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Abstract. Graph theory provides mathematical models with computational realizations for a wide range
of problems. The classic version provides static models and solutions for these problems. These solutions
are often insufficient to versions of the problems in wich the information changes with respect to a
continuous variable, eg. time. In the same way one can think on dynamic graphs as graphs in wich
some components (arcs, edges, costs) change with respect to a continuous variable. This paper explores
graphs with dynamic costs as a bundle, and includes the formulation and the solution for the shortest
path problem and the maximum flow problem on these structures. This paper provides an unexplored
connection between the dynamic graph theory and the topology, presents approaches to the solution of
dynamic versions for the shortest path problem and the maximum flow problem, and proposes both a
new source of applications of the metric bundles theory and the type two theory of effectivity.

Keywords: Bundles of metric spaces, graphs with dynamic costs, dynamic graphs.

(Received December 30, 2010 / Accepted May 20, 2011)

1 Introduction

Graph theory provides mathematical models with com-
putational realizations for a wide range of problems.
The classic version provides static models and solu-
tions for central problems in graph theory: shortest path
problem (SPP), minimum spanning tree (MST), maxi-
mum flow problem (MFP) and many others. The static
solutions are, for example, the Dijkstra algorithm to
find the shortest path between two nodes in a connected
graph with nonnegative costs [4], the Ford-Fulkerson
algorithm to find the maximum flow between two nodes
in a graph with limited capabilities in edges [6], the
Kruskal’s algorithm [10] to find the minimal spanning
tree in a connected graph, etc.

Obviously, one of the complications offered by the
reality to these problems is related with to the fact that
the real information is constantly changing. For exam-
ple, the length of the roads in a city is not enough infor-
mation to decide the route that will consume less time
to go from the home to the workplace in the morning,

and the most efficient path in a particular time is often
not in another time.

In general, the graphs in that part of the information
changes with respect to a variable are called dynamic
graphs. This paper is limited to dynamic graphs where
the costs in the edges change with respect to a contin-
uous variable, for example, time: graphs with dynamic
costs or dynamically costed graphs.

The paper is structured as follows: section [2|is de-
voted to introduce the basic concepts that will be used
in the paper, in section [3] we introduces the concept of
graphs with dynamic costs and built the metric bun-
dle associated with a graph of this nature, in section [4]
we presents the shortest path problem in a graph with
dynamic costs and solutions are proposed, section [3]
presents the related work on the maximum flow prob-
lem on dynamic graphs. To conclude, section[6|presents
conclusions and future work. Additionally, appendix
presents the basic concepts of bundles of metric spaces
or metric bundles.
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2 Basic Concepts

The first part of this section is devoted to presents the
basic concepts of graph theory. [3] is one of the many
references for further in graph theory. The second part
presents the basic concepts of topology. The recom-
mended reference is [[17].

2.1 Graph Theory

Definition 1 (Graph) A graphisapair G = (Vg, Eg)
such that Vg is a set and Eq C Vg x Vg. Ifv € Vg
then v is a vertex (node) in G and, if e € E¢ then e is
an edge (arc) in G. If c¢ : E¢ — R is a function,
then G = (Vg, Eg, cg) is a costed graph and c is the
costs function of G.

Throughout this paper we will assume that G is a
finite graph unless otherwise stated, i.e. V is a finite
set.

Definition 2 (Graph isomorphism) 1) is graph isomor-
phism between G = (Vg, Eq) and H = (Vg, Eg), if
1 is a function such that

1. ¢ : Vg — Vy is a bijection, and

2. forall (1)1,1)2) eEVex Vg, e= (1)1,’02) € bg if
and only if e' = (¢ (v1) .1 (v2)) € En.

In this case, we say that G and H are isomorphic graphs
and write G ~ H.

Note that an isomorphism ) induces a bijection ¥ g :
Eq — Ep defined by ¢ ((u,v)) = (¢(u, )P(v)).

Definition 3 (Path between two nodes) Let G be a gr-
aph. If v1 and v are nodes in Vg and B = (wy ... wy,)
is a list of nodes in Vg, we say that 3 is a path between
v1 and vy if and only if

1. w1 = vy,
2. w,, = v, and
3. (wi,wi+1)engorallizl,...,n—l.

If all nodes in 3 are different, then we say that 5 is a
simple path between v and vs.

If G is a costed graph, then cg can be extended to
all paths in G: If B = (wy ... wy,) is a path between w,
and w, then

n—1

ca (B) =

K2

ca ((wi,wz'-s-l)) (D
1

Definition 4 (Adjacency set) Let G = (Vg, Eg) be a
graph, and v € Vg be a vertex in G. The adjacency
set of v is the set of all vertex in G that are connected
directly with v, that is

adj(v) = {wl| (v,w) € Eg}. )

2.2 Topology
Definition 5 (Topological space) The tuple X = (X, 1)
is a topological space if and only if X is a set and T is
a family of subsets of X such that

e Xcr,

e e,

o X is closed under arbitrary unions, in other words,

if B C T then UBEﬁB €1, and

e X is closed under finite intersections, in other wo-
rds, if B1,...,B,, € Tthen(\,_, By € T.

In this case we say that T is a topology over X, and if
U € 7 we say that U is an open set in X.

Definition 6 (Base for a topology) A base for 7 is a
class B of open sets with the property that every open
set is a union of sets in B.

Definition 7 (Continuous functions) Ler (X, 7x) and
(Y, 1v) be two topological spaces, and f : X — Y
be a function, we say that f is a continuous function if
and only if, f~1(V') € Tx wheneverV € Ty

Definition 8 (Metric space) X = (X,d) is a metric
space if X isa setand d : X x X — R* is a function
such that, forall x,y,z € X,

o d(z,y) =0<=2x =y,

o d(z,y) = d(y, ), and

o d(z,y) +d(y, 2) < d(x,2).

Every metric space can be viewed as a topological
space with the topology generated by the base

{B,(z)lz € X Ar e R"}

where
By (z) = {yld(z,y) <r}.
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3 Dynamically costed graphs

In general, a dynamic graph is a graph in which part of
the information changes with respect to a variable. This
paper is limited to dynamic graphs in wich the arc costs
change with respect to a variable. Formally, we assume
that G = (V, E¢) is a graph, T is a topological space,
and, forallt € T, ¢; : Eq¢ — R7 is a cost function
over the arcs of GG. In other words, forallt € T, G =
(Ve, Eg, ¢t) is a costed graph.

Definition 9 (Dynamically costed graphs) Let G be a
graph, and let T be a topological space. Let C' be a
familly, inexed by T, of cost functions over the arcs
of G. In other words, for all t € T, there exists a
unique function ¢; : Eq — RT in C such that G =
(Va, Eg, ct) is a costed graph. If, for all edge e € Eg,
the function k. : T — R defined by k.(t) = ci(e) is
continuous, then we say that & = (G,C,T) is a graph
with dynamic costs or dynamically costed graph.

In general, unless otherwise stated, we assume that
all elements of C' take nonnegative values.

If 6 = (G, C,T) is adynamically costed graph, and
B = (wg)i_, is a path, then we say that the cost of 3 in
& is defined by

-1

ce (8) =Y et (wr, wei1)) 3)
k

=0

where to = 0, and ¢, = tj—1 + ¢, _, (wr—1,wy)) for
k=1,...,q—1.

3.1 Graphs with dynamic costs as bundles of met-
ric spaces

Check for the appendix [/| for concepts on bundles of
metric spaces.

Henceforth it is understood that & = (G,C,T) is a
graph with dynamic costs such that G = (Vg, E¢) is
connected.

Note that in these conditions, for all t € T, it is pos-
sible to define the function d; : V x V. — R such
that d; (v1,v2) is the length of the shortest path between
the nodes v; and vy in G with respect to the cost func-
tion ¢;. d; can be calculated, for example, by Dijkstra’s
algorithm [4] or the Floyd-Warshall algorithm.

Proposition 1 Forallt € T, U = (Vg, d;) is a metric
space.

The following theorem is an application of the Ex-
istence Theorem for bundles of metric spaces presented
in [[7]].

Theorem 1 Let £ = Vg x T, m9 : E — T the
second projection ma(v,t) = t, ¥ = {ay v € Vg}
with a, : T — E defined by o, (t) = (v,t) for all
t € T, and the functiond : E x E — [0, +00| de-
fined by d((vi,t1),(va,t2)) = +oo, if t1 # to and
d((vl,tl) 3 (’Ug,tg)) = dt (1}1,1)2) l.ftl = tg =t. Then
(E, 72, T) is a bundle of metric spaces, X is a full set
of global sections for wo and the family of all e-tubes
around o, [y, where € > 0, o, runs 3 and U through
the collection of nonempty open sets in T, is a base for
the topology of E.

Proof. Tt is clear that d is a metric for w5 and, since
for every v € V, ma(aw(t)) = ma(v,t) = t, the col-
lection X constitutes a family of selections for . Fur-
thermore, if (v,t) € E, then (v,t) = a,(t), and thus
(v,t) € Te () for every € > 0.

Let vi,v2 € V and define ®,,,,
by

T — [0, +00]

(bvl Vo (t) - d (051)1 (t)7 av2 (t)) .

Since 73 (v, (t)) = 72 (u, (t)), we must have

Doy, (1) = d (Quy (), iy (B)) # +00

and
(I)Ul v2 (t) =d (avl (t), Qyy (t)) =d; (017 02) .

For every simple path, 8 = (wy)}_,, from v; to vy and
foreveryt € T, let

q—1

et (B) =D et ((wiywirn))

=0

be the cost of path /3 over the graph G; = (Vg, Eg, ¢t),
that is, the cost of path 3 with regard to the cost func-
tion ¢;.

Under these conditions, given that ki, is a con-
tinuous function, that is to say,

Wit1)
lim ¢, (wi, wit1)) = ¢ (wi, wiv1)),
we must have
q—1
lim ¢, (8) = lim Y ¢; (i, wig1)) = (B) .

u—t
=0

So thatif 31, . .., B, are paths starting at v; and ending
at vy, the function
Fayp ()= min {c,(5)}
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is continuous on ¢.

To complete the hypthesis of the theorem for Existence
of Bundles of Metric Spaces [7]], it is enough to notice
that if P (vy,vs) is the set of paths connecting v; and
v9, P (v1,vs) is finite. Thus,

min

D, 0, (1) =
1 ( ) BEP(v1,v2)

{e (B)}

is continuous. This allows us to conclude that G =
(Ve x T, s, T) is a bundle of metric spaces , 3 is a full
set of global sections over for 7o and that the collection
of e-tubes around o, [y, fore > 0, a, € ¥ and U
a non-empty open set of 7', constitute a basis for the
topology of E. [J

Definition 10 The bundle of metric spaces G construc-
ted previously is known as the bundle of metric spaces
associated with the dynamically costed graph &, or the
Bundle of Metric Spaces of &.

Proposition 2 Let t1,t; € T and denote by 5 1(t1)
and 75 1(t2) their corresponding fibers in G. In this
case

th = <7T2_1 (tl)vEGvct1>

and

Gtz = <7T2_1 (t2) ) EG? Ct2>

and in this case, both G, and G, are isomorphic gra-
phs.

4 Shortest path in dynamically costed graphs

A problem that cannot be obviously modelled using sta-
tically-costed graphs is the problem of traffic distribu-
tion. Indeed, finding the shortest path between two lo-
cations in a city along a -directed- network of roads,
must take into account phenomena such as rush-hours,
traffic jams, and works on the roads.

This problem can be modelled in a particular situation
by introducing a costed graph G, onto which to find the
shortest path. Conceptually, this is done letting G =
(V,E) to have a function ¢ : E — R™T assigning
the cost of traversing edge (i.e. street) e. The prob-
lem of finding the shortest route between vertices vy
and v can be described as the problem of finding a path
B = (wk)}_,, from vy to vo, in such a way that ¢ (3) is
minimal among all paths connecting node v; and node
Va.

The static version can be formulated as follows:

e Instance: A conected graph G = (Vg, Eg), a
costs fuction ¢ : Eq — RT, and two nodes
v1,v9 € Vg.

e Answer: A path 8 = (wy)}_,, from v1 to v in
G, such that cg (8) < c¢g (7), for all path v =
<uk>§”:0, from vy to vy.

An algorithmic solution to the shortest-path prob-
lem in static graphs is known and can be calculated us-
ing a variety of techniques for example Dijkstra’s al-
gorithm [4]. However, in order to take into account
the problem of time-varying costs of traversing a path
(in the sense of time spent), dynamically costed graphs
must be introduced. In this instance, the cost function c
of graph G varies along time: ¢ : E x RT — R.

This situation can be explored in a more general setting,
allowing the description and exploration of shortest-path-
problems in -for example- traffic.

Indeed, shortest-path in dynamically costed graphs is
a problem that can be tackled using bundles of metric
spaces (see appendix [7), by regarding the graph itself
as a bundle of metric spaces:

G = (Vo x R*, my, RY)

where graph G can be written as G = (Viz, E¢) and is
required to be connected. The problem of finding the
shortest path between nodes v; and vs in a dynamically
costed graph can be formulated as follows:

e Instance: A graph with dynamic costs or dynam-
ically costed graph & = (G,C,R") where G =
(Ve, E) is a connected graph, and two nodes vy,
vy € V.

e Answer: A path 8 = (wy)}_,, from vy to v in
G, such that ¢ (8) < cg (), for all path v =
<uk>z”:0, from vy to vg.

4.1 Traffic distribution problem

Consider the situation of finding the shortest path be-
tween two points A and B in a city, whose street struc-
ture is describable by a costed graph G = (V, E,l)
where the costs function [ is associate to the lenght of
streets: [(e) is the length of the street e. In order to drive
from point A to point B we define for each street e, the
average velocity on e on time instant ¢ by v, (t).

In this sense, the time spent in traversing path e at time
t, c(e), is given by

ce(e)
/ ve(s)ds = 1(e). @)
t
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The time cost of traversing a path 8 = (wy )} _, is given
by

c(8) = 3" er, ((wnrwpe)) )
k=0

where to = 0 and ¢, = tx—1 + ¢t _, ((wWr—1,wg)) for
k=1...p—1.

Notice that the problem posed in this way implies a
non-overpass condition: vehicles cannot cut ahead of
one another and must finish the path in the same order-
ing as they enter. Formally speaking, for every edge
e € Eg and every pair of time instants ¢o,t; € RY
where to < t; we must have c.(tg) < ¢, (€) + to.

In terms of bundles of metric spaces G of &, the ex-
istence of the number

T =c ((u,v)) # +oo,

represents the possibility of reach the point (v, ¢ + 7)
from the point (u, t).

In this sense, G can be associated to an infinite graph
G = (Vg, Eg) where:

° Vg:VxR“‘and

e ((u,t),(v,t") € Eg if and only if (v,v) € E and
t'=t+ ¢ ((u,v)).

A characterization of the arcs present in graph G that is
useful comes in terms of the adjacency set of a vertex
(u,t) € Vg =V x RT. Indeed, by defining the set

adj ((u,t))

{(w,t") | (u,w) € EAY =t + ¢ ((u,w))}.
(6)
To calculate the time-cost of a minimal-cost path be-
tween nodes v and w in & at time instant ¢ is equivalent
to find the minimal value of 7 > 0 for which

((u,t),(w,t+71)) €G

This problem can be solved, when posed like this, by ei-
ther introducing a classical sideways-search algorithm
in G starting from point (u, t) or by using dynamic pro-
gramming and recursively calculating the expression

Dt (u7 U))
= (7

mianadj(u) {ct (u7 T) + Dt+ct(u,r) (T, w)} )

with D; (w,w) = 0, to find the minimal cost path be-
tween nodes v and w in &.

5 Maximum flow in dynamically costed graphs

When simulating transport phenomena using graphs, the
concept of flow arises in a very natural sense. The
amount of material (particles, vehicles or load) that the
graph can transport. The problem of maximum flow in
classical graph theory, deals with finding the the largest
amount of material that can be sent between a node
known as the source and a node known as the desti-
nation.

More formally, if G is a graph (or network) with n ver-
tices, where the first vertex is regarded as the source,
and the last one as the destination. If the capacity asso-
ciated to every edge (i,7) is denoted by w;;, we need
to determine the collection of values z;; (for 1 < ¢ < n
and 1 < j < n), such that

o foralll <i<nandl<j<n,0<z; < wy,

e forall vertex 1 < i < n,

n—1 n—1
Z Tii = Z Tik, (®)
k=1 k=1

and

e the sum

n n—1
doTin=Y Wi =F ©)
k=2 k=1

is maximal with regard to every other set of values.

In addition to the solution offered by linear program-
ming, this problem has been explored in classical graph
theory, providing solutions as the Ford-Fulkerson and
the Edmons-Karp algorithms [6, 5]].

A dynamic version of the maximum flow problem tries
to determine the maximum amount of material that can
be sent throughout a dynamic network G in a given time
span [tg, t1] from the source to the destination, assum-
ing that the capacity of the edges changes continually
according to functions w;; (t).

The solution to the maximum flow problem in a dy-
namic graph can be estimated by defining a function
F : [to,t1] — R such that, for every t € [to, 1],
F(t) is the value of the maximum flow of graph G at
time instant ¢ using for example the Ford-Fulkerson al-
gorithm. The maximum flow along time period [to, t1]
can be found using the integral

t1
/ F(t)dt (10)
to

INFOCOMP, v. 10, n. 1, p. 1-7, mar, 2011.



Algorithms over Dynamic Graphs 6

In order to produce an algorithm approximating the so-
lution to this problem, we define a partition {u;}._, of
interval [to,tl], to=u <u; < ...<Up_1 < Uy =
t1, and we execute an algorithm to solve the problem of
maximal flow on each time instant u;. If we denote by
F;; the value of function F' at time instants u;, we can
approximate the integral on equation [I0] using -among
others- Simpson’s rule

L F(t)dt

to

= (11)
%Z?;ol (F (ui) + F (ti41)) (wig1 — w;) -

6 Conclusions and Future Work

Under the presentation made, the problem of finding the
shortest path between nodes on a dynamic graph can
be proven to be solvable in polynomial time -whenever
conditions of non-overpass are met- [11]. Moreover,
the structure and concepts presented in this paper allow
the exploration of the generalized shortest-path problem
under a new perspective, it is important to notice that
this problem is actually NP-hard [12]. In turn, maxi-
mum flow in dynamic graphs can be regared to have a
complexity of

o (IEGI max (Hel%)é Wy, (6))>

with the solution presented here. Furthermore, dynamic
graphs can be analyzed using bundles of metric spaces.
This induces new perspectives of both the theory of
graphs with dynamic costs and introduces new applica-
tions of bundles of metric spaces. To be more concrete,
this new approximation on the theory of graphs with
dynamic costs in such a way that:

1. it establishes an unexplored connection between
the theory of graphs with dynamic costs and com-
putable topology, under which several new appli-
cations of the theory of Bundles of metric spaces
may flourish, and

2. it proposes a new source of ideas and induces un-
explored applications for Type-2 Theory of effec-
tivity (TTE for short), when conditions of com-
putability are imposed on either the base or the
fiber space (see [8 [16]).
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7 Appendix. Bundles of metric spaces.

According to [2] and [7], the category of bundles of
metric spaces over a given topological space T' can be
thought of as a generalization of the category of metric
spaces over a field -conveniently named 7-. In this ap-
pendix we present some basic results about Bundles of
Metric Spaces. For concepts, proofs and more results
on this topic we encourage the reader to revise sources
as J.Varela [[14, [15]].

Definition 11 (Sections and selections) Ler G be a set,
X be a topological space and p : G — X be a sur-
Jjective function. A selection for p is a function o : A C
X — G such that p o « is the identity function over
Q = dom(a). If Q = X we say that « is a global
selection. If « is continuous, we say that « is a section.

Given a set I of selections over a functionp : G — X
we say that collection I' is full if for every u € G we
can find « € I such that a(p(u)) = u.

Definition 12 (Metric for a surjective function) Let G
be a set, X be a topological space andp : G — X be
a surjective function. A functiond : GXxG — [0, +o0]
is called a metric for function p if for every u, v, w € G:

1. d(u,v) = +o0 if p(u) # p(v)
2. d(u,v) =0 ifand only if u = v
3. d(u,v) < d(u,w) + d(w,v)

Provided with a metric for a function, we can define e-
tubes around selections, that can be used as basic open
subsets to generate topologies. An e-tube around a se-
lection « of radius is defined as the set

Tr ()
{u € G: p(u) € dom(a) A d(u, a(p(u))) < €},

the idea behind constructing bundles of metric spaces is
to generalize the notion of metrizability. This general-
ization is condensed in the following definition:

Definition 13 (Bundle of metric spaces) Let G and X
be topological spaces, p : G — X a continuous sur-
Jjective function. If d is a metric for p such that for ev-
ery u € G there exists a local selection « for p, such
that u € Tc(a) for some € > 0, we say that the triplet
(G,p,T) is a bundle of metric spaces, whenever the
collection of all e-tubes defines a topology over G.

In the language of bundles of metric spaces, the set X
is called the base space and has the most structure in
terms of topological properties. Space G is called the
fiber space, since we can write

G=Jr '@

rzeX

where each G, = p~!(z) is called a fiber above z € X.
7.1

Existence of Bundles of Metric Spaces: a The-
orem

We wish to present a modified version of a central re-
sult in computable analysis: an existence theorem for
bundles of metric spaces as proven in [[1]. This theorem
stablishes conditions under which metric spaces can oc-
cur and its computable version allows the introduction
of computability over a bundle, provided with minimal
conditions on the base space.

Theorem 2 (Existence of bundles of metric spaces) If
X is a topological space, Bx a basis for the topology of
X, G a non-empty set of at most continuum cardinality
and p : G — X a surjective function. Let also d be a
metric for p and I" a collection of local selections for p.
Assume also that

1. For every u € G and every ¢ > 0, there exists
a local selection v € 1" and a rational number

r € QN (0,¢€) such that u € T, (7).

2. Forevery vy, ( € T, the function
Q. : dom (y) Ndom () — R

defined by

D.c(p) = d(v(p),¢(p))

is upper-semi-continuous
Then G can be given a topology T in such a way that

1. The collection S = {T, (vq)}, where r € QN
(0,40), v €T, Q Cdom(vy)and Q € Bx, is a
basis for the topology ¥ over G.

2. Under the topology %, T is a family of local sec-
tions over p

3. (G,p,T) is a bundle of metric spaces.

For a proof of the this theorem, and for basic references
on this topic, the reader is encouraged to revise [2]] and

['70.
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