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Abstract. Triangulations are geometric discretizations essential in many scientific applications, such
as engineering simulations, visualizations, and geographic information systems. The preferred shape
of a triangle depends on the applications. Theoretical and experimental analysis of numerical methods
that are used in conjunction with triangulations suggest that triangles with no large angles and/or small
angles serve well in most applications. This paper is a brief review of a point insertion in 2D Delaunay
Triangulations. Important works on the insertion of vertices in Delaunay Triangulations are described as
a start point for one who needs to build a quality mesh using adaptive triangular-mesh refinement.
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1 Introduction

Triangulations are geometric discretizations essential
in many scientific applications, such as engineering
simulations, medical imaging, visualizations, and geo-
graphic information systems [22]. Erten and Üngör [22]
explain that the preferred shape of a triangle depends on
the applications. However, theoretical and experimen-
tal analysis of numerical methods that are used in con-
junction with triangulations suggest that triangles with
no large angles and/or small angles serve well in most
applications (see [1]). According to Erten and Üngör
[22], “in general, the better the shape of the triangles,
the smaller the interpolation and approximation errors
are in their use”.

Delaunay triangulations are optimum in maximiz-
ing the smallest angle [17]. An approach in order to
provide quality triangular meshes is to use algorithms
based on a automatic point insertion strategy on the De-
launay Triangulation. A planar Delaunay Triangulation
[15] for a point set P is a triangulation DT(P) such that
no point in P is inside the circumcircle of any triangle

in DT(P). The Delaunay Triangulation builds the opti-
mal triangular mesh. This means that it builds triangles
more similar to the equilateral ones for a given fixed
point set.

The Delaunay Triangulation and its duals Voronoi
Diagram [52] and medial axes have been applied in
many different fields, such as the ones earlier cited, in-
cluding numerial methods and computer graphics. The
reader is referred to Guibas and Stolfi [26] and Barth
[4] for properties and algorithms in order to build 2D
Delaunay Triangulations. Shewchuk [45] presented as-
pects of the Delaunay mesh generation. Edelsbrunner
[18] provided a theoretical review on Delaunay Trian-
gulation. De Floriani and collaborators [12] reviewed
the basic triangulation properties, Delaunay Triangula-
tions, constrained and conforming triangulations. They
also presented a survey of algorithms for building these
kind of triangulations, mainly in the context of digital
terrain modeling in geographic information systems.

In order to build a Delaunay Triangulation, the
reader is referred to the mesh generation software Tri-
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angle [48]. Triangle’s high-quality mesh generation
is based on Chew-Ruppert Delaunay refinement al-
gorithm [41]. Both were surveyed by Shewchuk in
[46]. In addition, Shewchuk described Ruppert’s De-
launay refinement algorithm in [47]. These algorithms
evolved from the works of Chew [7] and Bern et al.
[5]. The Chew-Ruppert Delaunay refinement method
is modified in Triangle to handle domains with small
angles well, following a idea in the paper of Miller
et al. [32]. It also incorporates a modification by
Üngör [51] that reduces the number of triangles gen-
erated. Triangle’s implementation of the divide-and-
conquer and incremental Delaunay triangulation algo-
rithms follows closely the presentation of Guibas and
Stolfi [26]. Triangle uses a triangle-based data structure
instead of Guibas and Stolfi’s quad-edge data structure.
The O(n log n) divide-and-conquer algorithm promoted
by Guibas and Stolfi was originally developed by Lee
and Schachter [31]. Dwyer [16] showed that the al-
gorithm is improved by using alternating vertical and
horizontal cuts to divide the vertex set. Triangle uses
an expected O(n1/3) time point location scheme pro-
posed by Mücke [33]. Triangle’s O(n log n) sweepline
algorithm for Delaunay triangulation is due to Fortune
[23], and relies upon Sleator and Tarjan’s splay trees
[50]. The earlier description is based on the Triangle’s
website [48].

Given a Delaunay Triangulation, one is allowed to
insert points (called the Steiner points) in order to com-
pute good quality triangulations. This, however, may
increase the number of points and triangles in a trian-
gulation, which is a key factor in the running time of an
application algorithm. The reader is referred to [22] for
details and a survey on the context of providing a good
triangulation.

After this brief introduction, Section 2 provides a
further review of the schemes for point insertion in a
Delaunay Triangulation in the context of providing a
adaptive refined mesh. Section 3 describes the Voronoi
Diagram. Section 4 surveys the Rivara’s schemes and
others. Some future directions are given in Section 5.

2 Point insertion in a Delaunay Triangulation

A point insertion in a Delaunay Triangulation is not
a trivial task. For example, if one simply inserts a
point into the triangle barycenter (Figure 1a), this pro-
cess fastly degenerates the triangulation quality, spe-
cially along boundaries. This occurs even when car-
rying out global refinement. In [38], the authors affirm
that a pure Delaunay algorithm does not provide a natu-
ral point insertion scheme that guarantees the construc-
tion of good-quality nonuniform triangulations when

the algorithm is iteratively used in the adaptive mesh
refinement. They described experiments with the sim-
ple centroid insertion (see Figure 1a) concept.

Figure 1: Triangle partition processes: (a) ternary subdivision - re-
finement by simple centroid insertion; (b) refinement by centroid in-
sertion and adding midedges - a second refinement is performed in the
bottom right triangle; (c) trisection of the edges, joinning the centroid
to those points and also to the vertices.

The literature is rich in approaches to introduce
points into the triangulation. These schemes provide
high-quality Delaunay Triangulations and some of them
are described in the following.

Fowler and Little [24] proposed the vertex inser-

tion in conjunction with the Delaunay Triangulation. A
Delaunay criterion localizes the position of a potential
point to be inserted. This could affect the fit to the cir-
cumscribed circle about the triangle. The authors ar-
gued that it is sufficient to perform series of domain-
limited searches in each triangle of the model; rather
than carrying out global searches for the global "worst-
fit" points. In this approach, adding a point destroys the
original triangle and introduces new triangles. The in-
serted point is a vertex of the new triangles. In Figure
2, a point is introduced and the region is triangulated.
The reverse operation, known in computer-graphic con-
text as decimation, is performed in order to unrefine the
region. In a variation, a point is inserted, the set of tri-
angles on its neighborhood are deleted and the region is
retriangulated (Figure 3). The inverse operator, the ver-
tex removal, deletes a point together with its incident
triangles and constructs new triangles in the region.

Figure 2: Vertex insertion and vertex decimation.

Figure 3: Vertex insertion and vertex decimation.

Clarkson and Shor [9] showed that if the order of
vertex insertion is randomized, each vertex can be in-
serted in O(n) time, not counting point location (see de-
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tails in Shewchuk [48]. Chew ([7] and [8]) proposed
a Delaunay improvement algorithm that triangulates a
given polygon into a uniform mesh with all angles be-
tween 30 and 120. It guarantees that the output mesh
is size-optimal within a constant factor amongst all uni-
form meshes.

The Hierarchical Delaunay Triangulations (HDT)
was proposed by De Floriani and Puppo in [13] and
[14]. It is based on a hierarchy of triangle-based sur-
face approximations, where each node, except the root,
is a triangulated irregular network refining a triangle
face belonging to its parent in the hierarchy (see Fig-
ure 4). This method is similar to the proposed by Scar-
latos Pavlidis in [42]; however, the triangle subdivision
is more general. The subdivision inside every macro-
triangle is locally a Delaunay Triangulation; whereas a
global expanded subdivision of the whole domain ger-
ally is not. The triangle partition is performed by an
iterative application of a selector process that, at each
step, updates the current Delaunay Triangulation by in-
troducing the point having the maximum error. More-
over, in order to subdivide a triangle for a given hier-
archical level, they used a curve approximation algo-
rithm [3] in order to insert points along the edges. Af-
terwards, points are added in the inner triangle until an
error threshold is met throughout the triangle. So, the
inner triangle is retriangulated using Delaunay Trian-
gulation. The constructing algorithm basis for a HDT
must be an on-line approach that incrementally builds
a Delaunay Triangulation through iterative point inser-
tion [12]. According to Heckbert and Garland [28], the
HDT seems to present nearly identical flexibility and
speed compared to the one proposed in [42]. How-
ever, for a given error threshold, the HDT likely yields
slightly better simplification.

Figure 4: Hierarchical Delaunay Triangulations.

Ruppert [41] presented an algorithm to triangulate
planar straightline graphs. It guarantees that every tri-
angle in the output mesh has smallest angle greater than
278. It produces a size-optimal nonuniform mesh. It is
also size-optimal to within a constant factor. The idea
behing these algorithms is either: to refine a small an-

gled triangle by the Delaunay insertion of its circum-
center; or a modification of the boundary if the circum-
circle is external to the meshing region (see [37] for de-
tails). Baker [2] published a comparison of edge and
circumcenter based refinements. Properties of mesh im-
provement for iterative Delaunay refinement based on
inserting a point in the circumcenter of triangles to be
refined was also established by Shewchuk in [44]. A
combination of edge refinement and Delaunay point in-
sertion was described by Borouchaki and George in [6]
and [25].

Shewchuk [46] presentd a framework for analyz-
ing Delaunay refinement algorithms that unifies the
mesh generation algorithms of Chew and Ruppert. The
Shewchuk’s framework improves the Chew’s and Rup-
pert’s algorithms in several ways, and also helps to
solve the difficult problem of meshing nonmanifold do-
mains with small angles.

Üngör [51] presented an algorithm based on the off-
center insertion. In the former case, the off-center of
a triangle with the shortest edge pq is a point o on the
bisector of pq furthest from p (or q) such that the an-
gle among the three points is a user-specified constraint
angle. The idea of using off-centers led Har-Peled and
Ungor [27] to the design of the first time-optimal De-
launay refinement algorithm.

Erten and Üngör [21] proposed algorithms that im-
prove the off-center performance with respect to the
mesh size and a minimum angle tolerance. This is per-
formed by using point selections depending on some
triangle cases. Erten and Üngör [20] published a De-
launay refinement algorithm that generally terminates
for constraint angles up to 42◦.

Erten and Üngör [22] proposed two algorithms to
improve the performance of Delaunay refinement. The
first one uses the Voronoi Diagram and unifies previ-
ously suggested Steiner point insertion schemes (cir-
cuncenters [7], [40], [46], sink [19], off-center [51])
together with a proper strategy. The second algorithm
integrates a local smoothing strategy into the refinement
process. For a given input domain and a constraint an-
gle α, the Delaunay refinement algorithms aim to com-
pute triangulations with angles at least α.

Recently, Plaza and collaborators [34] proposed the
7-triangle Delaunay partition (Figure 5). This refine-
ment scheme also propagates the refinement and inserts
non-similar triangles.

Figure 5: 7-triangle Delaunay partition
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3 Voronoi Diagram

The Voronoi Diagram was proposed in [52]. Shamos
[43] was the first to argue that the Voronoi Diagram can
be used as a tool to provide efficient algorithms for a
wide variety of geometric problems.

Barth [4] defined the Delaunay Triangulation of a
point set as the dual of the Voronoi Diagram of the set.
The 2D-Delaunay Triangulation is formed by connect-
ing two points if and only if their Voronoi regions have
a common border segment. If no four or more points
are cocircular, then the vertices of the Voronoi Diagram
are the triangle circumcenters. Moreover, Voronoi ver-
tices represent locations that are equidistant to three or
more points.

Consider the Delaunay Triangulation of a set V of
planar points. The Voronoi Diagram describes the prox-
imity relationship among the points of V. The Voronoi
Diagram of a set V of n points is a planar subdivision
into n convex polygonal regions. Each region is asso-
ciated with a point of V. Each Voronoi region of each
point of V is the set of planar points which lie closer to
the point than to any other point in V. Two points of V
are neighbors when the corresponding Voronoi regions
are adjacent [12].

An interface orthogonal to the segment between
two centroids facilitates finite-volume approximations.
Moreover, it improves the solution accuracy and re-
duces the computational effort to approximate a solu-
tion of a partial differential equation. Furthermore, in
this approach, the finite volumes are not the triangles
themselves, but the Voronoi Diagram (see Figure 6), i.e.
parts of each triangle.

Figure 6: A single Delaunay Triangulation and its dual the Voronoi
Diagram.

4 Longest-edge based triangle partition

within Delaunay Triangulation

Rivara [35] presented the backward longest-edge refine-
ment (BLER) algorithm based on an interesting concept
in order to conform the mesh in the finite element con-
text: the longest-edge propagation path (LEPP). Briefly,
the LEPP keeps a path of n triangles that have also to
be refined for each triangle of the mesh. For example,
consider that the triangle t0 is marked to be refined.

The LEPP indicates that the triangles t1, t2, · · · , tn also
must be refined in order to mantain a conforming good-
quality mesh. It propagates the list until the longest-
edge shared by triangles tn−1 and tn. This edge is
larger than the one of its previous neighbor or tn is
in the boundary. Figure 7 shows an example of the
LEPP-midedge propagation with 3T-LE partition ap-
proach and tn is bisected, where n=4 in this example.
The BLER is a partition procedure that extended both
the pure longest-edge refinement algorithms for general
nonDelaunay Triangulation (see [39] and the references
therein) and the longest-edge refinement algorithm for
Delaunay Triangulations proposed by Rivara and Inos-
troza [38]. Specifically, the algorithm presented in [38]
guarantees that meshes of analogous quality to the input
reference-mesh are built.

Figure 7: LEPP-midedge of t0.

Rivara and collaborators ([37] and [49]) presented
the LEPP-Delaunay midedge algorithm . It generalized
and improved both previous longest-edge algorithms
for the Rivara’s refinement of general nonDelaunay Tri-
angulations, and the longest-edge algorithm for the re-
finement of Delaunay meshes [38].

In the LEPP-Delaunay midedge algorithm, only
considering local information associated to the terminal
triangle that contains a constrained edge allows a real
constrained Delaunay Triangulation. The constrained
Delaunay Triangulation is the best approximation of the
Delaunay Triangulation containing the set of given seg-
ments among its edges.

The LEPP-Delaunay midedge algorithm avoids the
interaction with the entire set of constrained items. This
algorithm is not a nested partition procedure because
it changes the previously existing points. Moreover, it
replaces previous triangles by Delaunay triangles due
to the circumcircle test of DT(P). In addition, it suf-
fers of a looping case for angle tolerance greater than
22◦. Namely, in certain cases, the triangles are not im-
proved during the refinement. Nevertheless, it is inter-
esting since it provides meshes with triangles which the
smallest angle is greater than or equal to π/6, including
along boundaries.

Hitschfeld and Rivara [29] introduced a automatic
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construction of nonobtuse triangles in boundary for
LEPP-Delaunay Triangulations within control volume
methods. Each 1-edge obtuse boundary triangle is elim-
inated by the Delaunay insertion of midedges.

Consider that α is the smallest angle of the triangle.
In the case that α ≥ 25.4◦, any isolated 1-edge obtuse
triangle and isolated pairs of neighbour 1-edge obtuse
triangles sharing their longest edge demand the inser-
tion of only one point. When α ≥ 15.4◦, the Delau-
nay insertion of at most three boundary/interface points
eliminates any isolated 1-edge boundary triangle and
isolated pairs of neighbour 1-edge boundary triangles
sharing a longest edge. An obtuse angle in each isolated
2-edge boundary triangle having medium-size edge l

and longest-size edge L over the boundary is eliminated
by building an isosceles triangle of boundary edges of
lengths l/2 followed by the Delaunay insertion of a fi-
nite number of points N, where N ≤

2.14
sin(α/2) .

A generalization of those approaches solves more
complex patterns of obtuse triangles, i.e. chains of 2-
edge constrained triangles forming a saw diagram and
clusters of triangles that have boundary/interface edges
sharing a common vertex [29]. Hitschfeld and collabo-
rators [30] presented the LEPP algorithm for Delaunay
mesh and its dual Voronoi Diagram, without obtuse an-
gles opposite to the boundary and interfaces for semi-
conductor device simulation using Box-method Delau-
nay meshes.

Rivara and Calderon [36] presented the LEPP-
Delaunay centroid algorithm. They proved that the cen-
troid version of the LEPP-Delaunay algorithm produces
triangulations both with average smallest angles greater
than those obtained with the midedge version and with
larger smallest edges without suffering from the loop-
ing case associated to the midedge method. In addition,
the centroid version terminates for high-quality thresh-
old angle, i.e. up to π/5. They also showed that the
centroid version behaves better than the off-center al-
gorithm for quality threshold angle larger than 25◦.

Because the finite-element conformity requirement,
most of those previous articles describe algorithms that
propagate the refinement in neighbors of the triangle
marked to be refined and/or modify the points of the
current mesh. As an example, Rivara and Inostroza
[38] pointed out that numerical experiments performed
with their 2D algorithm have shown that the number of
points inserted by propagation is approximately N1/2,
where N is the number of points in the mesh.

If an algorithm modifies the positions of the refined-
triangle points, the data-structure nodes that represent
those triangles also have to be changed. A process that
operates strict local changes (a nested mesh) is desir-

able. In [26] and [11], the authors described algorithms
that perform the circumcircle test of DT(P) without lo-
cally destroying the current triangulation.

In [36], for constrained edges, in both the circum-
center and the off-center algorithm if a prospective
point P to be inserted is inside the diameter circle of
any constrained edge E, the midpoint of E is inserted
instead of P . This implies that a strict Delaunay Trian-
gulation is maintained. As a result, no angle lesser than
π/2 appears in the triangulation.

5 Concluding remarks

Plaza and collaborators [34] provided several open
problems related to their 7-triangle partition ap-
proaches. There is a lot of work related to 3D (for ex-
ample, see [10]). In addition, the 3D review shall be
provided.

The purpose of this article is to survey the ap-
proaches and not to evaluate them. Probably other
schemes exist. However, such schemes may be either
variations of the ones cited in this article or are not
known to the author. However, the author hopes that
this review and the references cited serve to consoli-
date the ideas, principles and schemes that constitute
the state-of-art in this subject. Moreover, the author
hopes that the list of references and descriptions to the
large body of work on this issue can provide a useful
starting point for one faced with the task of adaptively
constructing a Delaunay Triangulation.
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