
Extreme Learning of Programming – A Methodology Based on eXtreme
Programming for Programming Teaching-Learning

Eustáquio São José de Faria 1

Keiji Yamanaka 2
Josimeire do Amaral Tavares 3

Faculdade de Engenharia Elétrica - Universidade Federal de Uberlândia, Uberlândia, Minas Gerais

1 eustaquio@pucminas.br
2keiji@ufu.br

3josycbelo@gmail.com

Abstract. The present work has been developed intending to propose the usage of collaborative practices in

teaching programming in such disciplines. A methodology for programming teaching-learning named eXtreme

Learning of Programming – XLP has been developed. The methodology is based on an agile methodology

known as eXtreme Programming (XP) and on a Cognitive Programming Model. To justify the usage of this

methodology, it is well known that the application of Pair Programming contributes to the increase of students’

permanence in computer courses or alike due to motivation, sense of responsibility, and knowledge sharing

provided by the social-cognitive conflict obtained from the pairings. Empirical researches are being done in an

Information Systems course. Partial obtained results can be seen at the end of the paper.

Keywords. Cognitive Programming Model, eXtreme Learning of Programming, eXtreme Programming,
Methodology, Pair Programming, Socio-Cognitive Conflict.

 (Received January 11, 2010 / Accepted July 28, 2010)

1. Introduction
Some graduate students, and even post-graduate ones,

are not used to discipline and systematization needed

for building programs. This is one of the factors

responsible for the high rate of flunking in computing

courses. Based on empirical data collected during the

teaching of disciplines such as “Algorithms and

Programming Techniques” and “Algorithms and Data

Structures” between 2001 and 2007, it has been

observed an over 35% flunking rate. Intending to

identify the reasons and propose viable solutions,

during discussions with other teachers, it has been

observed that this rate is generally over 15% in

disciplines such as “File Organization and

Management” and “Programming Languages”. These

disciplines form the basic circle of computer

programming and are the ones that most contribute for the

high level of evasions observed in the first semesters in

most computer courses.

By doing a bibliographical study on the area, it has

been noted how long the problem lasts. According do

Soloway [8], one of the problem’s causes is related to the

fact that most of programming books focuses on syntax

and semantics of the languages, though such topics are not

the biggest problem faced by newbies when programming.

There is no doubt that the real problem faced by newbies is

in “how to join all the pieces together” grouping and

coordinating the program components. It is necessary much

more than teaching them specific-language instructions;

what it is really necessary is teaching newbies how to

abstract a problem, its solutions and the acknowledgment

of finding solutions to solve it.

The present work intends to explore the benefits

of the strategy of working in teams. The pairing of

developers, known as Pair Programming, is a practice

that shows a great pedagogical potential in the

teaching of computer programming techniques.

It has been proposed a methodology for

programming teaching-learning based on the concepts

of eXtreme Programming (more specifically, in Pair

Programming) and in cognitive programming model

developed by Lui and Chan [5]. The methodology has

been nominated eXtreme Learning of Programming –

XLP. The general goal of this research is to verify

whether its usage contributes or not for a greater

permanence of students in initial disciplines of

computer programming in computer courses or alike.

The following sections describe (2) historical

informations about Pair Programming; (3) the Lui and

Chan’s cognitive programming model; (4) the

description of XLP methodology; (5) experiments in

an Information Systems course; and (6) the

conclusions and further works.

2. Pair Programming
Pair Programming (PP) is a collaborative practice of

software development – which has been added to

eXtreme Programming (XP) as one of its 12 key-

practices – in which two developers work at the same

time in a single computer and in the same

programming task. One of the developers is

commonly called Driver. The driver controls both the

keyboard and mouse, and also does the programming

task. The other, known as the Navigator, watches the

driver’s work and offers advice and ideas. The

navigator constantly checks the entered data to

identify tactical and strategic mistakes, while he or

she looks for syntax and logical errors as well as

implementations that disrespect pre-established rules

imposed during the project. The developers switch

roles at regular intervals.

PP is very promising to active students that learn

by social interaction [10] and professionals that have

abilities in collaborative work and communication – it

occurs because PP is based on Piaget’s theory on

social-cognitive conflict. His theory describes that

intelligence is not an individual property, it is a

relational process between the person and other

people that build and organize, together, their actions

towards the physical and social environment (DOISE

and MUGNY [3] apud GUERRERO [4]) – by such

perspective, it is believed that conflicts or even

questioning between the developers who participate in

pairing sessions generates knowledge whatsoever.

Another interesting PP aspect is the continuous

software revision. By continuously revising the project,

codification and tests, the navigator guarantees the

production of a better-quality system in relation to a similar

project developed individually – it is important to point out

that such revision is also a continuous source of conflict

and questioning.

However, PP is not a new practice. Still in 1995,

Constantine [1] has done one of the first reports in which

has been observed the usage of paired developers in

software development [6]. In the same year, Coplien [2]

published his book about software production process

suggesting an organizational standard of paired

development.

These reports have made software development

specialists curious. Motivated by this curiosity, Nosek [7]

has published an experiment on PP and has concluded that

such practice has increased 100% the developers’

performance, and also has made the problem-solving

process pleasurable. Nonetheless, Williams [9], after

having applied a structured experimented in a Software

Engineering classroom, in Utah University, has confirmed

the reports of [7] and has shown that software development

with PP results in a more reliable product due to a lesser

bug rate.

Since then, several studies have been done to verify

PP’s benefits in the software development process and in

the teaching-learning process of programming techniques

in computer-related courses. The great consensus among

the studies found in the literature involves the usage of PP

as key-practice in the teaching of programming techniques.

Even the authors of market-like works (researches done

with professional developers) believe in the benefits PP

aggregates to the teaching-learning process.

3. Lui and Chan’s Cognitive Programming Model

According to section 2, many studies on Pair Programming

have been found in the literature. Such papers have been

unanimous on the pedagogical aspect of Pair Programming.

However, the reported experiments have not described any

structured model to articulate Pair Programming, except for

Lui and Chan’s work [5]. The authors have proposed a

cognitive programming model called CPM (Cognitive

Programming Model) in which developers should, during

software development activities, identify the problem and

develop a solution passing by six mental activities: (1)

Definition; (2) Representation; (3) Model; (4) Schema; (5)

Extreme Learning of Programming – A Methodology Based on eXtreme Programming for Programming Teaching-Learning 77

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

Algorithm; and (6) Code. It’s important to point up

that CPM also applies to individual programming. A

description of each of the six mental activities can be

seen below:

• Definition – When developers receive user

requirements or programming tasks, it is

expected that they can be able to recognize

problem’s basic perceptive elements, so they can

understand it;

• Representation – Once the problem becomes

understandable to developers, they must explore

variables, functions, states, and all their inter-

relationships provided by the problem, which can

be used to represent and formalize it;

• Model – a representation merely describes the

variables’ and functions’ states that are given by

the problem. Unfortunately, many suppositions

or events are not completely described. To

completely model the system’s behavior in a way

that solves the problem, it might be necessary,

inductively or deductively, the inference of

unknown states in its description. It must be

known the way in which the possible conditions

(or the facts) are deducted or inducted;

• Schema –Scheming is the superficial structure

that corresponds to a textual structure of a

program, in order words, program explicit units,

and the way they are arranged;

• Algorithm – Next level corresponds in getting

deeper in the superficial structure. Algorithm is

the description of the structure that corresponds

to the representation of relations and indicates

sequentially the logic and its control flow.

Frequently, the logic is expressed in

mathematical symbols, pseudo-commands (for

instance, “read variable X”) or structured

language. It is important to point out that a

solution for a determined problem is obtained

during the building of the algorithm. This

solution can be efficient, effective, and elegant or

not.

• Code – The algorithm must eventually be

expressed in computer language, so it can be

executed. In a semiotic sense, it is expected that

codification corresponds simply to the

transformation of an algorithm’s syntax to

programming language syntax without semantics

change. However, from a compiler’s perspective,

a program with correct syntax might not be

executed due to hardware restrictions, for

instance, lack of memory. Thus, coding can be very

different from constructing algorithms. On such

aspect, the most effective solution, or the most

efficient one not always will correspond to the most

elegant one.

The six mental activities are easily distinguished when

developing solutions to complex problems. In simple

problems, they are normally grouped and are hardly

noticed. However, stimulating the distinction of these

activities can lead students to comprehend the process of

solving computer problems better.

4. eXtreme Learning of Programming - XLP
Although many practices studied in the current section can

also be applied to individual programming, it is believed

that they obtain better results when they are used to

promote collaborative programming learning.

XLP is based on the following theory: “When busy

with a project and test planning activities, before the

coding activity (followed by continuous revision), paired

students produce better-quality software and promote

knowledge share between each other”. This means that

students contribute to their partner’s learning during paired

project, coding and test activities and, as a result, produce

better software. This theory is in agreement with the

extreme programming theory, when defending the

importance of knowledge sharing provided by Pair

Programming.

It’s believed that 7 out of 12 XP key-practices help the

application of the XLP, which are: (1) planning; (2) simple

project; (3) tests; (4) continuous project improvement; (5)

Pair Programming; (6) collective ownership; and (7)

standard code. According to these 7 XP key-practices and

to the cognitive programming model proposed by Lui and

Chan [5], the students should:

1. During planning practice: recognize basic perceptive

elements of the problem to comprehend it

(“definition”); describe and classify the current

software’s needed requirements; define the scope,

explore variables, functions, states, and all their inter-

relationships provided by the problem to represent it

and formalize it (“representation”); estimate the work

due date; determine the pairing process to be followed

(who starts as pilot and who starts as a navigator, the

elapsed time for each role switch, the preferred

activities by each team member, etc.); elaborate a

complete declaration of system’s goals and determine

the standard rules to be followed during project and

coding activities;

78 Faria, E. S. J. de et al.

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

2. During project practice: recognize the way in

which the possible facts or states are deducted or

inducted (“Model”); develop, based on problem’s

modeling, the use-case diagrams and their

descriptions and the class diagrams; develop the

activity diagrams (“Scheme”); and produce the

algorithm in order to indicate the logic and its

controlling flow sequentially (“Algorithm”);

3. During test practice: build test cases for each use-

case previously produced; produce decision

tables (“Representation”); and a test table

composed by the needed identified variables;

4. During Pair Programming practice: produce,

based on algorithm and standardized rules

previously defined, the program’s source code

(“Code”); revise his/her partner’s work on each

line added to the code; request role changes with

his/her partner (between pilot and navigator); and

try to find tactical and strategic errors in the code

during the development;

5. During continuous software improvement

practice: try to get to know or produce more

elegant and/or efficient alternatives for problem-

solving;

6. Comprehend the importance of software

collective ownership, which involves the

developers’ acknowledgement about his/her

responsibility for the production of a better-

quality system and for the knowledge sharing

with his/her partner. In this sense, it should not

be allowed, for instance, thoughts like “my

partner has chosen a bad strategy…” or “my

partner does not know this instruction…”, on the

contrary, thoughts like “we have chosen a bad

strategy…” or “we do not know this

instruction…” must be encouraged;

7. Promote standard code practice, in the sense of:

producing standard rules of project and code

during planning practice; and continuously revise

project, tests, Pair Programming and continuous

project improvement practices.

5. PP in an Information Systems Course
The methodology adopted in this work is comprised

from three different statistical approaches, but with a

common purpose: to verify or not the effectiveness of

Pair Programming technique for students of

Information Systems course. The first approach

consists in comparing the dropout rate in the

discipline Algorithms and Programming Techniques

(APT) when Pair Programming method is used and when

the traditional method is adopted. The second approach

describes global data collection of a sample of students

who had attended this same discipline under the method of

Pair Programming; and the last approach demonstrates the

analysis of student development who had participated in an

extra-class study group of Pair Programming.

1st Approach: to carry out the first approach, it was

used the Pair Programming technique with students

enrolled in the discipline APT during the Spring/2008

semester. After that, it was analyzed the history of previous

groups (since year 2000) in this same discipline using data

collected at the Academic Secretariat. It was chosen, as an

analysis of variables, the number of dropouts in each

semester the discipline had had. Dropouts were considered

those who had dropped out of the discipline, those who had

not taken the global and special evaluation, and the ones

who had failed for not attending the classes. From the

analysis of these behaviors, the ratios of dropouts were

obtained from the beginning of the course. This ratio

consists in dividing the amount of dropouts by the total

amount of students registered for the discipline.

From the ratios of dropouts in each period, a

parameter study on dynamic behavior was necessary. It

was observed a satisfactory difference among the data of

the first semester of academic year 2008 in relation to those

analyzed school periods; however, the aim of the present

work was to verify the statistical meaning of this

difference.

To perform statistical calculations the following

formulas were used:

1) Ratio of proportions:

Where:

X: Number of dropouts in the group

n: Total number of students in the group

2) Formula for calculating the weighted Ratio:

Where:

x1: Number of dropouts in 2008 group

x2: Number of dropouts in comparative group

n1: Total number of students in 2008 group

n2: Total number of students in comparative group

Extreme Learning of Programming – A Methodology Based on eXtreme Programming for Programming Teaching-Learning 79

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

3) Formula for hypothesis testing:

Results found for calculation of inference

statistics () were compared with the value of

normal approach equals to 1.65 (level of significance

equals to 0, 10 � � = 0.1), obtained with a statistical

band Table that was exactly proposed for inference

problems in data statistics, so:

1. For -1.65 � � 1.65, it is accepted H0

(with a hypothesis of 90% sure, the difference

between the ratio of dropouts of 2 groups is not

statistically significant).

2. For < -1.65 and > 1.65, it is

rejected H0 and accepted H1, (with a hypothesis

of 90% sure, the difference between the ratio of

dropouts in two groups must be considered

statistically significant).

2nd Approach: one of the goals was to evaluate

the satisfaction and skills by using the pairing

technique. A questionnaire was applied to students

who attended the APT course in the Spring/2008

semester. With the application of a questionnaire, it

was possible to analyze and verify student’s

satisfaction during the pairing sessions in lab classes

(practical class-based programming language).

3rd Approach: the third approach aimed to

analyze the development of students who participated

in the extra-class course of Pair Programming. A

study group was created and many students of all

grades were registered – making the sum of 30

students. The students attending this course were

submitted to XLP methodology for four hours a

week, being two hours on Fridays and two hours on

Saturdays. Students were required to develop

programs and solve some logic exercises based on It

was requested that the participants developed

programs and solved some logic exercises based on

dynamics directed toward pair work.

The students were trained, since the first

meeting, in collaborative skills. Rotation among pairs

was encouraged with the purpose to find out which

partners were more compatible or identified better

with each other - producing activities more efficiently.

5.1 The Experiment

As aforementioned, for the first approach development, it

was used data from the Academic Secretariat that can be

observed in Table 1.

Table1: Students History in APT Disciplines.
Class-Semester-

Year
Students
Quantity

Dropouts
Quantity

Dropout
Ratio

1—1—2000 58 8 0.138

1—2—2000 65 12 0.19

1—1—2001 37 7 0.19

2—1—2001 40 9 0.23

1—2—2001 37 7 0.19

2—2—2001 39 15 0.39

1—1—2002 40 12 0.30

2—1—2002 43 6 0.1395

1—2—2002 26 6 0.23

2—2—2002 35 5 0.143

1—1—2003 41 7 0.17

1—2—2003 46 20 0.44

1—1—2004 61 30 0.49

1—2—2004 44 18 0.41

1—1—2005 50 9 0.18

1—2—2005 28 9 0.32

1—1—2006 54 8 0.15

1—2—2006 35 10 0.29

1—1—2007 33 20 0.61

1—1—2008 50 7 0.14

1st Approach: as previously mentioned, it was defined

as nullity hypothesis (H0) the equality between the dropout

ratio in the discipline Algorithms and Programming

Techniques in the 2008 group and in other groups.

Similarly, the alternative hypothesis (H1) considers

the difference among all the ratios which were compared in

each test. The ratio of 2008 dropouts is constant, once it

was compared to those ratios found in other researches.

It was defined for all comparisons that:

H0: �1= �2

H1: �1� �2

Where �1 always corresponds to the ratio of 2008

dropouts and �2 corresponds to the ratio of dropouts of

group who is being compared to.

Only the first test (carried out with 2007 group) is

described below. The results of other tests can be found in

Table 2.

1° Test: 2008 Group versus 2007 group:

�1: Ratio of dropouts in 2008 group = 0.14

�2: Ratio of dropouts in 2007 group = 0.61

x1: Number of dropouts in 2008 group = 7

x2: Number of dropouts in 2007 group = 20

80 Faria, E. S. J. de et al.

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

n1: Total number of students in 2008 group = 50

n2: Total number of students in 2007 group = 33

According to the formula for the weighted ratio:

Solving the Formula for the hypothesis testing,

the following results were obtained:

Conclusion to the 1st test:

As 4, 48 > 1.65, the hypothesis is rejected with

90% sure that the dropouts of population ratios are

similar.

Still, remaking the comparison with a level of

significance of 0.05 and normal approach of 1.96, which

corresponds to 95% sure, it is concluded that the

population ratios of dropouts are not similar, once that 4.48

> 1.96.

Using a level of significance of 0.01, still, equity is

rejected between the hypotheses. That is, with 99% sure we

can conclude that the population ratios of dropouts are not

similar.

Results have demonstrated that the difference is

statistically significant as 90% as 95% and 99% sure, what

is considered very positive for the research.

Table2: Hypothesis Tests Results.

Tests Compared Classes Students
Number

Dropouts
ratio

Zcal Conclusions

50 0.14 1 1—1—2008 vs. 1—1—2007

33 0.61

4.48

STATISTICALLY

SIGNIFICANT

50 0.14 2 1—1—2008 vs. 1—2—2006

35 0.29

1.71

STATISTICALLY

SIGNIFICANT

50 0.14 3 1—1—2008 vs. 1—1—2006

54 0.15

0.147

NOT STATISTICALLY

SIGNIFICANT

50 0.14 4 1—1—2008 vs. 1—2—2005

28 0.32

1.875

STATISTICALLY

SIGNIFICANT

50 0.14 5 1—1—2008 vs. 1—1—2005

50 0.18

0.55

NOT STATISTICALLY

SIGNIFICANT

50 0.14 6 1—1—2008 vs. 1—2—2004

44 0.41

2.94

STATISTICALLY

SIGNIFICANT

50 0.14 7 1—1—2008 vs. 1—1—2004

61 0.49

3.89

STATISTICALLY

SIGNIFICANT

50 0.14 8 1—1—2008 vs. 1—2—2003

46 0.44

3.15

STATISTICALLY

SIGNIFICANT

50 0.14 9 1—1—2008 vs. 1—1—2003

41 0.17

0.40

NOT STATISTICALLY

SIGNIFICANT

50 0.14 10 1—1—2008 vs. 2—2—2002

35 0.143

0.04

NOT STATISTICALLY

SIGNIFICANT

50 0.14 11 1—1—2008 vs. 1—2—2002

26 0.23

0.99

NOT STATISTICALLY

SIGNIFICANT

50 0.14 12 1—1—2008 vs. 2—1—2002

43 0.1395

-0.0069

NOT STATISTICALLY

SIGNIFICANT

50 0.14 13 1—1—2008 vs. 1—1—2002

40 0.30

1.86

STATISTICALLY

SIGNIFICANT

50 0.14 14 1—1—2008 vs. 2—2—2001

39 0.39

2.69

STATISTICALLY

SIGNIFICANT

50 0.14 15 1—1—2008 vs. 1—2—2001

37 0.19

0.63

NOT STATISTICALLY

SIGNIFICANT

50 0.14 16 1—1—2008 vs. 2—1—2001

40 0.23

1.11

NOT STATISTICALLY

SIGNIFICANT

50 0.14 17 1—1—2008 vs. 1—1—2001

37 0.19

0.625

NOT STATISTICALLY

SIGNIFICANT

50 0.14 18 1—1—2008 vs. 1—2—2000

65 0.19

0.70 NOT STATISTICALLY

SIGNIFICANT

50 0.14 19 1—1—2008 vs. 1—1—2000

58 0.138

-0.03 NOT STATISTICALLY

SIGNIFICANT

Extreme Learning of Programming – A Methodology Based on eXtreme Programming for Programming Teaching-Learning 81

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

Among tests that were carried out, 8 (eight)

rejected the equality among the dropout ratios. And 5

(five) of these 8 (eight) tests also rejected, 95% sure,

the equality among the ratios. On the other hand, 11

tests demonstrated that the ratios are similar, once

they did not reject the equality among them,

representing for H0:�1=� 2.

2nd Approach: a questionnaire was applied to

students for developing the 2nd approach. It consisted

in giving this questionnaire to students who attended

the APT discipline and were submitted to the Pair

Programming technique in the Spring/2008 semester.

Students were asked to answer the questionnaire

about the difficulty they had had in computer

programming. Considering all the interviewees, 91%

said to have difficulty in computer programming, as it

can be observed in Figure 1.

91%

9%
0%

50%

100%

Yes No

Figure1: Students’ Difficulties in Programming

Students’ evaluation concerning Pair

Programming technique was analyzed. Under this

aspect, 44% of interviewees considered it an excellent

technique, while other 56% said the technique was

good. Besides the “excellent and good options”, there

were the “regular and poor options”, but none of the

interviewees chose these two last options. This data

can be detailed observed in Figure 2.

44%

56%

0%

10%

20%

30%

40%

50%

60%

Very Good Good

Figure2: Pair Programming Evaluation

Among the PP most noticed advantages by

students, it can be distinguished at first place: “a

better strategy for developing programs due to partner

help” (80% of students claimed it as an advantage). In

second place we can highlight: “Information sharing” (55%

mentioned about that), and in third place: “interaction

between the pair members” (cited by 30% of interviewers).

They also cited: “better confidence in programming” and

“small basic code development”.

Interviewees were also questioned about the observed

disadvantages. The largest representation was: “the partner

can not collaborate with the development”. However, this

disadvantage can be minimized by the pair- pressure when

the partner demands an active attitude from his partner.

Students were searched about the influence of Pair

Programming in computer programming education. Among

the interviewees, 94% affirmed that the technique has some

influence on computer programming learning. Only 6%

answered negatively, as can be observed in Figure 3.

94%

6%
0%

50%

100%

Yes No

Figure3: Influence of Pair Programming in the

Programming Learning

Considering this question, it was also verified that the

Pair Programming technique has assisted the learning

process of APT (20% of interviewees answered that it did

not help, while 70% of interviewees said that it did, the

technique aided them in their learning, and other 10% did

not express their opinions). Some students still justified

their negative question by saying that they had had little

contact with this technique. Others, in turn, when they

answered yes, they emphasized their experience through

statements as the ones that follow:

� “The sharing of questions and answers develops

programming skills.”

� “Questions to be cleared by the teacher were

discussed in pairs, what has generated a lot of

knowledge about the topic.”

� “Because we exchanged information, we had many

doubts cleared which made computer learning easier.”

� “I have learned a lot from my partner. By discussing

with him, I figured out how a determined algorhytm

82 Faria, E. S. J. de et al.

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

was done improving my performance in

programming”.

Interviewees were asked if they considered the

technique in teaching computer programming

interesting as a discipline. Only 9% of students

answered negatively, while 91% of interviewees

answered positively (Figure 4).

91%

9%
0%

20%

40%

60%

80%

100%

Yes No

Figure4: Interest in Teaching Programming by the

Use of Pair Programming Technique

According to the data collected, it was verified

that students liked the experience of learning by

working in pairs, and most of them believe that the

application of Pair Programming technique a useful

tool for learning computer programming.

3rd Approach: This stage of the work aims to

analyze, in a perceptive way, the behavior and

development of students who attended the extra-class

course on Pair Programming. So, instructors observed

the student’s behavior during the classes, as well as

their attitude, relationship with their partner, and

wiliness to work in pairs. Therefore, it can be

highlighted an evolution towards interaction between

the partners. At the beginning of the paring process,

the students demonstrated a shy behavior that was

minimized along the term.

It was realized that some students had difficulties

in keeping their position (navigator or pilot), so when

they identified errors, “they tried” to correct them

immediately, possessing the keyboard, even when

they acted as the navigator.

It was also elaborated a questionnaire which was

filled by the students during an extra-class course of

Pair Programming. This questionnaire aimed to

identify students’ level of satisfaction due to pairings

as well as their own development. Among the asked

questions we can highlight: “Do you like

programming, yes or no?” Table 3 below shows the

answers obtained along the course.

Table3: Number of students who like programming
Research Do not like

programming
Like programming

1st (Week) 22 8
2nd (Week) 21 9
3rd (Week) 21 9
4th (Week) 17 13
5th (Week) 17 13
6th (Week) 17 13
7th (Week) 14 16
8th (Week) 14 16

We can observe in Table 3 that the number of students

who like programming increased in 100% between the first

and the last week of the course. The result is very

expressive for our research because it shows that students,

when paired, acquired a more positive attitude in relation to

programming. It can still be observed students’ satisfaction

when they could solve, together with their partners, the

proposed problems.

During the course, reasoning and logic activities were

performed before the beginning of computer programming

discipline. It was observed that students suggest that Pair

Programming technique stimulates the reasoning because

they have to think and find solutions with their partners

before the writing of the code source, and even during the

codification they intervene in the pilot’s work suggesting

and searching for explanations. These interventions are

strong characteristics of Pair Programming, once there is

great information exchange during the whole process.

Pair Programming was well accepted by the

participants of extra-class course, as it can be observed in

the transcriptions of student’s statements below:

� “…sometimes I feel myself more confident when my

ideas are accepted…”

� “… At some moments, we had to refrain ourselves,

while navigators, not to intervene in the partner’s

task… it occurred for anxiety reasons…”

� “… It is necessary that the navigator gives the most

useful information to the pilot. Any misplaced piece

can take long to be fixed and, sometimes, this part can

be influencing another one, causing a restart of the

whole process…”

� “… Pair Programming has helped students solving

simple problems. The pairs share their knowledge

achieving a productive result, besides increasing each

student’s performance and will. Pairing helps to better

developers’ spirits, especially those who tend to give

up when programming difficulties arise.”

� “… There are moments, when we are programming,

we focus only on running the program, while in Pair

Extreme Learning of Programming – A Methodology Based on eXtreme Programming for Programming Teaching-Learning 83

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

Programming we try to program in the best

possible way, optimizing commands and making

their maintenance simple…”

6. Conclusions and Further Works

It can be observed, from data collected by the

application of questionnaires, that students developed

a favorable opinion in relation to Pair Programming

technique for learning computer programming. This

can be seen by the large amount of students (91%)

who considered interesting the application of this

technique in the discipline APT.

It was also observed important results in statistics

through the application of hypothesis tests. So, the

dropouts ratios obtained in the discipline APT during

the previous years were compared to the dropout rate

in the 2008 group (which worked under Pair

Programming technique). A total of 19 tests were

carried out. Among those tests, 8 rejected, 90% sure,

the equality of dropout ratios. And the most

interesting fact is that in all those 8 tests the dropout

rate was inferior in the 2008 group.

This demonstrates that the experiment with pairs

had a positive result. Also, it is believed that it

collaborated for student’s permanence in the

discipline. However, it would be too early to state that

Pair Programming was the only variable or the most

important one that contributed for evasion reduction

in that group. It is important to highlight that several

other variables can have influence on such behavior,

for example: (1) the 2008 group might have been

formed by a very large amount of students who are

retaking the discipline if compared to those previous

groups. Thus, it is usually expected that the group

who is retaking the discipline learns more easily than

those who are seeing the subject for the very first

time; (2) the 2008 group might have been formed by

a lesser amount of students with financial problems

than the other groups - certainly, financial matters can

influence the number of evasion in a discipline or

even a course, among other variables.

Therefore, it is necessary to perform a new

research, as well as the application of effective

technique in all the other computer programming

disciplines in order to conclude effectively regarding

the benefits that can be noticed through the Pair

Programming.

As for tests that had not been so favorable, in

which it was evidenced that the ratios of dropouts are

equal, what did demonstrate not to have a statistically

significant difference between the traditional method of

computer teaching and the method applied in 2008 group,

it is important to highlight that only two groups showed

inferior results of evasion compared to the results of 2008

group.

As for extra-class study group, we have observed that

students had a good development in relation to their

satisfaction with programming activity.

It is important to highlight, from an experiment carried

out during the development of this work that some benefits

of Pair Programming are latent and very relevant, among

them we can point out: (1) interaction between pair

members; (2) knowledge sharing; (3) larger ease in

developing programs due to partner help; and (4) better

confidence in developing programs.

It is suggested, as further work, the application of the

very same research in Computer Science courses offered

by public higher education institutions in order to measure

the benefits of Pair Programming in an environment where

variables that influence the teaching-learning process are

very different from private institutions.

It is also suggested a survey with students and former

students in order to find out the possible reasons that led

them to drop out the discipline Algorithms and

Programming Techniques (APT) during all the periods

covered by this research.

References

[1] Constantine, L.L. “Constantine on Peopleware”.

Yourdon Press Computing Series, ed. E. Yourdon,

Englewood Cliffs, NJ: Yourdon Press, 1995.

[2] Coplien, J. O. “A Development Process Generative

Pattern Language”. In Pattern Languages of Program

Design, J. O. Coplien and D. C. Schmidt, Ed. Reading

Mass: Addison-Wesley, 1995, pp.183-237.

[3] Doise, W.; e Mugny G. “Socio-Cognitive Conflict and

Structure of Individual and Collective Performance”.

European Journal of Social Psychology, vol 8, 1978,

pp.181-192.

[4] Guerrero, P. V. T. “Interação Social: A Dominância em

Situação de Aprendizagem”. Dissertação de Mestrado.

Universidade Estadual de Campinas (UNICAMP),

Campinas, SP, 1998.

84 Faria, E. S. J. de et al.

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

[5] Lui, M. M.; e Chan, K. C. C. “A Cognitive Model

for Solo Programming and Pair Programming”.

Proceedings of the Third IEEE International

Conference on Cognitive Informatics, 2004, pp.94-

102.

[6] Nawrocki, J.; e Wojciechowski, A. “Experimental

Evaluation of Pair Programming”, Presented at

European Software Control and Metrics, London,

England, 2001.

[7] Nosek, J.T. “The Case for Collaborative

Programming”. Communications of the ACM, Vol.

41, Issue 3, 1998, pp.105-108.

[8] Soloway, E. “Learning to Program = Learning to

Construct Mechanisms and Explanations”.

Communications of the ACM, Vol. 29, Issue 9, 1986,

pp.850-858.

[9] Williams, L.; Kessler, R. R.; Cunningham, e W.;

Jeffries, R. “Strengthening the Case for Pair

Programming”. IEEE Software, Vol. 17, Issue 4,

Jul/Aug, 2000, pp.19-25.

[10] Zualkernan, I. A. “Using Soloman-Felder

Learning Style Index to Evaluate Pedagogical

Resources for Introductory Programming Classes”.

Proceedings of the 29th International Conference on

Software Engineering, Minneapolis, Minnesota. 20-

26 May, 2007, pp.723-726.

Extreme Learning of Programming – A Methodology Based on eXtreme Programming for Programming Teaching-Learning 85

INFOCOMP, v. 9, n. 3, p. 76–85, set. 2010

