Compressed Differential Encoding for Semi-Static Compressors

ASHUTOSH GUPTA!
PANKAJ?

M.J.P. Rohilkhand University
Department of Computer Science and Information Technology
Bareiily-India
lashutosh333@rediffmail.com
’pankaj_mnnit@rediffmail.com

Abstract. The Compressed Differential Encoding is introduced, i.e., delta encoding directly in two
specified compressed files without decompressing. In this paper, we investigate the case where the two
given files are compressed using WBTC, and formulate the theoretical framework for modeling delta
encoding of compressed files. In put into practice, even though working on the compressed versions in
processing time proportional to the compressed files, our target file may be noticeably smaller than the

corresponding WBTC form.

Keywords: Delta Encoding, Delta File, WBTC.

(Received September 17, 2010 / Accepted December 29, 2010)

1 Introduction

There has been an enormous expansion of textual in-
formation over web through digital libraries, office au-
tomation systems, electronic mail, web browsing etc.
This requires organizing, managing and transporting of
the data from one point to the other on data communi-
cations links with limited bandwidth. These facts show
the importance of text compression.

The benefits of compression are two fold. First,
it takes less space to store the information and there-
fore takes lesser time to transfer the compressed data
through network. Second, it takes lesser bandwidth in
comparison to transmitting raw data. Obviously, down-
loading the text in its compressed form also takes less
time.

The current trend of research on text compression
involves developing Differential compression or delta
compression algorithms. Differential compression or
delta compression is a method of compressing data that
have a huge covenant of similarities. Differential com-
pression produces a delta encoding, a scheme of rep-
resenting a version file (V) in terms of an original file

(S) plus new information. Thus differential compres-
sion algorithms attempt to efficiently locate common
data between a reference and a version file to reduce
the amount of new information which must be used. By
storing the reference file and this delta encoding, the
version file can be reconstructed when needed.

More formally, a differencing algorithm finds and
outputs the changes made between two versions of the
similar file by locating common strings to be copied
and unique strings to be added explicitly. Let S be the
source file and T be the target file. Probably these two
are versions of the same file. The goal is to create a
delta file (\). The delta file (A) is the encoding of
the output of a differencing algorithm.. If both S and
T are known in their compressed form, we call it the
Full Compressed Differencing Problem. If one of the
files is specified in its compressed form we call it the
Semi Compressed Differencing Problem. If none of the
files are compressed, it refers to the original problem of
differencing.

The stimulus for this problem is when the encoder
is fascinated in transmitting the compressed target file
when both encoder and decoder have the source file

Compressed Differential Encoding for Semi-Static Compressors 29

in its compressed or uncompressed form. Creating the
Delta file can reduce the file size during transmission
and therefore the number of I/O operations. Function-
ing on the compressed given form, the encoder can save
memory space as well as processing time. Another mo-
tivation is identifying similarity of a set of files when
they are all given in their compressed form without
decompressing them, possibly saving time and space.
When the file size of delta file is less than the target file
it indicates similarity.

Conventional differencing algorithms compress
data by identifying common strings between two ver-
sions of a file and substitute substrings by a copy ref-
erence. The resulting file is often called a delta file.
Two known approaches to differencing are the Longest
Common Sub-sequence (LCS) method and the edit-
distance method.

LCS algorithms come across the longest common
subsequence between two strings, and do not inevitably
detect the minimum set of changes. Edit distance algo-
rithms find the shortest sequence of edits (e.g., insert,
delete, or change character) to translate one string to an-
other. One application which uses the LCS approach is
the UNIX diff utility, which lists changes between two
files in a line by line outline, where each insertion and
deletion involves only complete lines. Line oriented al-
gorithms, however, perform poorly on files which are
not line terminated such as images and object files.

Tichy [21] uses edit-distance techniques for differ-
encing and considers the string to string rectification
problem with block moves, where the problem is to find
the minimal covering set of T with respect to S such that
every symbol of T that also appears in S is incorporated
in exactly one block move. Weiner [22] uses a suffx
tree for a linear time and space left-to-right copy/insert
algorithm that continually outputs a copy command of
the longest copy from S or an insert command when no
copy can be found. This left-to-right greedy approach is
optimal (e.g., Burns and Long [4], Storer and Szyman-
ski [20]). Hunt, Vo, and Tichy [11] compute a delta
file by using the reference file as part of the dictionary
to LZ-compress the target file. Their results show that
delta compression algorithms based on LZ techniques
[13,6, 8, 12, 17, 23] notably outperform LCS based al-
gorithms in terms of compression performance.

Factor, Sheinwald, and Yassour [S]uses Lempel-
Ziv based compression to compress S with respect to a
group of shared files that look like S; similarity is indi-
cated by files being of similar type and/or produced by
the same vendor, etc. At first the comprehensive dictio-
nary includes all shared data. They achieve improved
compression by reducing the set of all shared files to

only the appropriate subset.

Ajtai, Burns, Fagin, and Long [2] and Burns and
Long [4] present a number of differential compression
algorithms for when memory existing is much smaller
than S and T, and present an algorithm named check-
pointing that uses hashing to fit footprints of substrings
of S into memory; matching substrings are found by
looking only at their footprints and extending the origi-
nal substrings forwards and backwards.

Heckel [10] presents a linear time algorithm for
identifying block moves using Longest Common Sub-
sequences techniques. One of his motivations was the
comparison of two versions of a source program or
other file in order to display the differences. Agarwal et
al. [1] speed up differential compression with hashing
techniques and additional data structures such as suffix
arrays.

Burns and Long [3] attain in-place reconstruction
of standard delta files by eliminating write before read
conflicts, wherever the encoder has specified a copy
from a file region where new file data has already been
written. Shapira and Storer [19] also study in-place
differential file compression. They introduce a constant
factor approximation algorithm for this problem, which
is based on a simple sliding window data compressor.
Inspired by the constant bound approximation factor
they change the algorithm so that it is suitable for in-
place decoding and present the In-Place Sliding Win-
dow Algorithm (IPSW). The benefit of the IPSW ap-
proach is simplicity and speed, achieved in-place with-
out additional memory, with compression that com-
pares sound with existing methods (both in-place and
not in-place).

If both files, S and T, are compressed using Huff-
man coding (or any other static method), generating the
differencing file can be done in the conventional way
(perhaps a sliding window) straight on the compressed
files. The delta encoding is at least as competent as the
delta encoding generated on the original files S and T.
Frequent substrings of S and T are still common sub-
strings of the compressed versions of S and T. However
the reverse is not necessary true, since the common sub-
strings can exceed the codeword boundaries. For exam-
ple, consider the alphabet > = a, b, ¢ and the corre-
sponding Huffman code 11, 10, 0. Let S =abab and T
=cbaa, then E(S) =11101110 and E(T) =0101111. A
common substring of S and T is ba which refers to the
substring 1011 in the compressed file. However, this
substring can be extended in the compressed form to
include also the following bit, as the LCS is 10111 in
this case. Our delta file removes this limitation because
of using self-synchronized codes. We have used Word-

INFOCOMP, v. 9, n. 4, p. 28-33, dez. 2010

30 Gupta, A.,Pankaj

based encoding scheme given in [9].

In this paper we explore the compressed differenc-
ing problem on WBTC compressed files and devise a
model for constructing delta encodings on compressed
files. In Section 2 we briefly describe the word-based
tagged code (WBTC), where the source file is encoded
using the corresponding compression method. In Sec-
tion 3 we present an optimal algorithm in terms of pro-
cessing time for the Semi and Full versions of the com-
pressed differencing problem

2 Word based Compressors

As the distribution of frequencies of characters in natu-
ral language texts is not much biased [18], this results
in poor compression. Moffat [15] uses the words of the
text as units to be compressed. Taking words as units
means that the table of symbols in the compressor is
exactly the vocabulary of the text, which makes it eas-
ier and faster to integrate compression with inverted in-
dexes [7, 24, 14]. The vocabulary of the compressor is
not only useful for searching a pattern in compressed
text but also permits faster decompression. Since in
natural language text the word frequency distribution is
much more biased than that of characters, the idea pro-
posed by Moffat works well because a text is more com-
pressible when regarded as a sequence of words rather
than that of characters.

A natural language text is composed of words and
separators. An efficient way to deal with words and sep-
arators is to use a method called spaceless words [16].
If a word is followed by a space, just the word is en-
coded. If not, the word and then the separator are en-
coded. Atdecoding time, it is presumed that a space fol-
lows each word, except if the next symbol corresponds
to a separator.

As words are considered as basic units of text infor-
mation retrieval systems, we use a word-based tagged
code [9]. The code generated by this technique always
ends with either 01 or 10. This implies that the bit com-
bination 01 or 10 act as a flag to indicate the end of
code.

The coding procedure of Word based Tagged Code
is simple. First, source text is parsed and all the statis-
tics of vocabulary in the text is gathered. The vocabu-
lary is sorted with non increasing frequency. Each code-
word in WBTC will be generated with the help of 2 bit
patterns (00, 11, 01, 10). Following procedure is used
for the assignment of codes to the vocabulary.

1. At the very first level /=1, the first 2! words (rank:
0 to 2°) of the vocabulary are assigned codes as 01
and 10 respectively.

2. For the next level /=2, 2! words in positions from
2! 4+ 0 to 22 +2° are encoded using four bits by
adding 00 and 11 as prefix to all the codes of pre-
vious level.

3. In general, for any value of level /, next 2! words
present in the positions from 2-/+(22 + ...+0) to
2421 +...+2%) of vocabulary are assigned codes
using 2 X [bits, by adding 00 and 11 as prefix to
all the codes generated at preceding level.

4. The above procedure is repeated until all the N
words are encoded.

The feature of this coding scheme is that the code
depends only upon the rank of the words, rather than
their actual frequency. In this coding scheme, we nei-
ther to store the frequencies nor the codewords are re-
quired to store along with compressed file. This makes
vocabulary very small as compared to the case of Huff-
man code, where either the codewords in form of tree
or the frequencies must be stored with the vocabulary.
The coding technique is a prefix code, no codeword is a
proper prefix for any other code, and hence it is instan-
taneously decodable.

3 Delta encoding in WBTC Files

The WBTC algorithm [9] computes the codewords for
all the words of the sorted vocabulary and stores them in
a data structure named as CodeVector. In this way, the
first pass generates codes for all the vocabulary words
of the input text. In second pass, algorithm read the
words and assigns their codes from the Code Vector gen-
erated in first pass. Thus, compressed file is generated.
The vocabulary is stored along with the compressed text
in order to decompress it later. There is no need to store
either the codewords (in any form such as a tree) or the
frequencies in the compressed file. It is enough to store
the plain words sorted by frequency. Therefore, the vo-
cabulary will be slightly smaller because no extra infor-
mation other than the words alone is here.

3.1 Semi-Compressed Differential Encoding

During WBTC decompress, first load the words that
compose the vocabulary in a separate data structure.
Since these words were stored in sorted form (with re-
spect to frequency) along with the compressed text dur-
ing compression, the vocabulary which is retrieved is
sorted by frequency. Once the sorted vocabulary is ob-
tained the decoding of codewords can start by replacing
the codwords to corresponding vocabulary words. De-
compression takes O(v) time, being v the size in bytes

INFOCOMP, v. 9, n. 4, p. 28-33, dez. 2010

Compressed Differential Encoding for Semi-Static Compressors 31

of the compressed text. Figure 1 presents an algorithm
for constructing the delta file of the compressed file
C(S) and a given file T. It uses the vocabulary vocab
constructed by C(S). Starting from the initial index of
C(S), it traverses the compressed file C(S) with T un-
til either C(S) or T reaches end-of-file. It then outputs
the position of the code corresponding to the word of
T, if word corresponding to the current code of C(S) is
different than word in T. The processing time of this al-
gorithm is O(IC(S)I+IT), which is linear in the size of
the input. In order to improve the compression perfor-
mance we can add pointers to the portion of T that has
already been processed. This can be done by creating a
doublet (wt, It) for T. In next subsection, we present an
algorithm for full compressed delta files.

f{'b 15 wariable used to represent number of bits for codeword. (Initially b=0)
ff1is level and r 1z rank of codeword
[l vocab s sorted vocabulary list
AL =0
1. while(eof of E(S) or T)
{
=1, =1;
read two bits from E(S),
if{fcurrent two bits are end of code)
b+=2;
1=bi2;
Getrange R of words that lie at level I
Perform binary search in vacad with in level | upto range R to get range (r)
of words;
Qutput words w, from vocab corresponding to rank r;
iffw, =wy) [wyis aword from T and w; is a word from C(5)
move the By to next posttion; /f Pyis a pointer to C{3)
increment I by 1; HLiis apointerto T
else
write to delta file(wy, I);
move the Py and I to next position;
end if’
b=0,
go to step 1,
else
b+=2;
go to step 1,
} / end while loocp

Figure 1: Semi Compressed Differential algorithm for WBTC com-
pressed file.

3.2 Full Compressed Differential Encoding

In this section we present a linear time algorithm for
the Full Compressed Delta Encoding problem. Figure 2
shows the algorithm for constructing the delta file of
S and T given E(S) and E(T). First, the vocabulary is
loaded into the memory. The decoder reads two bits at
a time from E(S) and E(T). The WBTC coding is not a
suffix free scheme. It may be possible that code c1 can
be a suffix of code c2. Considering this fact, there may
be four cases arise.

Case 1: two bit pattern in E(S) may be 00 or 01 or
10 and two bit pattern in E(T) is 11. The decoder sends
a doublet (bits_counter, 1). Here bit 1 indicates pair of

bits 11. The bit_counter indicates the number of 2 bit
pair already parsed.

Case 2: two bit pattern in E(S) may be 00 or 11 or
10 and two bit pattern in E(T) is 01. The decoder sends
a doublet (bits_counter, 0). Here bit 0 indicates pair of
bits 01.

Case 3: two bit pattern in E(S) may be 00 or 01 or
11 and two bit pattern in E(T) is 10. The decoder sends
a doublet (bits_counter,

0). Here escape symbol (
) followed by bit 0 indicates pair of bits 10.

Case 4: two bit pattern in E(S) may be 11 or 01 or
10 and two bit pattern in E(T) is 00. The decoder sends
a doublet (bits_counter, 0). Here Symbol followed by
bit 0 indicates pair of bits 00.

The processing time of this algorithm is
O(IE(S)I+IE(T)l), which is again linear in the size
of the input. Consider the following example: S = abc
cba a abc cba, T = ccbb cba b abc ccb. The vocabulary
vocab and CodeVector corresponding to S and T is
given in Table 3.2.

1 while{eof of E(S) or T)
{

=1,t=1,

read two bits b, and by from E(S) and E(T) respectively;

1f{(b==00 | b==01 | b==10) & b==11)
write to delta file (b, 13,

else 1f{(b;==00 || b==11|| b==10) & b==01)
write to delta file (b, 0,

else 1f{(b;==00 || b==01 || b==11) & b==10)
write to delta file (b,\0);

else if{(b;==11 || b==10 || b==01) & b==00)
write to delta file (bs.~0);

else go to step 1.

} # end while loop

Figure 2: Full Compressed Differencing algorithm for WBTC com-
pressed file.

Table 1: vocabulary and Codevector.

vocab | CodeVector
abc 01
cba 10
a 0001
ccbb 0010
b 1101
ccb 1110

Applying WBTC we get that E(S) = 01 10 0001 01
10 and E(T) = 0010 10 1101 01 1110. The delta file
() corresponding to E(S) and E(T) will be : (1,0)(3,
0)(4,1)(6,0)(7,01)(8,11)(9,10). As E(S) is reached to

INFOCOMP, v. 9, n. 4, p. 28-33, dez. 2010

32 Gupta, A.,Pankaj

EOF first, rest of the bits are sent to delta file as it
is along with their respective positions. The doublets
(7,01)(8,11)(9,10) corresponds to this case.

The compression performance of the above algo-
rithm is similar to that of WBTC. The preliminary tests
gave hopeful results. For example, using the books
bookl as source file S to compress the book2, play-
ing the role of T, the resulting delta file was smaller
than 2K, whereas the original size of T was 596K,
gzip would reduce that only to 204K, and WBTC, the
method on which the delta encoding has been applied
here, would yield a file of size 218K. Non-compressed
delta encoding could attain even improved results, but
slack the benefit of functioning directly with the com-
pressed files.

4 Future Work

Our explanation here has been primarily theoretical,
presenting optimal algorithms for constructing delta
files from WBTC compressed data. We propose to
discover the semi and full compressed delta encoding
problems for WBTC encoded files, both in theory and
practically. WBTC based compression resembles more
to the basic delta encoding scheme, thus we expect that
the compression performance will be better than adap-
tive based compressions.

References

[1] Agarwal, A. S., R. C. and Jain, S. An approxima-
tion to the greedy algorithm for differential com-
pression of very large files. Technical report, IBM
Alamaden Res. Center, 2003.

[2] Ajtai, B.R.C.F.R., M. and Long, D. D. E. Com-
pactly encoding unstructured inputs with differen-
tial compression. Journal of the ACM, 49(3):318-
367, 2002.

[3] Burns, D. D. E., R. C.and Long. In-place recon-
struction of delta compressed files. In in Proceed-
ings of the ACM Conference on the Principles of
Distributed Computing, ACM,, 1998.

[4] Burns, R. C. and Long, D. D. E. Efficient dis-
tributed backup and restore with delta compres-
sion. In in Workshop on I/O in Parallel and Dis-
tributed Systems (IOPADS). ACm, 1997.

[5] Factor, S. D., M. and Yassour, B. Software com-
pression in the client/server environment. In in
Proceedings of the Data Compression Confer-
ence, IEEE Computer Soc. Press,, pages 233-242,
2001.

[6] Farach, M. and Thorup, M. String matching in
lempel-ziv compressed strings. In in Proceedings
of the 27th Annual ACM Symposium on the Theory
of Computing, pages 703-712, 1995.

[7] G. Navarro N. Ziviani, E. M. and Baeza-Yates.,
R. Compression: A key for next- generation text
retrieval systems. IEEE Computer, 33(11), 2000.

[8] Ga,sieniec, L. and Rytter, W. Almost optimal fully
lzw-compressed pattern matching. In in Proceed-
ings of the Data Compression Conference, IEEE
Computer Soc. Press, pages 316-325, 1999.

[9] Gupta, A. and Agarwal., S. A scheme that facil-
itates searching and partial decompression of tex-
tual documents. Intl. Journal of Advanced Com-
puter Engineering, 1(2), 2008.

[10] Heckel, P. A technique for isolating differences
between files. In CACM, volume 21(4), pages
264-268, 1978.

[11] Hunt, V. K. P, J. J. and Tichy, W. Delta algo-
rithms: An empirical analysis. ACM Trans. on
Software Engineering and Methodology, 7, 1998.

[12] Kida, T. M. S. A. M. M., T. and Arikawa, S. ultiple
pattern matching in 1zw compressed text. M Jour-
nal of Discrete Algorithms, 1(1):130-158, 2000.

[13] Klien, S. T. and Shapira., D. Compressed delta
encoding for 1zss encoded files. IEEE DCC, 2007.

[14] M. Neubert Nivio Ziviani Gonzalo Navarro, E. S.
d. M. and Baeza-Yates., R. Adding compression
to block addressing inverted indexes. Information
Retrieval, 3(1):49-77, 2000.

[15] Moffat., A. Word based text compression. Soft-
ware Practice and Experience, 1989.

[16] N. Ziviani E. Silva de Moura, G. N. and Baeza-
Yates., R. Fast and flexible word searching on
compressed text. ACM Transaction on Informa-
tion Systems, 18(2):113-139, 2000.

[17] Navarro, G. and Raffinot, M. A general practi-
cal approach to pattern matching over ziv-lempel
compressed text. In in Proceedings of the
10th Annual Symposium on Combinatorial Pat-
tern Matching CPM-99, volume 1645, pages 14—
36. LNCS, Springer Berlin Heidelberg, 1999.

[18] Salomon., D. Data Compression. Springer Verlag,
1998.

INFOCOMP, v. 9, n. 4, p. 28-33, dez. 2010

Compressed Differential Encoding for Semi-Static Compressors 33

(19]

(20]

(21]

[22]

(23]

[24]

Shapira, D. and Storer, J. A. In place differential
file compression. The Computer Journal, 48:677—
691, 2005.

Storer, J. A. An Introduction to Data Structures
and Algorithms. Birkhauser/Springer, 2001.

Tichy, W. F. The string to string correction prob-
lem with block moves. ACM Transactions on
Computer Systems, 2(4):309-321, 1984.

Weiner, P. Linear pattern matching algorithms. In
in Proceedings of the 14th Annual IEEE Sympo-
sium on Switching and Automata Theory (FOCS),
pages 1-11, 1973.

Welch, T. A. A technique for high-performance
data compression. [EEE Computer, 17:8-19,
1984.

Witten, A. M. 1. and Bell., T. Managing Giga-
bytes. Morgan Kaufmann Publishers Inc., second
edition, 1999.

INFOCOMP, v. 9, n. 4, p. 28-33, dez. 2010

