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Abstract. In many domains there is a need to interpret the high volumes of noisy data. In this paper
we propose and describe a new software architecture called INTERPRETOR for summarising and in-
terpreting voluminous high frequency noisy data. INTERPRETOR consists of 3 modules: Filter which
processes noise; Abstraction which abstracts features from the filtered data; and Interpretation which
takes the abstractions and provides an interpretation of the data. In this seminal article we also show how
INTERPRETOR has successfully been applied to 2 case studies.
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1 Introduction

In many domains there is a need to interpret high fre-
quency noisy data. Interpretation of such data may
typically involve pre-processing of the data to remove
outliers, inconsistencies or noise. Rather than reason-
ing quantitatively on a point to point basis which is
computationally expensive, this filtered data would be
processed to derive abstractions which would be inter-
preted and the results reported. Such a common ap-
proach lends itself to the development of a software ar-
chitecture.

Abstractly, software architecture involves the de-
scription of elements from which systems are built, in-
teractions among those elements, patterns that guide
their composition, and constraints on these patterns. In
general, a particular system is defined in terms of a
collection of components and interactions among these
components. Such a system may in turn be used as a
(composite) element in a larger system design. Indeed,
a good software architecture will involve reuse of estab-
lished engineering knowledge [19].

In this seminal paper we propose and describe the

INTERPRETOR software architecture for interpreting
and summarising high frequency noisy data sets. IN-
TERPRETORwas inspired by the software architecture
of ASSOCIATE [18] for interpreting Intensive Care
Unit monitor data and ABSTRACTOR [16] for inter-
preting building sensor data - both systems have com-
mon features which facilitates a generic architecture.
INTERPRETOR is based on the pipe and filter soft-
ware architecture and consists of 3 consecutive pro-
cesses: Filter which takes the original data and removes
outliers, inconsistencies and noise; Abstraction which
takes the filtered data and derives abstractions; and In-
terpretation which takes the abstractions and provides
an interpretation and summarisation of the original data.

The structure of this paper is as follows. Sec-
tion 2 discusses related work. Section 3 describes the
INTERPRETOR software architecture to interpret and
summarise high frequency noisy data Section 4 de-
scribes how the INTERPRETOR software architecture
has been applied to 2 case studies. Final conclusions
are given in section 5.
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2 Related Work

A common architecture used to interpret high frequency
data is the blackboard as used by ([1],[10], [14]). A
blackboard system consists of a set of independent
modules, called Knowledge Sources (KSs) that con-
tain the domain-specific knowledge in the system, and
a blackboard which is a shared data structure to which
all the KSs have access. When a KS is activated it ex-
amines the current contents of the blackboard and ap-
plies its knowledge either to create a new hypothesis
and write it on the blackboard, or to modify an exist-
ing one [13]. INTERPRETOR’s architecture is sim-
ilar to that of the blackboard in that individual tasks
are performed by separate processes. However since
the knowledge of blackboards are distributed, prob-
lems would arise with the co-ordination of knowledge
sources which have competing obligations.

Another approach for interpreting high frequency
and noisy data is the service-oriented architecture
(SOA) used by ([4], [8], [20]). The SOA consists
of components which can handle numerous distributed
agents to allow the interpretation of data. Due to the
architecture of SOA, extra functionality in the form of
security for message passing between agents has had to
be incorporated. Since INTERPRETOR is not a dis-
tributed system, there is no requirement for these extra
services.

Another approach is a multi-layered architecture
([7], [21]). A multi-layered system is organized hierar-
chically where each layer provides service to the layer
above it and serves as a client to the layer below it. The
authors of [7] proposed a five layered generic and scal-
able architecture which uses components, middleware
and agent technologies. Though a demonstrator was
developed as a proof that the proposed conceptual soft-
ware architecture is feasible in practice, there was no
actual data or results to support their design. In contrast
our proposed software architecture has been proven to
work effectively.

Another approach is to have a multi-agent archi-
tecture ([2], [3], [12]). An agent is an autonomous
computational process that inhabits an Agent Platform.
An Agent platform provides the physical infrastructure
in which agents are deployed and consists of the ma-
chines, operating systems, agent management compo-
nents, the agents themselves and any additional sup-
port software. Agents typically offer one or more com-
putational services that can be published as a service
description. Agents typically communicate with each
other to fulfill a task. Again, since INTERPRETOR is
not a distributed system, there is no requirement for ex-
tra services which a multi-agent system would require.

A non-hierarchical architecture is SIMON [5]. SI-
MON (Signal Interpretation and MONitoring) is a sys-
tem for monitoring neonates in the ICU. SIMON con-
sists of a number of modules implemented as indepen-
dent UNIX processes, communicating with each other
through an inter-process communication (IPC) message
protocol. The problem with such an architecture is the
scheduling of the various modules. Care must be taken
that the shared memory does not get corrupted by si-
multaneous writes. Another problem of SIMON is that
it is solely an event driven architecture - it functions
with discrete and infrequently determined input. IN-
TERPRETOR deals with continuous and discrete data
and does not have scheduling issues.
Another non-hierarchical approach is to use sequen-

tial processes. VIE-NET [11] a monitoring and therapy
planning system for the artificial ventilation of newborn
infants and resembles a em pipe and filter architecture
where by a component reads streams of data on its in-
puts and produces streams of data on its outputs for
another component to process. VIE-NET is made up
of four sequential modules: Data Selection which fil-
ters out context-relevant data for further analysis; Data
Validation which arrives at reliable measurements by
detecting faulty data; Data Abstraction which trans-
forms quantitative data of the observable system into
qualitative values; andData Interpretation and Therapy
Recommendation which performs patient state assess-
ments and associated therapy advise. INTERPRETOR
strongly resembles VIE-NET except that INTERPRE-
TOR does not perform data validation (though it could
be performed as part of the Interpretation module) nor
does it generate therapy recommendations because it is
a generic architecture

3 Software Architecture

Figure 1 shows the Context Diagram of the INTER-
PRETOR system. The INTERPRETOR system takes
high frequency noisy data and other relevant data to
assist in interpretation from various input sources and
presents to various output sources an interpretation of
the original data.
Figure 2 shows the data flow in the INTERPRETOR

system of Figure 1. Data is initially filtered to get rid of
noise; rather than reasoning on a point to point basis,
the resulting data stream is then converted by a second
process into abstractions - this is a form of data com-
pression. These abstractions are interpreted by a third
process to provide an assessment of the original data.
We, therefore, derive the overall software architec-

ture of the INTERPRETOR System in form of a Struc-
ture Chart as shown in Figure 3.

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011



Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 46

Figure 1: Context Diagram of the INTERPRETOR System

Figure 2: Data Flow Diagram of the INTERPRETOR System

Figure 3: Overall Software Architecture of the INTERPRETOR Sys-
tem

It can be seen that INTERPRETOR is a data flow ar-
chitecture. The architecture is decomposed into 3 pro-
cesses which can be changed or replaced independently
of the others - this makes INTERPRETOR a loosely
coupled system. Indeed, each process of the INTER-
PRETOR performs one task or achieves a single objec-
tive - this makes the INTERPRETOR a highly cohesive
system.
INTERPRETOR can be considered a pipe and fil-

ter architectural style because it provides a structure
for systems that process a stream of data. Each pro-
cessing step is encapsulated in a filter component (pro-
cess) which reads streams of data on input and produces
streams of data on output. A local incremental trans-
formation to input stream is made and the output be-
gins before input is consumed. Data is passed through
pipes between adjacent filters - they are the conduits for
streams and transmit outputs from one filter to input of
another. The advantage of this approach is the overall
behavior is a simple composition of behavior of indi-
vidual filters. The architecture facilitates reuse so any
two filters can be connected if they agree on that data
format that is transmitted. There is ease of maintenance
because any filter can be changed or replaced depend-
ing on the application.
We hope to extend our INTERPRETOR design ar-

chitecture, such that we have a generic design pat-
tern for voluminous and high frequency noisy data,
whereby, the data is passed through 3 consecutive pro-
cesses: Filter Data which takes the original data and
removes outliers, inconsistencies or noise; Abstraction
which takes the filtered data and abstracts features from
the filtered data; and Interpretation which uses the ab-
stractions and generates an interpretation of the original
data.

4 Applications of INTERPRETOR

We will demonstrate the application of the INTERPRE-
TOR software architecture to 2 case studies: Interpret-
ing Intensive Care Unit (ICU) monitor data and inter-
preting building monitor data.

4.1 Case Study 1 - Interpreting ICU Monitor Data

The ICU bedside monitors confront the medical staff
with large amounts of continuous noisy data - this is
emphasised when there are many cardiovascular param-
eters such as the heart rate and blood pressure being
recorded simultaneously. The frequency of the data can
be higher than 1 value every second which creates infor-
mation overload for medical staff who need to interpret
the data to evaluate the state of the patient.
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A system called ASSOCIATE [15] has been devel-
oped using the the INTERPRETOR software architec-
ture to interpret the ICU monitor data. We shall de-
scribe how ASSOCIATE implemented each of the mod-
ules of the the INTERPRETOR software architecture.

4.1.1 Filter Module

Figure 4: Algorithm for Filter Data Module

Filtering is the process of removing certain noise
like clinically insignificant events from the physiolog-
ical parameters. Clinically insignificant events which
can not be removed at this stage will be dealt with by
the Interpretation process.
After various investigations of filtering techniques,

a median filter was chosen. The median filter involves
a moving window which is centered on a point xn and
if the window is of size 2k+1 the window contains the
points xn−k to xn+k. By always choosing the median
value in the window as the filtered value, it will remove
transient features lasting shorter than k without distor-
tion of the base line signal; features lasting more than
that will remain. A summary of the algorithm for apply-
ing the median filter to our physiological data is shown
in Figure 4.

4.1.2 Abstraction Module

Given continuous data (up to one value every second),
it is computationally expensive to reason with each data
value on a point to point basis - this data needs to be
reduced by performing abstraction. Abstraction is the
classification of filtered data generated by the filtering
process into temporal intervals (trends) in which data
is steady, increasing and decreasing. One is also inter-
ested in the rate of change e.g rapidly increasing, slowly
decreasing etc. One must decide the beginning and end
of an interval.
Our algorithm for identifying trends involves fol-

lowing two consecutive sub-processes called temporal

Figure 5: Algorithm for Abstraction Module

interpolation and temporal inferencing. Temporal in-
terpolation takes the cleaned data and generates simple
intervals between consecutive data point. Temporal in-
ferencing takes these simple intervals and tries to gener-
ate trends - this is achieved using 4 variables: diffwhich
is the variance allowed to derive steady trends, g1 and
g2 which are gradient values used to derive increasing
and decreasing trends and dur which is used to merge
3 intervals based on the duration of the middle interval.
Temporal Inferencing rules to merge 2 meeting inter-
vals (ΔH2) and 3 meeting intervals (ΔH3) use the 4
variables to try to merge intervals into larger intervals
until no more merging can take place. The algorithm
for abstraction is summarised in 5. For further discus-
sion of the algorithm the reader is advised to read [17].

4.1.3 Interpretation Module

Interpretation is based on defining a trend template for
each type of event we wish to identify - examples of
trend templates are shown in Figure 6. A given trend
template will specify criteria which apply both within
intervals and between intervals. The two relationships
of interest between intervals are: meeting where the end
time of one interval is the same as the start time of the
other; and overlapping where there exists a time which
is common to both intervals.

The algorithm for interpretation involves applying
the templates to the temporal intervals. Clinically in-
significant event and clinical condition templates ini-
tially have the status absent and therapy templates ini-
tially have the status working. The reasoning engine
assesses the status of the templates (i.e hypothesised
or confirmed) by evaluating the expressions located
in the HypothesiseConditions and ConfirmConditions
slots with the data. Actions to be performed when the
templates are hypothesised or confirmed are provided
in the HypothesiseActions and ConfirmActions slots. If
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we have a template which has a hypothesised status over
a number of adjacent segments which are subsequently
confirmed then in retrospect we change these hypothe-
sised states to confirmed. This is a way of confirming
our initial beliefs. All segments with clinically signifi-
cant templates that have confirmed states represent the
interpretation.

Trend templates encompass three types of knowl-
edge: temporal, differential and taxonomical. Temporal
knowledge allows temporal reasoning; interval-based
and point-based reasoning. Interval-based temporal
reasoning is achieved using the still_developing and to-
gether functions. Given a clinical condition which is de-
scribed in terms of overlapping intervals, the still_devel
oping function operates on the uncertain period be-
tween the hypothesised state and the confirmed state of
the clinical condition. Here the still_developing func-
tion is satisfied if there is the correct temporal pro-
gression from the hypothesised state to the confirmed
state. Similarly the together function operates on over-
lapping temporal intervals which make up clinically in-
significant events. Here the together function is sat-
isfied if the overall changes in all the individual pa-
rameters that make up the event all share a common
time interval. Though defined differently, the together
and still_developing functions take into account the ex-
pected changes of the individual parameters that make
up specific events do not occur at exactly the same time.

Point-based temporal reasoning is used to determine
the outcome of therapy. It is known that clinicians ex-
pect changes in parameters to be achieved by a lower
and upper temporal bound represented as time points in
the future. ASSOCIATE expresses point based tempo-
ral reasoning within temporal intervals. When therapy
is administered at a specific point in time, we compare a
(future) interval which contains the therapy’s temporal
bound (lower and upper) with the interval which con-
tained the time of administration. We are interested
in whether parameters have increased, decreased or re-
mained the same in the future after the time of adminis-
tration.

Since several clinical conditions may be described
by the same patterns, differential knowledge can be
used to eliminate possibilities and hence prevent unnec-
essary reasoning. Information such as the patient record
which contains the patient’s history can be used as dif-
ferential knowledge.

Also within the trend templates there is taxonomical
knowledge - since several clinical conditions have simi-
lar attributes, this enables us to represent them as a hier-
archy of classes and subclasses. Such a representation
allows more abstract clinical conditions to be identified

Figure 6: Possible templates for clinical conditions, insignificant
events and therapies
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- if a specific instance of a clinical conditions cannot be
identified then the more general class of clinical condi-
tion to which it belongs is more likely to describe the
data. For further discussion of the algorithm the reader
is advised to read [15].

4.1.4 Results

ASSOCIATE has been tested on three datasets from an
adult ICU (here each set covers 24 hours and contains
measurements of heart rate, mean blood pressure and
central venous pressure) and six datasets from a neona-
tal ICU (here each set covers about 60 hours and con-
tains measurements of heart rate, mean blood pressure,
partial pressure of oxygen and partial pressure of car-
bon dioxide). The data sets were taken in 1995 as part
of a research project and the results were validated by a
consultant aneasthetist and a consultant neonatologist.
Overall, ASSOCIATE has a false-positive rate of

28.9% and a false-negative rate of 0.3% in identify-
ing clinically insignificant events, a false-positive rate
of 10.7% and a false-negative rate of 0.15% in identi-
fying clinical conditions and a false-positive rate of 0%
and a false-negative rate of 87.9% in determining the
outcome of therapy. Since all have a true positive rate
which is higher than its false positive rate, ASSOCIATE
can be seen as a conservative system [9].
As an example, consider a three day data set taken

from an ICU from from 00:01 on 22 April 1995 to 23:59
on 24 April 1995; the frequency of the signal is one data
item per minute. No prior knowledge of events that oc-
curred within this data set was known to the expert or
the tester. Figure 7 depicts the physiological data from
ICU patient monitors and Figure 8 depicts a graphical
summary of the temporal intervals generated for each
parameter by the Abstraction Module. Note that in the
graphs HR represents the Heart Rate, BP represents the
Blood Pressure, PO represents the Partial Pressure of
Oxygen and TCO represents the Partial Pressure of Car-
bon Dioxide.
All clinically insignificant events were correctly

identified and removed.
For the clinical condition interpretation, the expert

agrees that ASSOCIATE identified all 11 episodes of
respiratory problems in the data. Of 2 of these episodes,
namely those identified from 11:44 on 23/04/95 to
12:04 on 23/04/95 and from 13:57 on 23/04/95 to
14:32 on 23/04/95 may have been pneumothoraxes.
However, ASSOCIATE incorrectly identifies respira-
tory problems on 5 occasions. ASSOCIATE also incor-
rectly identifies a pulmonary haemorrhage and a pneu-
mothorax at the same time, though the expert agrees
that there is a respiratory problem at this time.

Figure 7: Original Physiological Data from ICU Patient Monitor

Figure 8: Graphical Summary generated by the Abstraction Module
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ASSOCIATE identified 3 separate episodes of
shock of which the expert agreed with 2 of them. The
expert also agrees in ASSOCIATE’s identifications of
episodes of tachycardia and hypercarbia. However, a
few of the episodes of hypoxaemia were incorrectly
identified due to noisy data.
The expert agreed that ASSOCIATE recognised all

clinical conditions in the data set i.e no clinical condi-
tions were missed.
For the therapy interpretation, 6 therapies were ad-

ministered. Of the 5 that worked ASSOCIATE cor-
rectly identifies 2 of them as working. ASSOCIATE
correctly identifies the therapy that did not work. The
incorrect results were because of noisy data and approx-
imate times of administration.

4.2 Case Study 2 - Interpreting Building Sensor
Data

Building operators are confronted with large volumes
of continuous data from multiple environmental sen-
sors which require interpretation. The ABSTRAC-
TOR ([18], [16]) system used the INTERPRETOR soft-
ware architecture to summarise historical building sen-
sor data for interpretation and building performance as-
sessment. We shall describe how ABSTRACTOR im-
plemented each of the modules of the INTERPRETOR
software architecture.

4.2.1 Filter Module

Figure 9: Algorithm for Filter Data Module

Initially data needs to be filtered to get rid of non-
significant events in environmental monitoring data.
Due to the nature and frequency of the data, an aver-
age filter was chosen - here all the very short duration
spikes from the outdoor temperature data were removed
whilst revealing the short duration trends hidden in the
raw data. The algorithm for the filter module is given in
Figure 9.

4.2.2 Abstraction Module

This module is exactly the same as the agglomerative
approach used for case study 1 - for a discussion of this
algorithm applied to building monitor data the reader is
advised to read [20].

4.2.3 Interpretation Module

Given overlapping trends it is proposed, in the spirit of
[6] they are split into global segments. A change in the
direction of change (slope) of one (or more) channels
or a change in the rate of change of one (or more) chan-
nels contributes to a split in the trends creating a global
segment. A global segment can be considered as being
a set of intervals - one for each channel.

Figure 10: Example of rules to apply to global segments

The algorithm for interpretation involves applying
rules to the global segments. Examples of rules for
identifying faults are shown in Figure 10 - here a fault
is declared when the heat-flux does not have the same
trend as the difference in internal and external temper-
ature (t1-t0). If rules are true over adjacent global seg-
ments then one can determine when the fault started and
ended.

4.2.4 Results

ABSTRACTOR has been tested on over 8 days (121
79 minutes) worth of continuous data (see Figure 11a).
The data was the heat-flux into a wall and the differ-
ence in internal and external temperature (ti-t0) mea-
surements; the sampling frequency of the signals is one
data item every 15 minutes. No prior knowledge of
events that occurred within this data set was known to
the expert or the tester. The application of the average
filter (k=10 filter provides a running five and a quar-
ter hour running average) is shown in the middle graph
11(b) and the intervals generated are shown in the bot-
tom graph 11(c).
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Figure 11: Output of ABSTRACTOR

Overall, ABSTRACTOR has a sensitivity of 56%,
specificity of 64%, predictive value of 43%, a false pos-
itive rate of 57% and a false negative rate of 24%. These
results mean that when a fault is present ABSTRAC-
TOR is detecting it only 56% of the time but when
there is no fault it will correctly identify this 64% of the
time. Whilst it would seem that ABSTRACTOR is only
slightly better than tossing a coin to decide the presence
or absence of a fault it needs to be remembered that the
actual fault conditions were derived from an expert’s
manual abstraction of the raw data which is dependent
on the expert’s attitude and experience. A direct com-
parison with the raw data is meaningless because the
data is at intervals much shorter than the trends. If AB-
STRACTOR were to be incorporated in its present state
into a control system it would generate a high number
of false alarms (57%) but would fail to detect a fault
only 24% of the time. These results are indicating that
ABSTRACTOR is a more liberal system than a random
system [9].

5 Conclusions

The interpretation of high frequency and noisy data is
non-trivial. The INTERPRETOR software architecture
is designed in such a way to allow the interpretation of
high frequency and noisy data and the results of IN-

TERPRETOR are encouraging. We have shown that
INTERPRETOR can be applied to different domains
which have the same issues associated with the interpre-
tation of voluminous and noisy data. Our future work
will be to develop a tool for our software architecture
which should lend itself for reuse and then validate it
with further case studies.

In summary, INTERPRETOR reasons with multiple
signals in an intuitive way. Although it is not perfect, it
is a step forward in the development of systems for the
interpretation of voluminous high frequency and noisy
data.
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