
Grid Process Scheduling Optimization using the Tabu Search

ANDRÉ M. EBERLE1

RODRIGO F. DE MELLO1

Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação

Departamento de Ciências de Computação
São Carlos – SP – Brazil

1andre.eberle@gmail.com, 2mello@icmc.usp.br

Abstract. Process scheduling problems present a large solution space, which exponentially increases
according to the number of computers and processes. In this context, exact approaches are, therefore,
infeasible. This limitation motivated several works to consider meta-heuristics to optimize the search for
good solutions. In that sense, this work proposes a new approach based on the Tabu Search to improve
process scheduling by considering application knowledge and the logical partitioning of distributed en-
vironments. Such knowledge comprises historical application events (captured during execution) which
allow a better parametrization of the optimizer and, consequently, generates better results. Simulation
results confirm the contributions of this new approach, which outperforms other techniques when dealing
with large and heterogeneous environments, such as Grids.

Keywords: Process scheduling, Meta-heuristics, Tabu Search, Grid computing, Cluster computing.

(Received November 30, 2009 / Accepted September 15, 2010)

1 Introduction

Application-specific knowledge (for example: process-
ing time, memory usage and communication) has been
applied to improve process scheduling decisions [14,
22, 9, 20]. Such knowledge is obtained from the de-
scription of the computational requirements provided
by users, traces of all applications in production envi-
ronments, or the specific monitoring of single applica-
tions. The traces of all applications and specific mon-
itoring have been confirmed to be efficient information
sources [19]. Several techniques employ such knowl-
edge to predict parallel application operations as a way
to improve scheduling decisions [14, 22, 9, 20, 18, 4,
19].

Feitelson and Rudolph [9] conducted experiments
making repeated application executions and observing
their resources occupation. They observed that re-
source consumption presents low variation when exe-
cuting the same application and, therefore, concluded

that resource consumption can be estimated from his-
torical information what avoids the explicit user coop-
eration in parametrizing scheduling policies.

Harchol-Balter and Downey [14] studied how pro-
cess lifetime (also called execution time or response
time) can be used to improve scheduling decisions.
They evaluated execution traces in a workstation-based
environment and modeled probability distribution func-
tions to characterize sequential application lifetimes.
Based on those models, a load balancing algorithm was
proposed, which employs such model to decide on pro-
cess migrations. Mello et al. [5] extended that work
by evaluating the processor consumption, what has im-
proved the previous approach.

Pineau et al. [17] studied and presented limita-
tions of deterministic scheduling algorithms on hetero-
geneous environments. They concluded that scheduling
optimization approaches highly depend on certain pa-
rameters of such environments.

Those works played an important role in process

scheduling, however, with the advent of the Grid com-
puting, new techniques have been proposed to ad-
dress scheduling decisions by considering heterogene-
ity and large scale environments. Yarkhan and Don-
garra [24] compare a Simulated Annealing (SA) ap-
proach to greedy search on a grid computing scenario.
They concluded that SA improves scheduling results,
due to it helps to avoid local minima. One of the draw-
backs of that work is that the authors only consider one
parallel application, this is, nothing else is evaluated
under the same circumstances. Besides that, the study
consider no historical information of applications.

On the other hand, Abraham et al.[1] predicted pro-
cess execution times and proposed nature-inspired heu-
ristics, such as SA and Genetic Algorithms, to schedule
applications on grids. Authors only consider Bag-of-
Tasks1 applications, consequently, they do not model
communication nor its impact on networks and schedu-
ling.

Besides there are many grid-oriented approaches,
most of them only address Bag-of-Tasks applications
and, consequently, do not approach inter-process com-
munication. Motivated by this limitation and by the pre-
vious good results considering application knowledge
[14, 22, 9, 20, 18, 4, 19], this work proposes a new
approach to optimize process scheduling in heteroge-
neous and large scale distributed environments based
on the Tabu Search. This approach employs application
knowledge (resource occupation), environment capaci-
ties (processing, memory, hard disk and network) and
current workloads as a way to reduce the total applica-
tion execution time.

This approach considers a new network logical par-
titioning technique, which groups the whole computing
environment according to network latencies. This log-
ical approach is conducted by a Tabu Search approach,
which does not depend on physical partitioning nor en-
vironment configurations. Processes are distributed on
those computer groups (or logical partitions), what re-
duces communication costs. Besides that, the cost in-
volved in optimizing scheduling decisions has moti-
vated the proposal of a new fitness function with time
complexity of O .

This paper is organized as follows: the process sche-
duling problem is presented in Section 2; Section 3 de-
scribes related optimization approaches; Section 4 pre-
sents the Tabu Search and how it is employed in this
work; Simulation results and comparisons to other tech-
niques are presented in Section 5; Result analysis and
contributions are described under Section 6.

1Bag-of-Tasks – this refers to independent tasks with no commu-
nication among each other.

2 The Problem

In this paper, the scheduling problem consists in the dis-
tribution of processes over a set of interconnected com-
puters in order to reduce the application response time
(also called execution time). The response time is the
sum of the time consumed in processing, memory and
network operations.

According to the formalization by Garey and John-
son [11], we characterize the distributed scheduling
problem optimization as follows. Let A be the set
of parallel applications A {a0, a1, . . . , ak−1} and
size . the function which defines the number of pro-
cesses that compose an application. Thus, each one of
the k applications is composed of a different number of
processes, for example, size a0 , size a1

etc. Consider, then, that the set P contains all processes
of all k parallel applications. In this way, the number of

elements in P is equal to |P |
�k−1

i=0 size ai .

Each process pj ∈ P , where j , , . . . , |P | − ,
contains particular features, here named behavior, of
resource utilization: CPU, memory, input and output.
Consequently, every process requires different amounts
of resources provided by the set V of computers of the
distributed environment (where |V | defines the number
of computers). Besides that, each computer vw ∈ V ,
where w , , . . . , |V | − , has different capacities in
terms of CPU, main memory access latency, secondary
memory read-and-write throughput, and network inter-
face cards under certain features (bandwidth, latency
and overhead to pack and unpack messages).

Computers in V are connected through different
communication networks. All this environment can be
modeled by a non-directed graph G V,E , where
each vertex represents a computer vw ∈ V and the
communication channels in between vertices are edges
{vw, vm} ∈ E. Those channels have associated prop-
erties such as bandwidth and latency.

The optimization problem consequently consists in
scheduling the set P of processes over the graph ver-
tices inG, attempting to minimize the overall execution
time of applications in A. This time is characterized
by the sum of all operation costs involved in process-
ing, accessing memory, reading and writing on the hard
disk, sending and receiving messages over/from the net-
work.

To simplify the understanding, consider a problem
instance with two parallel applications composed of the
processes in Table 1 (MI represents the million of in-
structions executed by processes; MR and MW are, re-
spectively, the number of Kbytes read/write per sec-
ond from/to the main memory; HDR and HDW are,
respectively, the number of Kbytes read/write per sec-

62 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

ond from/to the hard disk – secondary memory; NETR
and NETS are, respectively, the number of Kbytes re-
ceived/sent per second from/over the network – in this
situation, we also present the sender, for NETR, and the
target process, for NETS).

Table 1: Behavior sample of parallel applications
Application 0

Process CPU
(MI)

MR
Kb/s

MW
Kb/s

HDR
Kb/s

HDW
Kb/s

NETR
Kb/s

NETS
Kb/s

p0 1,234 123.78 0.00 78.21 0.00 12.50,
p1

532.12,
p1

p1 1,537 23.54 89.45 0.00 12.30 532.12,
p0

12.50,
p0

Application 1
Process CPU

(MI)
MR
Kb/s

MW
Kb/s

HDR
Kb/s

HDW
Kb/s

NETR
Kb/s

NETS
Kb/s

p2 1,221 823.78 70.00 78.21 543.00 10.92,
p3

321.12,
p4

p3 1,137 223.54 179.45 324.00 212.31 423.12,
p4

10.92,
p2

p4 2,237 23.54 17.45 12.00 0.00 321.12,
p2

423.12,
p3

Table 2: Sample of computer capacities
Computer CPU

(MIPS)
MR
Kb/s

MW
Kb/s

HDR
Kb/s

HDW
Kb/s

v0 1,200 100,000 40,000 32,000 17,000
v1 2,100 120,000 50,000 42,000 19,000
v2 1,800 100,000 30,000 22,000 9,000
v3 1,700 95,000 20,000 25,000 11,000
v4 2,500 110,000 60,000 62,000 30,000

Figure 1: Example of network interconnection

Let the environment be composed of the five com-
puters described in Table 2 (where MIPS represents the
processing capacity in million of instructions per sec-
ond; MR and MW are, respectively, the main mem-
ory read-and-write throughput, in Kbytes per second;
HDR and HDW are, respectively, the hard disk read-
and-write throughput, in Kbytes per second – secondary
memory). Such computers, in V , are interconnected
according to Figure 1, which also presents the average
network bandwidth and latency. Besides that, consider
the scheduling operator defined by ∝.

The distributed scheduling problem consists in
defining on which computer vw each process pj will
be placed on, considering the resource capacities and
workloads. An example of solution for this instance is
given by p0 ∝ v0, p1 ∝ v1, p2 ∝ v2, p3 ∝ v3 and
p4 ∝ v4. In this way, for each problem instance, we
must schedule |P | processes on an environment com-
posed of |V | computers, consequently, the universe of

possible solutions is equal to |V |
|P |

. For the previously
presented instance, the problem has a solution universe
equals to 5 , . Real problem instances can
consider, for instance, , computers and applica-
tions, containing processes each. In this situation,
the solution space would be equal to , 64·512

, 32,768.

In this context, we may observe that the problem so-
lution space is exponential and, therefore, we must pro-
pose alternative approaches capable of providing good
solutions in acceptable computational time. There is no
polynomial-time algorithm to optimally solve this prob-
lem (this is, to find the best solution at all), what allows
to characterize it as intractable [11]. Given this fact, we
may adopt algorithms that explore part of the solution
space and find, by using guess and checking, a good
candidate in non-deterministic polynomial time [11].

After characterizing the problem as intractable, it
is important to understand how hard it is. In order to
understand it, consider the equivalent NP-complete
problem approached by Lageweg and Lenstra [16], and
presented by Garey and Johnson [11]. This problem
defines the process scheduling over m processors as
follows:

Instance: Let the set of tasks T , a number m ∈ Z
+ of

processors, for each task t ∈ T a length l t ∈ Z
+ and

a weight w t ∈ Z
+, and a positive integerK.

Question: Is there a scheduling σ over m proces-

sors for T , where the sum, for every t ∈ T , of

σ t l t · w t is not higher thanK?

Adaptation: In this context, instead of considering

m processors, we assumem computers with specific ca-

pacities, and T , instead of representing tasks, is the set

of processes. The length l t defines the process du-

ration and, in our situation, the resource consumption.

Besides that, we mention that according to Garey and

Johnson [11] the problem stays NP-complete for any

instance where m ≥ . The problem can be solved in

polynomial time only if the processes duration are iden-

tical, what is not expected in the presented problem, due

to there are great variations in application profiles.

Grid Process Scheduling Optimization using the Tabu Search 63

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

Such cost has motivated the adoption of meta-
heuristics which are capable of finding approximate so-
lutions in polynomial time.

3 Optimization Techniques

As previously presented, meta-heuristics have been
considered for optimization purposes, due to their abil-
ity to find good solutions in polynomial time. This sec-
tion presents commonly considered meta-heuristics.

3.1 Genetic Algorithm

Genetic Algorithm [13] is an heuristic inspired in an-
imal and plant evolution. It simulates the natural se-
lection and genetic (characteristics) recombination as a
way to explore diversity and, therefore, find solutions.
Given a certain problem, solutions (codified as chro-
mosomes) are described in terms of their characteristics
(genes). Those chromosomes assume the role of indi-
viduals in a population, where each one covers part of
the solution space. Candidate solutions are evaluated
using a fitness function which measures the optimiza-
tion quality, considering specific problem constraints.

The algorithm periodically considers two genetic
adaptations (operators), which change the chromosome
characteristics and, consequently, better explores the
search space. The considered operators are the mutation
and crossover. Mutation randomly selects chromosome
genes and changes their values. Crossover recombines
chromosomes by considering the random exchange of
genes, simulating the mating between living beings. Af-
ter such adaptations, the modified chromosomes com-
pose new candidate solutions to be evaluated. Popula-
tions of candidates are assessed until converging to an
acceptable quality or according to other constraints (e.g.
time).

3.2 Hopfield Artificial Neural Network

The Hopfield artificial neural network [15] was intro-
duced as an associative memory between input and out-
put data. This network associates inputs and outputs
using a Lyapunov energy-based function. This function
is applied in dynamical systems theory in order to eval-
uate stable states. The goal of such systems is to prove
that modifications in the system state reduce the energy
function results.

The use of an energy function has motivated the
adoption of the Hopfield network to solve optimization
problems. In that sense, the problem solution attempts
to obtain the global minimum of the energy function,
which represents the best solution for a certain instance.
The connection weights of Hopfield network neurons

represent the energy function surface, which is explored
to find minima regions.

The output function considered for Hopfield net-
works [10] is defined in Equation 1, where γ is the con-
stant gain parameter and ui is the network input for the
neuron i.

vi gi γui tanh γui (1)

In order to approach an optimization problem us-
ing the Hopfield network, an energy function has to be
defined and applied on the matrix that represents the
system solution. This function defines constraints to
acceptable solutions. The Hopfield artificial neural net-
work applies the energy function on a possible solution,
evaluates it and decreases the input values of neurons.
Afterwards, it proposes a new solution to be analyzed.
This cycle is executed until finding a solution that satis-
fies all constraints.

3.3 Asynchronous Boltzmann Machine

The Asynchronous Boltzmann Machine is a general-
ization of the Hopfield Neural Network which adds a
stochastic element. While Hopfield considers thresh-
olds to decide whether a neuron is activated, the Boltz-
mann machine employs a probability function, de-
scribed by neuron connection weights and threshold pa-
rameters, as shown in Equations 2 and 3.

Ei

�

j

siwij − θi (2)

p i
e−ΔEi/T

(3)

The parameter T represents the temperature of the
system. This concept is based on the increase and de-
crease of temperature in real systems. We observe that
high values of T increase the probability of neuron ac-
tivations, what allows fast convergence, however, it is
likely to reach a local minima. Lower values are bet-
ter when looking for a global minimum, although they
consume more processing time.

The application of this technique is similar to Hop-
field. The solution and the optimization function are
similarly described. The temperature is gradually de-
creased down to a limit when an output is issued. This
technique presents a smaller bias toward local minima
when compared to Hopfield networks.

3.4 Tabu Search

Tabu Search is a meta-heuristic, proposed by Glover
and Laguna [12], which explores search spaces looking

64 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

for good solutions. It applies the concept of movement
and the Tabu list. In order to illustrate it, consider an op-
timization problem where there is a finite set S which
contains all possible (feasible or infeasible) solutions.
Let s ∈ S be a solution and M s, parmovement be a
function over s with a set of parameters parmovement.
M . is called a movement if M s, parmovement s�

where s� ∈ S. This is, if it is possible to move from a
solution s to another one s�.

The set of parameters parmovement restricts the
movement M from a solution s to a limited number
n of new solutions. Therefore, M . defines a subset
in S with size n which is also called the neighborhood
of s, defined as n s . We may observe that solutions
reached after a movement may or may not be feasible.
The feasibility and quality of solutions are evaluated by
a fitness function. Some works add constraints in the
movement function M . , consequently, only feasible
solutions are accepted, what reduces the complexity of
fitness functions.

The main idea of the Tabu Search is to navigate from
a certain solution s to some s� ∈ n s , where, ideally,
s� presents a better quality. An usual implementation
is to choose the best solution from n s , or a subset
n� s ⊂ n s . It is important that the movement al-
lows any solution to be reached from any other within
a finite number of movements, otherwise the meta-
heuristic does not cover all possible areas in the search
space and potentially optimal solutions may never be
visited.

In Tabu Search, there is a list of constraints indi-
cating prohibited movements and parameters. Certain
movements, or their parameters, are inserted in this list
for a number of iterations, meanwhile, they are forbid-
den and, consequently, avoided by the search algorithm.

Once the movement function is defined and the Tabu
criteria determined, the algorithm starts by choosing a
random candidate solution and executing the function
M . over it, using m parameters in parmovement. Im-
plementations usually consider somem < k, where k is
the number of possible parameters to define the move-
ment. The application of M . over a candidate solu-
tion s, using each one of the m parameters, defines a
subset of neighbor solutions n s . The fittest solution
found in neighborhood and its parameters are tabued
for a certain number of iterations (i.e. they will not be
used for a while). These steps are repeated until a stop
criterion is reached, and the best solution visited is cho-
sen. When tabuing a solution, the algorithm attempts to
find other better candidates, this is, it better explores the
search space.

3.5 Simulated Annealing

Simulated Annealing (SA) is an approach based on the
metallurgic process of annealing, which consists of the
successive heating and cooling of metals [2, 10]. Ac-
cording to that process, the energy of atoms is contin-
uously increased and decreased, leading to an equilib-
rium state. SA simulates this process, looking for candi-
date solutions in a state of high energy, or temperature,
which is gradually reduced.

Similarly to the Tabu Search (Section 3.4) the con-
cept of movement and neighborhood are considered.
Once the best solution of the neighborhood, s�, is found,
the algorithm probabilistically moves towards it using a
probability function in the form P s, s�, T . P is com-
monly some function that has a bias in the direction of
the best solution, either s or s�. The algorithm allows
more random movements when the system energy (pa-
rameter T) is high, but increases the bias towards good
solutions when the energy is low, trying to escape from
local minima. While these iterations are repeated, the
temperature T is continuously decreased, until reach-
ing a lower limit and finding a good solution.

3.6 Ant Colony Optimization

Ant Colony Optimization (ACO) is an optimization
technique inspired in the behavior of ants in colonies
[8]. When searching for food, ants wander randomly
while laying down pheromone. Once the food is found,
the ant returns home, reinforcing a pheromone path.
Ants are attracted by pheromone and tend to priori-
tize paths with such substance. The more intense the
amount of pheromone in a path, the more likely other
ants will follow it. After some time, the food paths
will tend to be more intensively used and, therefore,
have more pheromone. As several food paths may be
found, the shortest one will be covered faster and, con-
sequently, it will have more pheromone over it. After
some time, there is a high probability to consider only
the shortest path. ACO, similarly, attempts to find opti-
mal paths while visiting neighbor solutions. The tech-
nique considers virtual ants and pheromone to simulate
the whole process.

4 Proposed Scheduling Approach

As previously shown, the problem of process schedu-
ling optimization presents an exponential complexity,
therefore, approaches to find the best solution (also
called exact approaches) are infeasible due to they cover
the whole search space. Motivated by the problem com-
plexity and the good results of other meta-heuristics,

Grid Process Scheduling Optimization using the Tabu Search 65

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

this work considers the Tabu Search technique, parame-
trized with application knowledge, to find good schedu-
ling solutions.

In order to employ knowledge, we developed online
monitors to intercept application operations and store
them on an experience database. In that sense, we con-
sidered the knowledge acquisition model proposed by
Senger et al. [19], which supports the estimation of
the expected behavior of new applications. This model
looks for similar applications in execution traces, using
a machine learning algorithm inspired in the Instance-
Based Learning paradigm [3]. Execution traces of par-
allel applications are considered as experience database
and parallel applications are submitted to the system,
as query points. The database information is, therefore,
used by the learning algorithm to estimate the behav-
ior of parallel applications (the behavior includes esti-
matives of the CPU, main and secondary memory, and
network usages).

After employing the knowledge acquisition model,
we consider the following application behavior com-
ponents to parametrize our optimization approach: the
processing consumption in million of instructions (MI),
the total expected memory usage, and the network load,
in terms of the number of messages per second and size
(bytes). Then, such behavior components are used in
our two Tabu-based optimization stages: 1) Firstly, the
distributed environment is logically divided into smaller
partitions, according to a first Tabu-based optimization
approach. This approach considers the average inter-
computer communication costs. This step reduces the
full search space to local spaces, what makes the sec-
ond stage of our approach run faster (consequently, it
is more useful in real-world circumstances); 2) Sec-
ondly, the incoming applications are distributed on one
of the logical environment partitions (this logical par-
tition does not require any configuration nor physical
segmentation). In that sense, when an application ar-
rives at the system, the logical partition with the low-
est processing load is selected, and it executes another
Tabu-based optimization approach to locally schedule
application processes. Both stages are detailed next.

4.1 First Stage: A Tabu-Based Approach for Dis-

tributed Environment Partitioning

Considering an environment composed of V comput-
ers, we intend to schedule applications on a subset V �

of it (where V � ⊂ V), attempting to reduce communica-
tion costs, and therefore the execution time, for all pro-
cesses. In order to prevent high synchronization delays,
we proposed a first stage of environment partitioning
using a Tabu-based optimization approach. By parti-

tioning, this approach reduces the search space, this is,
the number of candidate solutions for the second stage
(Tabu-based approach for process scheduling), reduc-
ing the time consumed to find good solutions.

In this stage, candidate solutions are represented by
a set of computers. The movement function considers
the swapping of a single computer from a logical par-
tition to another. The fitness is computed by summing
the communication costs in between every pair of com-
puters in the same logical partition. The lower is the
communication cost among computers in the same par-
tition, the higher the solution quality is. The Tabu list is
implemented by forbidding the last used movement for
a number of iterations.

Our algorithm builds the initial solution dividing the
whole environment into several logical partitions, con-
taining at most z computers each (for evaluation pur-
poses, our experiments considered z). The al-
gorithm builds n random parameters for the movement
function, which are executed for the current solution.
The resulting solutions are sorted and the best one is
considered. As long as the correspondent movement is
not in the Tabu list, the solution is selected, otherwise
the next is chosen. These steps are repeated until the
associated movement is not in the Tabu list, or every
solution is examined. Thus, the selected solution be-
comes the current one. The algorithm is iteratively re-
peated until the best solution found is not modified for
k iterations.

The size of z is set by the administrator. Depend-
ing on its value, this first Tabu-based stage divides the
environment into smaller or larger logical partitions to
received applications. A low z reduces the search space
for the second stage, however small partitions may have
low computing capacity to fulfill the needs of certain
applications. For example, z would create as many
logical partitions as the number of computers in the en-
vironment, then complete applications (including their
processes) would be scheduled on the idler logical net-
work, what, in this situation, is a single node. Oth-
erwise, a very high z would join far away (far mean-
ing high latency and low bandwidth) computers in the
same logical partition, then, two communicating pro-
cesses allocated on different and far computers would
present high communication delays and, consequently,
the performance would decrease.

4.2 Second Stage: Tabu Search for Process Distri-

bution

Once the whole environment is logically divided ac-
cording to inter-computer communications costs, the
subset or partition with idler computers is selected to

66 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

receive new launched applications. Consequently, ap-
plication processes are scheduled over nodes in that
logical partition. This intra-partition scheduling is also
based on a Tabu Search approach as presented next.

4.2.1 Description of the Solution

In this second stage we also consider the Tabu Search
approach, in that sense we described candidate solu-
tions using a matrix of computers (rows) versus pro-
cesses (columns) – we may observe that one may
choose to represent solutions using other data structures
such as vectors, trees, etc. In our case, we use a sparse
matrix which contains ’s and ’s, where a in column
i and row j represents process pi scheduled on com-
puter vj ∈ V . The value depicts that the underlying
process is not located at the respective computer. In this
context, we consider a feasible or valid solution when
every process is scheduled on only one computer.

As an example consider an environment with com-
puters. An application, containing processes, has to
be distributed over this logical partition. A matrix is
created containing a possible solution such as the one
presented in Table 3. In this solution, each process is
assigned to only one computer.

Table 3: Matrix of computers (rows) versus processes (columns)

p0 p1 p2 p3

v0 0 0 1 0
v1 1 0 0 0
v2 0 0 0 0
v3 0 0 0 0
v4 0 1 0 0
v5 0 0 0 0
v6 0 0 0 1

4.2.2 Movement

In this second stage, the movement considers the swap
of a process pi to another computer. This swap is pa-
rametrized by a number n, which defines how many
changes are executed to the process pi over the sparse
matrix. In that sense, the movement function is repre-
sented as M pi, n .

As an example, consider the solution described in
Table 3. Let a movement be executed over it, where
M p2, n , consequently, the process number or
p2, currently assigned to v0, will be changed in the ma-
trix. An example of result is shown in Table 4. Now p2

will be allocated on computer v4. This movement was

chosen since it never leaves the feasibly region of so-
lutions and it can also reach any solution from this last
(given an enough number of movements).

Table 4: Computers and Processes, Movement of p2 with n = 1

p0 p1 p2 p3

v0 0 0 0 0
v1 1 0 0 0
v2 0 0 0 0
v3 0 0 0 0
v4 0 1 1 0
v5 0 0 0 0
v6 0 0 0 1

4.2.3 Tabu List

In this second stage, we defined a Tabu List over the pa-
rameters of the movement function M pi, n , where pi

is the process that will be transferred to another com-
puter, and n is the number of swaps. This Tabu list
works as follows: after executing a movement over pi,
given n, that action (or movement itself) is added into
the Tabu list and, consequently, forbidden for a number
of algorithm iterations.

4.2.4 Fitness Function

As described in Section 3.4, the Tabu Search algorithm
requires a fitness function, which evaluates the quality
of a solution. The fitness is the target function to be
minimized. As proposed, the parameters of this func-
tion are based on the application-specific knowledge,
which includes the total processing cost, memory and
network usage. We also consider knowledge about the
environment, such as the current workload of comput-
ers as well as their capacities and network overheads.

The purpose of our function is to estimate the total
computer workload when considering a new candidate
solution. This estimative is made by computing the total
time consumed when processing instructions, the pro-
cessing slowdown caused by memory usage (main and
virtual memory usage), and the inter-process communi-
cation cost.

In order to estimate the processing time, we con-
sider the local process queue of each computer. In that
way, the fitness function assumes that the local com-
puter scheduler uses a Round-Robin policy, where the
maximum time a process remains in the processor is
second (this is, therefore, called time slice). After defin-
ing that, the first approach we considered to compute
the processing time in every computer was a simulated

Grid Process Scheduling Optimization using the Tabu Search 67

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

execution, which also calculated the slowdown caused
by memory usage (when a process consumes memory,
processing time is penalized. Mello and Senger [6] con-
cluded that the more the main and virtual memories are
occupied, the higher is the slowdown in process execu-
tion), as presented in Algorithm 1, where T vj is the
memory slowdown function of computer vj , proposed
by Mello and Senger [6], defined in Equation 4 (where
vmj is the main memory size, vsj the virtual memory
size and x is the total memory currently used in compu-
ter vj – all of them in megabytes).

The parameters for T vj were defined according to
an average of experiments executed on heteroge-
neous computers which (conducted in our laboratory)
[6]. Among the evaluated computers, we had: AMD
2600+, AMD 64 bits and Intel Pentium 4 and Intel Core
2 Duo processors.

Therefore, function T vj generates a slowdown
factor to be multiplied by the processing time con-
sumed. This factor models delays when processes are
accessing main and virtual memories. The slowdown
is a function of the memory being currently used (x, in
Megabytes, in Equation 4). If only the main memory is
being used and no swap is done, the slowdown grows
linearly according to the amount of megabytes in mem-
ory. When swap starts to be used, the slowdown causes
an exponential influence in the process execution.

T (vj) =

8
>>>>><

>>>>>:

1 when using less than 0.089
0.0069

Megabytes

0.0068 × x − 0.089 when using more than
0.089
0.0069

Megabytes and less than vmj Megabytes

1.1273 × exp((vmj + vsj) × 0.0045) otherwise
(4)

The Algorithm 1 adds up all the slowdown caused
my memory usage and the expected processing time.
This fitness function was, then considered to make op-
timizations. However, we observed that its time com-
plexity was too high and simulations took long to exe-
cute. Then, we started studying other approaches and
end up proposing a polynomial equivalent version of
this first. Such approach is presented as follows.

Let Ei be the expected execution time for a single
process pi. Let Di and Ii be respectively the decimal
and integer part of Ei, therefore Ei Di Ii. Let |Q|
be total the number of processes currently in the pro-
cessor queue Q. Assume that the queue is kept ordered
by the expected processing time (i.e. the process with
the lowest expected time is executed first and so on).

Now consider a queue or circular list where pro-
cesses were previously scheduled. Assume that ev-
ery process can reside in the CPU for at most sec-
ond, which is usually referred as CPU quantum (or

Algorithm 1 Process Time and Memory Simulation

1: Define simulationT ime = 0.0
2: Define totalT ime = 0.0
3: Define totalMemory = 0.0
4: Define the expected memory usage for a computer (i.e.

the sum of the expected memory usage for all processes)
as computerMemory

5: Define the vector (or queue) which contains running pro-
cesses as runningProcess[]

6: while runningProcess is not empty do
7: for every process p in runningProcess do

8: totalMemory += T(computerMemory)
9: if p.expectedT ime < 1 then

10: simulationT ime += p.expectedT ime

11: totalT ime += simulationT ime

12: remove p from runningProcess

13: computerMemory -= p.memory

14: else

15: simulationT ime += 1
16: p.expectedT ime -= 1
17: end if

18: end for

19: end while

20: return [totalT ime,totalMemory]

time slice) [23]. Consider a set of n processes in such
queue. Now, let a process pi need Ii.Di seconds to fin-
ish, where Ii is the integer and Di the decimal part, re-
spectively. This queue is sorted according to Ij .Dj ∀j,
thus, a process at an index j will finish before j .
However, we consider a Round-Robin local scheduling
policy (by local we mean the CPU policy and not the
distributed environment policy), which will schedule
p0, p1, . . . , pj−1, in such order, before pj . In that sense,
there is some probability that pj−1 finishes before us-
ing all the CPU quantum and the scheduler releases the
CPU and gives it to the next process, this is pj .

Let Ei be an estimative of the expected execution
time for the process pi in such queue where other pro-
cesses were also added, where i is the queue index. We
observe that the total execution time of each process is
always greater than or equal to the time of the previ-
ous one (since the queue is kept sorted according to the
expected execution times). Since the maximum time a
process pi can reside in the CPU is , its integer ex-
pected time Ii determines how many times it will enter
and leave the queue, and the decimal part determines
the remaining time to finish execution. When all pre-
vious processes have finished executing and since there
are |Q|− i− remaining processes after pi (which have
larger or equal processing time), the total time that pi

will wait in the queue between each CPU allocation is
|Q| − i − × (this is the time to make a full cir-

68 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

cle in the queue – this happens due to we consider the
Round-Robin policy as the local CPU scheduler).

Now consider that every process has already exe-
cuted Ii−1 times (this is, the total integer part of pi−1),
then process pi returns to the processor only Ii − Ii−1

times. So, the remaining time of process pi, after all
previous processes pj ∀j < i have finished, is given
by Ii − Ii−1 × |Q| − i , plus Di. Hence the to-
tal execution time for any process, considering only the
processing time of its instructions is given by the total
time currently executed increased by its own remaining
time, according to Equation 5.

Ei Ei−1 Di Ii − Ii−1 × |Q| − i (5)

Therefore, the total expected processing time for a
computer is given by Equation 6, assuming E−1 .

n�

i=0

Ei−1 Di Ii − Ii−1 × |Q| − i (6)

Equivalently, the memory terms may be obtained as
follows. Let mj be the total memory of each process pj

and Mi be the sum of all memory allocated at the com-
puter, in the moment that process pi finishes executing.
The total impact of the memory in a computer is the
sum of all the occupied memory. Hence, every time a
process is at the processor, its overall time is impacted
by the slowdown factor (computed according the main
and virtual memory usage), as shown byMello and Sen-
ger [6]. Consequently, the factor represents the slow-
down impact being applied until the moment the pro-
cess pi leaves the queue, thus Mi Mi−1 −mi−1. To
allow a proper mathematical model, let M−1 M0

M where M is the total sum of memory beforehand,
and m−1 . Assume that the impact of the mem-
ory on a process when it remains less than one second
(t <) at the processor is equivalent to the impact
caused by the remaining one second. Analog to the pro-
cessing time, we can define Ti as shown in Equation 7,
where T vj Mi is the slowdown impact caused by
the memory currently used in computer vj , after finish-
ing all processes pj ∀j < i. The total memory is given
by Equation 8.

Ti T vj Mi × Ii − Ii−1 × |Q| − i (7)

n�

i=0

T vj Mi × Ii − Ii−1 × |Q| − i (8)

The two previously presented equations can be map-
ped to an incrementally polynomial time complexity al-
gorithm (as presented in Algorithm 2).

Algorithm 2 Process Time and Memory Simulation

1: Define totalT ime = 0.0
2: Define totalMemory = 0.0
3: Define the expected memory usage for a computer (i.e.

the sum of the expected memory usage for all processes)
as computerMemory

4: Define the vector (or queue) which contains running pro-
cesses as runningProcess[]

5: Define lastInteger = 0
6: for every process p in runningProcess do

7: Define p.expectedT ime integer part as I

8: Define p.expectedT ime decimal part as D

9: Define p index on the array as i

10: totalMemory += T(computerMemory) * ((I -
lastInteger) * (runningProcess.size - i) + 1)

11: totalT ime += D + (I - lastInteger) *
(runningProcess.size - i)

12: lastInteger = I

13: end for

14: return [totalT ime,totalMemory]

Further improvements were made to create a fitness
function of time complexity O . Using Equation 6,
an attempt was made in order to find the difference be-
tween the expected processing time before and after in-
serting a new process. Equation 5 represents the total
execution time associated to a certain process in the sys-
tem. Let a process pk, with processing time Ik Dk,
be inserted in the system at the queue index j. Let Ek

represent the estimated execution time of the inserted
process pk, which impacts in the execution time of all
processes already in the queue. Therefore,Ek is defined
in Equation 9. After inserting a process at the queue in-
dex j, the execution time of every process pi, which

was previously referred as Ei, is now called Ei. This
new nomenclature makes evident that the expected exe-
cution time has changed for every process. In Equation
10, the time associated to the process pk is presented.

Ek Ej−1 Dk Ik − Ij−1 × |Q| − j

where k j (9)

Equation 9 computes the expected execution time of
process pk (Ek) by considering the estimated execution
time Ej−1 of the previous process pj−1, the decimal
part of pk (Dk) and Ik − Ij−1 × |Q| − j deals
with a circular list to consume the integer part already
processed, similarly to the time calculations presented
in Equation 5.

Grid Process Scheduling Optimization using the Tabu Search 69

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

Now that a new process has been inserted in the
queue, the process pj , which was previously in index
j, moves to the position j and its expected time
now depends on Ek. Equation 10 illustrates this (notice
that we still refer to this process as pj , even though its
index has changed).

Ej Ek Dj Ij − Ik ×

|Q| − j (10)

We now define the remaining hatEi, for all i < k

and i > k, where k is the index where process pk was
inserted (k j). For processes pi ∀ i < j, Equation
5 can be used to determine the expected times straight-
forwardly. For processes pi ∀ i > j the multiplicative
factor n − i changes to n − i (re-
member that we are comparing the processes expected
times in the initial setup with the ones after the inser-
tion, therefore i is an index from the initial position,
and becomes i ∀ i > j in the final setup). This is
demonstrated in Equation 11.

Ei






¯̂
Ei−1 + Di

+(Ii − Ii−1)× ((n + 1)− i) i < j

¯̂
Ei−1 + Di

+(Ii − Ii−1)× ((n + 1)− (i + 1)) i > j

(11)

By maintaining the initial indices i, it is possible
to calculate the difference of the expected times for
each process pi before and after the insertion of pro-
cess pk. Using Equations 9, 10 and 11, we calculate

Ei − Ei ∀ pi, where Ei is the estimated time for the
process pi before the insertion of pk. The result is pre-
sented in Equation 12.

Ei − Ei






(Ii − Ii−1) + ((Ii−1 − Ii−2)
+ . . . + (I0 − I

−1) i < j

¯̂
Ei + Di +

Pj−1

a=0
(Ia − Ia−1)

+Dk + Ik − Ij−1 i ≥ j

(12)

These differences can be written in the form of
sums, as presented in Equations 13 and 14.

j−1�

i=0

Ei

j−1�

a=0

a�

b=0

Ib − Ib−1 (13)

Pn−1

i=j

¯̂
Ei =

(|Q| − j)× (
Pj−1

a=0
(Ia − Ia−1) + Dk + Ik − Ij−1)

(14)

Such equations represent the time to be added to the
total execution time of each process pi, initially in the
queue, after the insertion of process pk at the position
j. If these sums are added to Ek (the expected time for
pk), the total difference between the current expected
time and the time after the insertion is found (obviously
the time of pk must be considered integrally in the dif-
ference, since pk was not in the queue beforehand). So,
the total difference is defined in Equation 15, where Ii

and Di are the integer and decimal times expected for
each pi in the original queue (i.e. all the sums iterate
over the initial queue, not the one after pk is inserted,
thus i ranges from to |Q| −), and |Q| is the number
of processes initially at the queue.

Ek

|Q|−1�

i=0

Ei |Q|

j−1�

i=0

Ii − Ii−1 −

j−1�

i=0

Di Ik |Q| − j

|Q| − j Ij−1 Dk Ik (15)

All the sums considered by the equations only de-
pend on the current values. This behavior allows these
sums to be incrementally computed every time the al-
gorithm is executed. Then, in order to evaluate new so-
lutions, we consider the current computer status, thus,
taking advantage of previous computations and, there-
fore, making the algorithm faster.

The calculation of the memory considers the same
procedure. Let Ti be the associated memory calcula-
tion, which represents the total memory impact for pro-
cess pi after the insertion of process pk, and Mi be the
new total memory associated to every process after the
insertion. Again the new process pk is inserted at the
position j. The correspondent Ti is defined in Equation
16. When i < j, Mi Mi mk, since M0

�n
mi.

For i ≥ j, Mi Mi since Mi Mi−1 −mi−1.

Tmi






T (Mi + mk) × (Ii − Ii−1)(|Q| − i + 1) i < j

T (Mi) × (Ii − Ii−1)(|Q| − i + 1) i > j

T (Mi) × (Ii − Ik)(|Q| − i + 1) i = j

(16)

It can be observed that for values between .

and the total main memory, the function T . allows
that T a b T a T b . if both, a and
b, are in this range. This fitness function assumes that
every value for memory inside a function T . is in this
range in the following calculations.

The differences between the new and old associated
memory are defined in Equation 17.

70 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

Tmi − Tmi






T (Mi)(1 + (Ii − Ii−1))+
(T (mk) + 0.089)
(1 + (Ii − Ii−1)(|Q| − i + 1)) i < j

T (Mi)(Ik − Ij−1)(|Q| − i) i = j

0 i > j

(17)

The sum of the differences and Tmk are defined in
Equation 18.

n�

i=0

Tmi − Tmi

j−1�

i=0

T Mi Ii − Ii−1

T Mj Ik − Ij −

T mk . j Ik |Q| − j

j−1�

i=0

Ii (18)

Since the sums are incrementally updated at every
algorithm cycle, it allows aO complexity for the cal-
culation.

4.2.5 Tabu Search Algorithm

The algorithm starts by creating a fully random solu-
tion, since any solution will work, and setting it as the
current solution. Iteratively, a certain number m of ran-
dom parameters for the movement are generated. For
each one of the generated parameters, a movement is
executed over the current solution. The resulting solu-
tions are sorted out and the one with the best fitness is
chosen (lowest execution time). If the movement that
leads to it is in the Tabu list, the next solution is cho-
sen, and so on, until a solution, which is not tabued, is
found, or every solution is examined. The chosen solu-
tion is set as the current solution, and the correspondent
movement is inserted in the Tabu list for a certain num-
ber of iterations. At the end of the iteration, the current
solution is compared to the best one found and replaces
it when better.

The algorithm stops when a certain number of iter-
ations k is elapsed and no improvements were made to
the current solution.

5 Simulations

In order to validate our approach, several simulations
were conducted using SchedSim, a multicomputer en-
vironment simulator written by Mello et al. [6]. This
simulator allows the execution and comparison of dif-
ferent scheduling policies.

SchedSim was written in Java language, and has
an interface, SchSlowMig, which allows the implemen-
tation of scheduling algorithms. Once implemented,
the simulator will request computers to each incoming
process, hence allowing the scheduling policy to take
place.

SchedSim use probability distribution functions to
simulate the application arrival as well as its behavior.
It is parametrized using the number of computers in the
network and their characteristics, the number of appli-
cations, processes per application and the network com-
munication costs. It executes by generating applications
according to probability distribution functions and issu-
ing requests to the scheduler to distribute them. The
simulation calculates all the time spent in CPU, mem-
ory, hard disk and network operations, returning the av-
erage application response time (or execution time) and
the standard deviation. It also computes the time spent
by the scheduling policy.

5.1 Parametrization

Simulations were conducted using the following envi-
ronments: -node cluster and a -node grid, consid-
ering application sizes (number of processes) of and

processes. The number of applications ranged from
to . The simulations considered inter-message

intervals of around second (messages were gener-
ated according to an exponential probability distribu-
tion function with average of , million of instruc-
tions per second – this considers the number of instruc-
tions between consecutive message events). These mes-
sages are sent and received through the network (by
the processes of the application), characterizing inter-
process communication.

Applications dynamically arrive at the environments
after they start executing. The application allocation
cannot be static, since multiple runs are necessary to
acquire application specific parameters.

The capacity of every computing resource was gen-
erated by using Normal probability distribution func-
tions with the following averages:

1. Processing capacity – , MIPS (million of in-
structions per second);

2. Main memory capacity – , MBytes;

3. Virtual memory – , MBytes;

In the cluster scenario, all nodes are intercon-
nected through the same switch and, therefore, the
bandwidth and latency is the same. In the grid scenario,
all computers are physically organized into local

Grid Process Scheduling Optimization using the Tabu Search 71

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

area networks with one to five computers each (what
tends to be closer to an opportunistic grid).

The cluster nodes were connected through a Gigabit
Ethernet infrastructure with RTT (Round-Trip Time) of
. second, obtained from a benchmark by Mello

and Senger [6]. On the other hand, experiments were
carried out to characterize the latency in between the
grid nodes. Local, metropolitan and worldwide net-
works were analyzed and, according to results, we de-
fined an exponential probability distribution function
(with average . second) to model the network latency
behavior.

The Tabu-based logical network partitioning algo-
rithm was implemented to group the environment nodes
into smaller networks with at most computers. The
parameter m, this is the total number of random move-
ments per iteration, was set to . The number of total
iterations to the stop criterion k was set to . After k
iterations, if no better solution is found, the algorithm
stops. Simulations were executed in the SchedSim sim-
ulator [6] comparing our Tabu Search approach to other
scheduling policies.

5.2 Comparison to other Scheduling Policies

The proposed Tabu Search approach was compared, by
using simulations, to the following policies: Random
[21], Route [7] and RouteGA [4]. They were evaluated
under the same conditions. It is important to make clear
that only the approach proposed here makes the logical
partitioning. This partitioning does not physically mod-
ify the environment (but just reduces the search space
for feasible optimization solutions).

The Random algorithm randomly chooses a compu-
ter to allocate every process. The Route technique, pro-
posed by Mello and Senger [7], creates neighborhoods
by choosing computers with low communication cost.
When an application is launched on a certain compu-
ter, it is distributed over its neighbors, considering the
processing load and application runtime. The neighbor
may redistribute processes according to the migration
model proposed by Mello and Senger [5]. RouteGA
is an extension of Route, which considers the meta-
heuristic of Genetic Algorithms to select the best neigh-
borhood to distribute processes.

5.3 Results

Results, in terms of the average execution time of ap-
plications and confidence intervals of (in seconds),
are presented in Tables 5, 6, 7 and 8. The numbers rep-
resent the average response time and confidence inter-
vals for every policy.

We observe that this instance of the Tabu Search,
in most of the cases, presents better results than other
techniques. The considerably better results in grids are
consequence of the network logical partitioning, per-
formed before the process scheduling. This partition-
ing restricts the search space and improves the overall
meta-heuristic performance (it plays the important role
of defining a hierarchy for scheduling). In cluster envi-
ronments, the results were only slightly better than the
best available technique, which is RouteGA.

We also observe that the confidence interval was
considerably wide for the grid computing environment.
This happens to due there are few computers in every
local area network (up to) and the communication
costs in between computers are high. This simulates
the opportunistic-type of grid computing architecture.
Besides that, applications have more processes than the
number of computers per local area network, what tends
to require computers in different networks and, there-
fore, increases the execution time dispersion. On the
other hand, by executing the network logical partition-
ing, our Tabu Search approach considerably improves
such confidence interval due to the allocation of pro-
cesses in nearby regions (according the inter-computer
communication costs). Such allocation, reduces the dis-
persion of the execution time, ensuring higher perfor-
mance to applications. Consequently, by using hierar-
chical scheduling, we obtain application performance
improvements.

Table 5: Results for Cluster with 32 computers and applications up
to 32 processes

Apps Random Route RouteGA Tabu

10 3.2493± 2.4423± 1.9295± 2.1011±
0.1582 0.2502 0.0423 0.0319

20 20.195± 15.394± 8.2093± 7.5915±
0.2948 47.857 0.4221 0.1306

30 19.975± 15.042± 9.4902± 7.7338±
0.4704 40.685 1.0870 0.2707

40 13.565± 12.729± 9.5049± 7.7394±
0.1997 11.872 0.2350 0.0929

50 41.046± 20.865± 14.856± 12.064±
0.8057 18.095 1.1616 0.3185

60 45.616± 37.250± 22.024± 21.576±
2.2791 33.261 0.9666 0.9009

70 55.718± 42.751± 27.567± 24.397±
1.5792 42.725 0.7663 0.7997

80 53.241± 46.781± 29.107± 25.953±
1.7958 57.306 1.5444 2.5727

90 120.04± 113.19± 60.053± 58.722±
3.5824 44.081 4.5557 2.9846

100 172.61± 160.44± 85.808± 81.985±
4.9879 48.078 4.8041 4.1718

The corresponding cost of each algorithm (in sec-
onds) is presented in Figures 2, 3, 4 and 5. We ob-
serve that the Tabu Search presents lower costs when
compared to other techniques such as RouteGA, while
keeping costs comparable to methods such as Random

72 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

Table 6: Results for Cluster with 32 computers and applications up
to 128 processes

Apps Random Route RouteGA Tabu

10 4.5429± 3.8921± 3.4337± 3.7729±
0.4759 0.2230 0.1812 0.2286

20 13.575± 12.463± 10.806± 10.069±
5.6920 2.9334 0.7079 0.9039

30 14.706± 13.025± 11.331± 10.119±
7.8257 7.7339 1.5323 0.8143

40 15.157± 15.009± 14.575± 11.516±
3.2099 7.6891 1.2135 0.6116

50 15.660± 14.345± 15.953± 12.337±
1.7992 0.4912 0.7219 0.3532

60 78.386± 69.323± 40.034± 42.242±
385.25 87.872 9.4197 10.772

70 81.029± 70.640± 50.024± 44.536±
351.45 40.463 4.6634 6.7419

80 83.091± 75.105± 51.633± 46.073±
238.78 91.058 11.584 16.828

90 328.59± 311.69± 172.09± 167.17±
568.13 138.08 31.060 33.258

100 544.14± 533.22± 292.48± 279.83±
2085.7 269.40 55.243 33.044

Table 7: Results for Grid with 512 computers and applications up to
32 processes

Apps Random Route RouteGA Tabu

10 95.906± 104.04± 19.668± 7.5879±
13208. 9734.7 111.25 5.1062

20 263.12± 332.69± 39.809± 20.128±
42801. 38046. 913.85 62.788

30 337.78± 299.05± 41.720± 21.288±
54501. 24436. 740.04 124.46

40 239.23± 236.32± 27.513± 15.434±
29344. 21958. 480.62 41.274

50 323.04± 291.93± 27.968± 19.308±
26934. 20039. 259.21 44.102

60 434.90± 636.46± 83.579± 53.369±
24922. 153632 961.32 299.19

70 617.47± 598.82± 178.80± 62.614±
399973 383541 59228. 546.76

80 988.35± 966.52± 488.94± 48.155±
167369 170541 125555 121.96

90 619.89± 551.21± 155.03± 69.901±
63420. 82274. 5075.9 435.07

100 558.69± 475.73± 148.71± 70.304±
134920 62375. 1082.6 76.408

and Round-Robin in most of the situations.

6 Conclusions

Motivated by the exponential complexity and meta-
heuristics results, this paper proposes a new process
scheduling approach using the Tabu Search. Results
confirmed that the proposed approach presents better
results than other techniques, considering different en-
vironments. The approach also reasonably keeps low
costs to compute the scheduling optimization, due to its
efficient O fitness function, and the logical network
partitioning performed beforehand.

In clusters with computers, the approach slightly
outperforms other techniques. It does keep low costs,
mostly because of the low complexity fitness function.

Table 8: Results for Grid with 512 computers and applications up to
128 processes

Apps Random Route RouteGA Tabu

10 67.42± 74.14± 66.161± 29.29±
2294 5077 2461 215

20 123.7± 137.6± 60.475± 34.83±
6650 196 1563 445

30 153.9± 157.8± 51.146± 31.35±
4346 5753 1425 364

40 136.0± 140.9± 50.963± 31.10±
4213 5067 1661 546

50 125.3± 147.8± 41.94± 25.51±
2991 4148 908.2 380

60 400.0± 367.3± 165± 141±
16840 17652 5570 2859

70 624± 647± 348± 211±
428935 421454 253740 41041

80 1207± 1211± 968± 365±
477025 488172 482697 353137

90 548.6± 530.5± 261± 187±
60275 44366 14388 4033

100 545.4± 509.2± 266± 188±
23345 23741 3348 1271

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

C
o

st
 (

se
cs

)

Number of applications

Random
RouteGA

Tabu
Route

Figure 2: Costs for the 32-node Cluster with applications up to 32

processes

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

C
o

st
 (

se
cs

)

Number of applications

Random
RouteGA

Tabu
Route

Figure 3: Costs for the 32-node Cluster with applications up to 128

processes

In larger clusters and grids, the Tabu Search presents
a considerably better result and carry on keeping low

Grid Process Scheduling Optimization using the Tabu Search 73

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

C
o

st
 (

se
cs

)

Number of applications

Random
RouteGA

Tabu
Route

Figure 4: Costs for the 512-node Grid with applications up to 32

processes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

C
o

st
 (

se
cs

)

Number of applications

Random
RouteGA

Tabu
Route

Figure 5: Costs for the 512-node Grid with applications up to 128

processes

costs, due primarily to the logical partitioning of the
network in the first stage of the algorithm. Those results
show a general superior performance of Tabu Search in
the considered environments.

The low costs observed in the simulations are a con-
sequence of the flexibility of the stop criteria combined
to a low strictness in the movement, and the low com-
plexity fitness function adopted. The partitioning of
the network environment also considerably reduces the
search space (as observed in the section 2), therefore
allowing the usage of the divide-and-conquer approach
which is faster.

The tolerant stop criterion allows the algorithm to
stop quickly, choosing a solution without an exact
search. The reduced strictness diminishes the num-
ber of evaluated candidate solutions what decreases the
time consumed by the algorithm, at the expense of wast-
ing potentially good solutions.

Results presented in Table 8 confirm that, for grids,

the Tabu Search presents better results, due to the en-
vironment partitioning. Other techniques have been un-
able to explore the search space so efficiently, as they do
not employ such method. The exponentially larger un-
partitioned search spaces are much harder to explore us-
ing meta-heuristics, exponentially increasing the costs
to achieve high quality results. Furthermore, the logical
partitioning also considerably reduced the confidence
interval of execution time for grid environments, ensur-
ing higher performance to applications. This confirms
that by using hierarchical scheduling, we obtain appli-
cation performance improvements.

References

[1] A. Abraham, R. B. and Nath, B. Nature’s
heuristics for scheduling jobs on computational
grids. In 8th IEEE International Conference on

Advanced Computing and Communications (AD-

COM 2000), India, 2000.

[2] Aarts, E. and Korst, J. Simulated annealing and
Boltzmann machines: a stochastic approach to

combinatorial optimization and neural comput-

ing. John Wiley & Sons, Inc., New York, NY,
USA, 1989.

[3] Aha, D. W., Kibler, D. F., and Albert, M. K.
Instance-based learning algorithms. Machine

Learning, 6:37–66, 1991.

[4] de Mello, R. F., Filho, J. A. A., Senger, L. J., and
Yang, L. T. RouteGA: A Grid Load Balancing
Algorithm with Genetic Support. In 21st Interna-
tional Conference on Advanced Networking and

Applications, pages 885–892, Aug. 2007.

[5] de Mello, R. F. and Senger, L. J. A new migration
model based on the evaluation of processes load
and lifetime on heterogeneous computing environ-
ments. In International Symposium on Computer

Architecture and High Performance Computing -

SBAC-PAD, page 6, 2004.

[6] de Mello, R. F. and Senger, L. J. Model for sim-
ulation of heterogeneous high-performance com-
puting environments. In 7th International Confer-
ence on High Performance Computing in Compu-

tational Sciences – VECPAR 2006, page 11, 2006.

[7] de Mello, R. F., Senger, L. J., and Yang, L. T. A
Routing Load Balancing Policy for Grid Comput-
ing Environments. In The IEEE 20th International
Conference on Advanced Information Networking

and Applications (AINA 2006), pages 1–6. IEEE
Computer Society Press, Apr 2006.

74 Eberle, A. M., Mello, R. F. de

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

[8] Dorigo, M. and Stützle, T. Ant Colony Optimiza-
tion. MIT Press, 2004.

[9] Feitelson and Nitzberg. Job characteristics of
a production parallel scientific workload on the
NASA ames iPSC/860. In Feitelson, D. G. and
Rudolph, L., editors, Job Scheduling Strategies for
Parallel Processing – IPPS’95 Workshop, volume
949, pages 337–360. Springer, 1995.

[10] Freeman, J. A. and Skapura, D. M. Neural net-

works: algorithms, applications, and program-

ming techniques. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1991.

[11] Garey, M. R. and Johnson, D. S. Computers and
Intractability : A Guide to the Theory of NP-

Completeness. Series of Books in the Mathemati-
cal Sciences. W. H. Freeman, January 1979.

[12] Glover, F. and Laguna., M. Tabu Search. Kluwer,
Norwell, MA, 1997.

[13] Goldberg, D. E. Genetic Algorithms in Search,

Optimization and Machine Learning. Kluwer
Academic Publishers, Boston, MA., 1989.

[14] Harchol-Balter, M. and Downey, A. B. Exploit-
ing Process Lifetimes Distributions for Dynamic
Load Balancing. ACM Transactions on Computer

Systems, 15(3):253–285, August 1997.

[15] Hopfield, J. J. Neural networks and physical sys-
tems with emergent collective computational abil-
ities. Neurocomputing: foundations of research,
pages 457–464, 1988.

[16] Lageweg, B. J. and Lenstra, J. K. Private commu-
nication, 1977.

[17] Pineau, J.-F., Robert, Y., and Vivien, F. The im-
pact of heterogeneity on master-slave scheduling.
Parallel Comput., 34(3):158–176, 2008.

[18] Senger, L. J., de Mello, R. F., Santana, M. J., and
Santana, R. H. C. An on-line approach for classi-
fying and extracting application behavior on linux.
In High Performance Computing: Paradigm and

Infrastructure (to appear). John Wiley & Sons,
2005.

[19] Senger, L. J., Mello, R. F., Santana, M. J., and
Santana, R. H. C. Aprendizado baseado em in-
stâncias aplicado à predição de características de
execução de aplicações paralelas. Revista de In-
formática Teórica e Aplicada, 14:44–68, 2007.

[20] Senger, L. J., Mello, R. F., Santana, M. J., San-
tana, R. H. C., and Yang, L. T. Improving schedu-
ling decisions by using knowledge about parallel
applications resource usage. In High Performance
Computing and Communications: First Interna-

tional Conference (HPCC), LNCS 3726, volume
3726, Sorrento, Itália, September 2005.

[21] Shivaratri, N. G., Krueger, P., and Singhal, M.
Load distributing for locally distributed systems.
IEEE Computer, 25(12):33–44, 1992.

[22] Silva, F. A. B. D. and Scherson, I. D. Improving
Parallel Job Scheduling Using Runtime Measure-
ments. In Feitelson, D. G. and Rudolph, L., ed-
itors, Job Scheduling Strategies for Parallel Pro-
cessing, pages 18–38. Springer, 2000. Lect. Notes
Comput. Sci. vol. 1911.

[23] Tanenbaum, A. S. Modern Operating Systems.
Prentice Hall, New Jersey, 1992.

[24] YarKhan, A. and Dongarra, J. Experiments with
scheduling using simulated annealing in a grid
environment. In GRID ’02: Proceedings of the

Third International Workshop on Grid Comput-

ing, pages 232–242, London, UK, 2002. Springer-
Verlag.

Grid Process Scheduling Optimization using the Tabu Search 75

INFOCOMP, v. 9, n. 3, p. 61–75, set. 2010

