions for a new PSO.
Randomly initialize the velocities for each par-
ticle(j =1,2,...,2%np).

(b)

(c) Optimize the particle swarm and update ve-
locities and positions of particles according

to equations (1) and (2) respectively.

(d) If the termination condition is satisfied go to
step (e) below, else repeat the procedure until
termination criterion is met and then go to

step (e) below.
(e)

Report the best particle found in the sequen-
tial stage. This is the solution obtained by the

algorithm.

In the parallel stage of this algorithm each process
executes its own copy of sequential PSO without com-
municating with other processes, i.e., the swarms have
no knowledge of the other swarms’ best particles. This
means that the global nature of the sequential PSO is
not maintained in the parallel stage of MSPSO.

4 Experiments and discussions

This section focuses on the efficacy of the proposed par-
allel version against the sequential PSO as tested on
benchmark functions. To avoid attributing the results to
the choice of a particular initial population and to con-
duct fair comparisons, we have taken 100 trials for each
test, starting from various randomly selected points in
the search space.

4.1 Experimental setup

Both the sequential and the parallel implementations of
PSO have been experimented on a multiuser LINUX
cluster having 3 identical HP ProLiant DL140G2 nodes
dedicated to computations. The configuration of each
node is as follows:

Processors 2 x Xeon 3.4 GHz (800 MHz FSB), 1024
KB L2 Cache, 4 x 512 PC2-3200 DDR2 memory, 2 x
146 GB ULTRA320 10k NHP, Intel Chipset is E7520,
Integrated Dual Broadcom 10/100/1000, Integrated
10/100 NIC dedicated for server management, KVM
PS/2 Console/0x1x8 KVM Console Switch with CATSe
cables, Interconnect switch- Gigabit Manageable Layer
2 Switch (DX-5024GS), Operating System-Red Hat En-
terprise Linux Rel. 3.0.

Application code is written in C using MPI library for
parallelization.

4.2 Selection of parameters

In case of many algorithms values of some parameters
have to be provided by the user. PSO also has some pa-
rameters. In literature, different values of these parame-
ters have been used. Here we use w = 0.5, ¢c; = ¢ = 2.
In order to make fair comparisons the size of population
is always equivalent between the compared algorithms
for a given problem. For the sequential PSO the swarm
size was taken to be 100 and stopping criterion was to
converge to a solution within tolerance limit (0.001 for
test problems) or exceeding maximum number of iter-
ations (1000 for test problems). For the multi-swarm
PSO, in the parallel stage the swarm sizes for initial
swarms were taken according to the following formula:

n, = floor((r + 1) % 100/np) — floor(r x 100/np)

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

56 Deep, K. et al.

Where the symbols have the same meaning as given in
the algorithm. The stopping criteria used for parallel
and sequential stage are same as that for sequential PSO
with the only difference that the number of iterations are
different for parallel and sequential stage and for differ-
ent problems. Experiments were performed for many
different combinations of number of iterations at paral-
lel and sequential stage. Finally we used the ones (Table
1) that yielded the best results for considered test func-
tions. All the other PSO parameters used in the paral-
lel and sequential stages of the multi-swarm PSO were
same as those for sequential PSO.

Table 1: Maximum number of iterations used for test functions

Function Maximum number of iterations
Parallel Stage [Sequential Stage
Sphere 300 300
Ackley 600 300
Griewank 600 300
Schwefel 3 700 300

4.3 Performance measures for parallel algorithms

Performance measures for parallel algorithmsIn order
to measure the performance of the proposed parallel
algorithm some performance measures have been bor-
rowed from literature [1]. The definitions of these per-
formance measures as given in literature are as follows:

4.3.1 Speedup

If T}, be the execution time of an algorithm using k&
processors. Then speedup computes the ratio between
the mean execution time E[T7] on one processor and
mean execution time F[T}] on k processors because of
its nondeterministic nature.

Speedup due to k processors

4.3.2 Efficiency

Efficiency is the normalized version of speedup. It nor-
malizes the speedup value to a certain percentage and is
given by

S
ep = f x 100%

4.4 Testing with benchmark functions

In order to test and compare the performance of differ-
ent evolutionary optimization methods a suite of math-
ematical benchmark problems is often used. Out of
these, 4 important problems have been selected to test
the efficiency of the proposed algorithm. These prob-
lems are of continuous variables and have different de-
gree complexity and multimodality. The selected prob-
lems include unimodal and multi modal functions which
are scalable (the problem size can be varied as per the
user’s choice). Here problem size for all problems is
kept fixed to 30. All these problems are of minimiza-
tion type having their minimum at 0. These test func-
tions are listed in Table 2.

The Table 3 provides the summary of experimenta-
tions with 2 to 6 independent swarms each swarm re-
siding on a separate processor. The results shown for
1 processor are those obtained by the sequential PSO
because we want to compare MSPSO with sequential
PSO. Also since the definition of speedup requires that
the sequential and parallel algorithms must be compared
by running them until the solution of same quality has
been found. So in order to make fair comparisons the
execution times shown in the table are mean execution
times of those runs (out of 100) which ended in a so-
lution within the tolerance limit. For all the problems,
the solutions within the tolerance limit (0.001) were ob-
tained in atleast one of the trials.

In the Figure 2 we see that as the number of pro-
cessors increases the execution time begins to decrease.
This is because for fixed problem size, as the number of
processors employed in solving it increases, the com-
putation time (work load) per processor decreases. And
at some point, a processor’s work load becomes com-
parable with its parallel overhead. From this point on-
wards, the execution time of problem starts increasing.
It means that there is an optimal number of processors
to be used for any given problem. This is called the
parallel balance point of the problem.

In MSPSO we see that there are two causes for the
increase in execution time after parallel balance point.
One is the increased communication overhead with the
increase in number of processors. The other is the in-
creased idle time of the processes (other than 0 process)
in sequential stage due to increasing swarm size at this
stage with the increasing number of processes. Parallel
balance point, as obtained by our experiments, for the
Sphere, Ackley, Griewank and Schwefel 3 functions are
4, 2,2 and 4 respectively. At the parallel balance point a
significant speedup is achieved for all the four test prob-
lems. Clearly the results for test problems obtained by
MSPSO show its success in terms of speed and accu-

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

A New Multi-Swarm Particle Swarm Optimization and Its Application to Lennard-Jones Problem 57

Table 2: Formulae for test functions used

[SL] Name | Function [Bounds]
1 Sphere T [-5.12,5.12]"
2 Ackley —20 exp(—0.0Q\/% i) — exp(% i1 ncos(2mr;)) +20+ e [—30, 30|
3 | Griewank 1+ qo00 2i=1 i = [17=y cos(TF) [—600, 600]™
4 | Schwefel 3 oy el + Tl] [-10,10]™
Table 3: Experimental results for test functions
a
Number of processors — 1 9 3 4 5 6
Functions |
ET (sec.) | 0.158367 | 0.097974 | 0.083315 | 0.070784 | 0.088169 | 0.094499
Sphere Speedup 1.616429 1.90082 | 2.237349 1.79619 | 2.038887
Efficiency 0.808215 | 0.633607 | 0.559337 | 0.359238 | 0.339815
ET (sec.) | 0.476015 | 0.277418 | 0.276438 | 0.298943 | 0.325905 | 0.331064
Ackley Speedup 1.715881 | 1.721962 | 1.592331 | 1.460598 | 1.437835
Efficiency 0.85794 | 0.573987 | 0.398083 0.2921 0.239639
ET (sec.) | 0.431550 | 0.248656 | 0.255707 | 0.270887 | 0.290346 | 0.306268
Griewank Speedup 1.73553 | 1.687674 | 1.593105 | 1.486331 | 1.40906
Efficiency 0.867765 | 0.562558 | 0.398276 | 0.297266 | 0.234843
ET (sec.) | 0.332538 | 0.294888 | 0.252413 | 0.220606 | 0.265889 | 0.267801
Schwefel 3 Speedup 1.127675 | 1.317436 | 1.507387 | 1.250668 | 1.241738
Efficiency 0.563838 | 0.439145 | 0.376847 | 0.250134 | 0.206956
“Here E T stands for execution time.
racy. the Lennard-Jones potential (LJP)
n—1 n
5 Application to Lennard-Jones Problem V=>) -2 3)
i=1 j=i+1

5.1 Problem Description

The molecular conformation problem consists of find-
ing a configuration of atoms in a cluster or molecule
whose potential energy is minimum. It is a central prob-
lem in the study of cluster statics, or the topography of
a potential energy function in an internal configuration
space. This problem is also important in the study of
molecular dynamics, in which its solution is thought to
provide the zero-temperature configuration or ground-
state of the molecule. From the viewpoint of mathe-
matical optimization, it is a difficult global optimization
problem which does not yield easily either to discrete or
to continuous optimization methods [2, 5]. In its sim-
plest form it is called Lennard-Jones problem. Even in
this case, the problem of finding a global minimum of
the energy can be extremely difficult due to the exces-
sive number of non-global minima.

The Lennard-Jones problem assumes that the poten-
tial energy of a cluster of atoms is given by the sum of
pairwise interactions between atoms, with these interac-
tions being Vander Waals forces given by the Lennard-
Jones 6-12 potential. The problem consists of determin-
ing the positions of an n atom cluster in such a way that

generated by atomic interactions is minimized, where
r;; is the Buclidean distance between the points ¢; and
t; . Now since each point corresponds to Cartesian co-
ordinates in each of the x,y and z directions so the
actual number of variables is three times the number
of atoms in the given cluster. The problem is then to
find the positions of each atom of the cluster that cor-
responds to the global minimum value of V, equation

(3).

5.2 Application of MSPSO to L-J problem

Our purpose of applying the MSPSO to Lennard-Jones
problem is twofold. The first is that we want to repro-
duce the minimum energies for 8 and 9 atom clusters
using the newly developed algorithm. The other is that
we want to test its capabilities by studying its behav-
ior when applied to this challenging problem. Here its
capability to seek out the global minimum in a func-
tion with large number of local minima will be severely
tested. If it can accomplish this test as well, then it
should merit recognition as a valuable tool for treating
other global optimization problems. As far as we are

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

58 Deep, K. et al.

Execition Time

DaE-

0.4
o
15
= 04z
[
2
URRLE .
w [}

L]
nm - "
L]
o T T T T T T T T T
1 2 k| + 5 B
Mo. of processors
(a) Sphere Function

045 -

040 -
o
=
i D35 |
c
=
™
g [I . .

n
[]
nas 4 - '

os0-

|]
0.4s |
040
03s
™ L}
LELE .
|] -
o025 T T T T T T
1 2 3 L] 5 B
Mo, of processors
(b) Ackley Function
034
|]
nx 4
om -
E "
E L
5 -
03 -
i .
024 4
[« Prr []

T T T T T T T T T T T
MNo. of processors

(c) Griewank Function

T T T T T T T T T T T
1 2 3 + 5 B

Mo. of procassors

(d) Schwefel 3 Function

Figure 2: Execution time versus number of processors for test problems.

aware this approach has never been used till date, for
the solution of L-J problem.

Table 4: Maximum number of iterations used for LJP

Function Maximum number of iterations
Parallel Stage [Sequential Stage
LJP 8 atoms 3000 100
LIJP 8 atoms 3000 100

The problem is to find the most stable conformation
of the clusters with 8 and 9 atoms which have known
global minimum energy values —19.821489 and
—24.113360 respectively [7]. Cartesian coordinates of
each atom are considered, the search space for all the
atoms is given by [—2, 2] in case of 8 and 9 atoms re-
spectively. The tolerance limit for both the cases is set
to be .000001. All other parameters except the maxi-
mum number of iterations (10000 for sequential PSO)

were same as those used for benchmark test problems
as described in subsection 5.2 of this paper. In both the
cases (8 and 9 atoms) the PSOs at the parallel and the
sequential stage were run until the tolerance limit or the
maximum number of iterations (Table 4) is reached. We
repeated the runs 100 times and recorded the execution
times of those runs which ended in a solution within the
tolerance limit. For both problems the known minimum
values were obtained in atleast one of the 100 runs.

The numerical and graphical results for both the cases
are shown in the Table 5 and Figure 3. The parallel bal-
ance point for § and 9 atoms problems are 4 and 5 re-
spectively. At the parallel balance point the efficiency
is nearly equal to 1 (the ideal value of efficiency) which
shows very high performance of MSPSO at this point.
This is due to the large number of iterations in parallel
stage and a small number of iterations in the sequential
stage. Since most of the search is completed in the par-
allel stage and afterwards the very good solutions ob-

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

A New Multi-Swarm Particle Swarm Optimization and Its Application to Lennard-Jones Problem 59

0.1+

Executiontime

Exzcution time

Mo, of procassors

(a) LJP 8 atoms

T T T T T T
1 2 E] + 5 B

No. of processors

(b) LIP 9 atoms

Figure 3: Execution time versus number of processors for L-J Problem.

Table 5: Experimental results for test functions.
a

Numper of processors — 1 9 3 4 5 6
Functions |
ET(sec.) | 6.047346 | 5.951891 | 3.183264 | 1.540019 | 2.750495 | 3.40844
LJP 8 atoms Speedup 1.016038 | 1.899731 3.9268 2.198639 | 1.774227
Efficiency 0.508019 | 0.633244 0.9817 0.439728 | 0.295704
ET (sec.) | 8.909537 | 7.416846 | 3.954065 | 2.746731 | 1.786179 | 3.423559
LJP 9 atoms Speedup 1.201257 2.25326 3.243687 | 4.988043 2.60242
Efficiency 0.600628 | 0.751087 | 0.810922 | 0.997609 | 0.433737

“Here E T stands for execution time.

tained at the parallel stage are refined at the sequential
stage in a few iterations, so the idle time of the pro-
cesses (other than 0 process) at the sequential stage is
very small. This is the main reason for high efficiency
of MSPSO for L-J problem.

From the simulation results it is evident that the pro-
posed approach is a definite improvement in terms of
speedup. The speedup of the algorithm with a large
number of processes, for larger number of atoms in
Lennard-Jones problem and for some more test prob-
lems will be investigated soon.

6 Conclusions

This paper presented a parallel global optimization al-
gorithm based on PSO and tested it with several test
problems and successfully applied for solving Lennard-
Jones problem for clusters containing 8 and 9 atoms.
Although the works containing application of PSO for
solving this problem exist in literature [3], this is for
the first time that parallel PSO has been applied to the
Lennard-Jones potential problem. The results show that
the solutions produced by parallel PSO are as good as

those produced by the sequential PSO and that the algo-
rithm achieves a substantial speedup. Therefore MSPSO
can be used as a general purpose global optimizer. Fu-
ture direction for work would be to test the performance
of the proposed algorithm for a larger number of pro-
cesses and on other real world applications.

7 Acknowledgements

This work is supported financially by Council of Scien-
tific and Industrial Research, India and also by Ministry
of Human Resource Development, India. We are also
thankful for the support provided for our work by the
Institute Computer Center, Indian institute of Technol-
ogy Roorkee, India.

References

[1] Alba, E. Parallel evolutionary algorithms can
achieve super-linear performance. Information
Processing Letter, 82(1):7-13, 2002.

[2] Bernard, R.B., Bruccoleri, R.E., Olafson, B.D.,
States, D.J., Swaminathan, S., and Karplus, M.

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

60

Deep, K. et al.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

CHARMM: A program for macromolecular en-
ergy, minimization, and dynamics calculations.
Journal of Computational Chemistry, 4:187-271,
1983.

Call,S.T., Zubarev, D.Y.,, and Boldyrev, A.L
Global Minimum Structure Searches via Particle
Swarm Optimization. Journal of Computational
Chemistry, 28:1177-1186, 2007.

Chu, S.C. and Pan, J.S. Intelligent parallel particle
swarm optimization algorithms. Studies in Com-
putational Intelligence (SCI), 22:159-175, 2006.

Colvin, M., Judson, R., and Meza, J. A genetic
algorithm approach to molecular structure deter-
mination. Paper presented at International Con-
ference on Industrial and Applied Mathematics,
Washington DC, 1991.

Engelbercht, A.P. Fundamentals of computational
swarm intelligence. John Wiley & Sons, 2005.

Hoare, M.R. and Pal, P. Adv. Phys. 20(161),1971;
Nature (Physical Sciences) 230(5), 1971; Nature
(Physical Sciences) 236(35), 1972.

Kennedy, J. and Eberhart, R.C. Particle swarm op-
timization. In proceedings IEEE Conf. on Neural
Networks, Perth, pp.1942-1948, 1995.

Kennedy, J., Eberhart, R.C., and Shi, Y. Swarm
Intelligence. Morgan Kaufmann Publishers, San
Francisco, 2001.

Kim, J.Y., Jeong, HM., Lee, H.S., and Park, J.H.
PC cluster based parallel PSO algorithm for opti-
mal power flow. In proceedings 14th International
Conference on Intelligent System Applications to
Power Systems (ISAP’ 2007), Kaohsiung, Taiwan,
2007.

Koh, B., George, A.D., Haftka, R.T., and Fregly,
B.J. Parallel Asynchronous Particle swarm op-
timization, International Journal of Numerical
Methods in Engineering. 67:578-595, 2006.

Sahin, F., Yavuz, M.C., Arnavut, Z., and Uluyo,
O. Fault diagnosis for airplane engines using
Bayesian networks and distributed particle swarm
optimization. Parallel Computing, 33:124-143,
2007.

Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka,
R.T., and George, A.D. Parallel global optimiza-
tion with the particle swarm algorithm. Interna-

tional Journal of Numerical Methods in Engineer-
ing, 61(13):2296-2315, 2004.

(14]

(15]

(16]

Snir, M., Otto, S., Lederman, S.H., Walker,
D., and Dongarra, J. MPI: The Complete Ref-
erence. Massachusetts Institute of Technology,
Cambridge, 1996.

Venter, G., Sobieski, J.S. A parallel Particle
Swarm Optimization algorithm accelerated by
asynchronous evaluations, Journal of Aerospace
Computing, Information, and Communication,
3(3):123-137, 2005.

Waintraub, M., Schirru, R., and Pereira, C_M.N.A.
Multiprocessor modeling of parallel Particle
Swarm Optimization applied to nuclear engi-

neering problems. Progress in Nuclear Energy,
51:680-688, 2009.

INFOCOMP, v. 9, n. 3, p. 52-60, set. 2010

