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Abstract. This work presents an innovative system for analysing and predicting the runtime behaviour
of object-oriented applications, with respect to the data access patterns performed over their domain
objects. The analysis and predictions are performed using three alternative stochastic model implemen-
tations. The models are based on Bayesian Inference, Importance Analysis, and Markov Chains. The
system deals with all the necessary modifications of the target applications under analysis in a completely
automatic fashion, without it being necessary for any developer intervention. The results are validated by
the execution of the TPC-W and 007 benchmarks. The 007 benchmark has been modelled as a stochas-
tic process through Monte Carlo simulations. We show that the results obtained with our system are
precise, regarding the observed behaviour, and that the overheads introduced by the data acquisition are
low, ranging from 5% to 9%. The system is sufficiently flexible to be applied to a broad spectrum of
object-oriented applications.
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Introduction

gains in the number of requests that can be processed

Modern three-tier application architectures place busi-
ness logic on an application server and the persistent ob-
jects on one or more back-end relational database man-
agement systems (RDBMS). This architecture, how-
ever, poses problems to applications with object models
that are inherently navigational: models where objects
have references or relationships to other objects, which
applications follow one at a time. The navigational
characteristics of applications may cause a large num-
ber of data-access round trips, which could result in un-
acceptable overhead due to the latency from both physi-
cal disk access and network processing. This overhead,
which is due to inter-process communication costs, is
becoming increasingly important because of the recent

per second due to improvements in processor speed,
memory size, disk throughput, and query processing al-
gorithms.

The current state-of-the-practice to minimize this
problem is to make programmers responsible for care-
fully tuning an application with the aim of reducing the
number of database round-trips required to fulfil an ap-
plication’s request for stored objects. Yet, this tuning
is hard to do and often leads to an excessive amount
of time spent in the development of an application.
An additional drawback of this approach is that such
manual tuning must be repeated each time the database
schema or application logic is modified. Such modifica-
tions are quite common because of business or technical
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progress.

Thus, we argue that the current approach of man-
ual tuning is hindering the development of complex ap-
plications and is untenable in the long run. Instead,
we intend to automate that tuning, by developing self-
adaptable mechanisms of data prefetching and caching
that take into account the probabilistic behaviour of an
application. With these mechanisms in place, we ex-
pect to minimize the user-perceived elapsed time of
tasks, given that the elapsed time is strongly related
to the number of DBMS round-trips and these mech-
anisms seek to minimize them. In the work reported
in this paper, we do not address the implementation
of these self-adaptable prefetching and caching mech-
anisms, which we intend to do in a future work, but we
address what we believe to be an essential pre-requisite
for such work: the ability to identify the data access pat-
terns performed by an object-oriented application and
to predict with precision what the future behaviour of
that application will be, with regards to the domain ob-
ject manipulations that it performs.

In particular, we describe an automatic system that
is able to monitor the data access patterns of an object-
oriented application during its execution, analyse those
patterns using several models, and predicting what
types of domain objects are most likely to be accessed
during the forthcoming execution of the application.

The system is expected to satisfy a set of require-
ments, among which are the following:

e Efficiency - the system should be able to acquire
and analyze the necessary statistical data in an
efficient manner and with the minimal possible
amount of overheads for the target application;

e Transparency - from the point of view of the appli-
cation programmer, the system should be able to
achieve its goals with minimal or no intervention
by the application programmers;

e Precision - the predictions generated by the sys-
tem should be as close as possible to the observed
behaviour by the applications, in the future.

The article has the following structure. Section 2
discusses the related work. Section 3 describes the main
structure of the system that we propose. Then, in Sec-
tion 4, we present the stochastic models that were em-
ployed in this work, where their theoretical background
is considered first, followed by a description of their
actual implementation. The results and evaluation of
the system are discussed in Section 5. In Section 6,
we make a brief analysis and comparison of the three
stochastic models, and in Section 7, we analyse the

overheads introduced into the target application by our
system. Finally, in Section 8, we present some conclud-
ing remarks about our work and the results obtained.

2 Related Work

Apart from the work reported in [11, 12], to the
best of our knowledge, there is no previous published
work that uses stochastic methods to predict the be-
haviour of object-oriented applications, in what con-
cerns the domain data manipulations they perform in
runtime. There is, however, some research work on
using stochastic models for traffic analysis in telecom-
munications that has some relation to the approach de-
scribed in this paper. We start by briefly reviewing that
work, and then we describe some of the previous work
for optimizing application performance that we envi-
sion may use the predictions generated by the system
that we present here.

A study for telecommunication traffic with regards
to the use of stochastic models has been presented in
[24, 25, 23]. In that field of research, many quantities
of interest have been shown to have a long tailed distri-
bution. A long-tailed or heavy-tailed probability distri-
bution is one that assigns relatively high probabilities to
regions far from the mean or median. It should be noted
that the long-tailed assumption dominant in the works
does not apply at all for the current work. However,
these works are relevant from the point of view of their
use of stochastic model analysis. In particular, Li [25]
studied the stochastically bounded modelling of traffic
by taking into account both stochastic and deterministic
modelling parameters resulting thus in a new approach
for analysing traffic behaviour. Also, Li [24] consid-
ered the traffic modelling as a generalized Cauchy pro-
cess, leading to a flexible approach capable of describ-
ing multi-fractal traffic phenomena, as well as accurate
traffic modelling.

Concerning performance optimizations that can be
attempted when there is available information about
what are the most likely domain data sets to be ac-
cessed, there are a variety of approaches. Two cat-
egories of such methodologies, where significant re-
search work has been performed, are caching and
prefetching. Caching refers to storing locally in mem-
ory recently accessed objects, thereby avoiding un-
necessary requests to the database [8].[28] and [17].
Caching is useful in many applications, but it does
not help if future requests rarely match previous ones.
Prefetching, which is about fetching data based on a
prediction of an application$ future requests, can help
in such situations [33], [16] and [35]. Both caching and
prefetching may result in significant pay-offs in data-
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access performance [20] and [1]. For instance, some
studies of prefetching reported improvements of several
times by prefetching multiple tuples at a time instead of
just the one that is requested [4].

Prefetching techniques may be classified into three
main categories [19]:

e Deterministic prediction techniques employ a
fixed strategy and are used by commercial data
servers and by object managers or containers in ap-
plication servers. An example strategy is to load
one block ahead in sequential prefetching [15],
[27] and [13].

e Object structure-based prefetching techniques are
mostly used in OODBMSs and predict future data
accesses via pointers from objects to other objects
[14], [16] and [4].

e Statistical prediction techniques generate prob-
abilistic information about future accesses by
analysing past accesses [31], [22], [10] and [29].

Palmer [31] proposed Fido, which is a system based
on recognizing patterns of object references to pre-
dict future references. The authors used an associative
memory to predict future requests based on access pat-
terns that approximately match a pattern in the training
trace.

Lei [22] monitored the files used by programs in or-
der to build an access tree that encapsulates the program
file reference behaviour. When the current access tree
matches one of the previous access trees (within some
threshold), the stored tree is used to prefetch all of the
files that are anticipated to be needed for the program.

Madhyastha [29] employed neural networks and a
hidden Markov model to predict future client behaviour,
in terms of input/output patterns. The authors conclude
that the Markov model offers a more precise control
over caching and prefetching policies than neural net-
work access pattern classification. Drapeau [10] pro-
posed using data mining techniques to find association
rules for prefetching in WWW search engines, where an
off-line process identifies frequent item sets to build a
prediction model using earlier requests to predict future
requests.

3 System Description

The system is composed of three modules: a code in-
jection module, a data acquisition module and a data
analysis module. The code injection module is respon-
sible for injecting code into the target applications. The

injected code is responsible for invoking the function-
ality present in the other two system modules and its
injection is performed in a completely automatic fash-
ion by the system to avoid the need for the application
programmers themselves to perform any modifications
whatsoever to their applications. The second module -
the data acquisition module - is responsible for collect-
ing data about the actual behaviour of the target appli-
cation, with regards to the data accesses that the appli-
cation performs. Finally, the data analysis module is
responsible for applying the stochastic models over the
acquired data and, subsequently, for generating the pre-
diction about the most likely behaviour to be observed
by the target application, in terms of the domain ob-
jects that it will access. An overview of the runtime
behaviour of the system can be seen in Figure 1 (arrows
indicate data flows and rectangles correspond to mod-
ules).

3.1 Code Injection

The data-access patterns of an application describe
which types of domain objects and which of their fields
are accessed during its execution. Consequently, to cap-
ture these patterns, it is necessary to identify all the
points where data is accessed within the application and
instrument them. This allows the subsequent recording
of those accesses during the execution of the applica-
tion.

Analysis

Module

Injection
Module

Acquisition
Module

Injected Code

Target Application

Figure 1: System runtime overview

The system performs this instrumentation at
compile-time by means of (Java) byte-code rewriting.
Thus, the system performs all the necessary modifica-
tions to the target application in an automatic way, with-
out the intervention of the programmer. The modifica-
tions are achieved through two instrumentation phases,
both of which make use of the Javassist library to inject
the code.

A relevant research work in this field has been per-
formed by Whaley [34], where a run-time system for
performance analysis of applications running on a Java
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virtual machine is presented. The system provides de-
tailed and continuous system performance information
to a dynamic compiler, with the goal of allowing the
compiler to make better decisions when performing
code optimizations.

The first instrumentation phase injects the code nec-
essary for the identification of the contexts within which
all data accesses take place. The context is a key con-
cept in the system. It defines the scope within which all
data manipulations take place. For the results presented
in this paper, the context corresponds to the method in
which body the data accesses take place, but the system
supports different context definitions. For instance, the
context can correspond to the execution of a given ser-
vice or even a sequence of the last n method invocations
that precede the current point of the target application
execution.

There are several reasons that led us to the use of
the simpler context definition instead of more elabo-
rate ones. The first of these relates to the fact that
whilst a more complex context definition could, poten-
tially, bring more information to the inference models,
it would increase the performance overhead due to the
collection of application behaviour information. As one
of the system requirements is efficiency at the level of
gathering statistical information, the most performance
friendly context definition was employed.

Another consideration is that the use of a context de-
fined as the "n preceding method invocations present in
the execution stack" would make the space of the "pos-
sible" contexts grow exponentially, as a function of the
stack depth parameter n. This would lead not only to
significantly higher upper memory bounds for the stor-
age of the statistical information (discussed in more de-
tail in the end of the current section), but it would also
increase the time interval necessary for the collection of
enough statistical data for the stochastic inference mod-
els to be able to generate their predictions. This last
issue shall be discussed further in Section 4.

Listing 1: Method source code before instrumentation

void addPart (Part p) {
if (this.parts == null) {
this.parts = new HashSet<Part>();
}
p.setCompositePart (this);
this.parts.add(p)
}

To identify the contexts at runtime, the first instru-
mentation phase modifies each method of the applica-
tion. It injects code that updates the context information
associated with the method, upon entering it, and code
that cleans the same context information when return-

ing from it.

An example of the source code of a given method,
before it is instrumented by this phase, can be seen in
Listing 1, whereas the resulting (decompiled) code, ob-
tained after the first instrumentation, can be observed in
Listing 2.

It should be noted that the renamedAddPart method
corresponds to the original method that has been re-
named. This is shown in Listing 3.

Listing 2: Method source code after first phase

void addPart (Part p) {
ContextManager.addContextInfo (
new Info("oo7.CompositePart",
"addPart"));
renamedAddPart (p) ;
ContextManager.removeContextInfo();

}

Listing 3: Renamed method body

public void renamedAddPart (Part p) {
if (this.parts == null) {
this.parts = new HashSet<Part>();
}

p.setCompositePart (this);
this.parts.add (p)

}

The second instrumentation phase replaces every
field access that exists within the application with the
invocation of a previously injected static method. There
is a distinct method for each of the fields for every class
of the application. These methods determine the sur-
rounding context in which the field is accessed and up-
date the associated statistical information. This is done
according to the type of access performed: a distinct
method is invoked whether the field is read or written.

Listing 4: Sample results of the second phase

void renamedAddPart (Part p) {
if (staticReader_parts(this)
staticWriter_parts (this,
new HashSet<Part>());
p.setCompositePart (this);
atomicReader_parts (this) .add(p);
}

== null)

With this in consideration, the code presented in
Listing 3 suffers modifications from the second instru-
mentation phase. The results of this are shown in List-
ing 4.

As can be seen from Listing 4, the read and write
accesses to the field parts have been replaced by calls to
the methods staticReader_parts and staticWriter_parts.
The bodies of these two methods can be seen in Listing
5 and Listing 6, respectively.
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Once these two phases are complete, the application
can be put into operation, and it will automatically col-
lect the statistics about each data access, without any
further modifications.

Listing 5: Field reader method body

static Set<Part> staticReader_parts(
CompositePart part) {
ContextManager.updateReadStatistics (
"oo7.CompositePart", "parts", 1);
return part.parts;

}

Listing 6: Field writer method body

static void staticWriter_parts(
CompositePart part, Set<Part> set) {
ContextManager.updateWriteStatistics (
"oo7.CompositePart", "parts", 1);
part.parts = set;

}

An important aspect of the solution presented here is
the data structure used to store the statistical data. Dur-
ing the instrumentation phases, the system performs an
analysis of the structure of the target application via re-
flection. As a result of this analysis, it generates a set
of PClass instances to model the structure of each of
the target application classes. Each of these PClass in-
stances contains a set of PField instances, which are
used to represent each of the fields that exist in the ap-
plication class. The information kept in a PField covers
not only the name and type of a field, but also the num-
ber of times that it has been accessed in a context. The
subsequent probabilistic analysis uses this information
to make its calculations.

The relationship between PClass instances and an
application class is many-to-one. This can be explained
with the fact that the PClass instances store information
regarding the way that application classes are accessed
in the contexts during execution. Consequently, if the
same class is used in different contexts, distinct PClass
instances will keep the information about how that class
was used in each.

Considering this, it is possible to estimate the up-
per bounds on the memory requirements for maintain-
ing these structures. The memory will be proportional
to the number of domain classes, times the maximum
number of fields present in any of the domain classes,
times the maximum number of contexts, which, for the
current work, corresponds to the number of methods
that exist in the target application. More importantly,
it should be noted that the memory requirements, after
reaching the referred upper bound, will no longer grow,
independently of how long the application operates. In

general, it has been observed that the consumption of
memory is negligible when compared to the memory
needed by the application.

Moreover, given that the probabilistic analysis iter-
ates through the PField and PClass instances, the time
spent in the probabilistic analysis will also take time
that is proportional to the previously stated bound.

4 Models

This section presents the three stochastic models em-
ployed in the current work with the aim of generating
predictions with regards to the data access patterns per-
formed by target applications over their domain objects.
For each of the models, the most relevant theoretical
aspects are considered, apart from their actual system
implementations.

It should be noted that the main contribution of this
work resides in the way the models were employed for
the goal at hand, namely predicting with precision the
behaviour of object-oriented applications regarding do-
main data manipulations. The models themselves have
not been extended or otherwise modified from their
"standard" definitions in the literature.

4.1 Bayesian Inference

4.1.1 Theoretical Base

Bayesian analysis techniques are used for parameter es-
timation. They give an estimate of the statistical uncer-
tainty of the estimated parameters (corresponding, in
our work, to the likelihood of reading/writing a given
field of an application class) and can update them when
new information becomes available.

If observations of one (or more) of the stochastic
variables X are available, the probability density func-
tion can be updated. Consider a stochastic variable X
with a probability density function fx (x). If q denotes
a vector of parameters defining the distribution for X,
the density function of the stochastic variable X can be
written as fx (z,q).

It is assumed that n observations (realizations) of
the stochastic variable X are available making up a
sample X = (51, To, En) . The realizations are as-
sumed to be independent. The updated density function
f(’i (q ‘E) of the uncertain parameters Q, given the re-

alizations, is denoted the posterior density function, see
textbook on Bayesian statistics, for example in [5] and
[26], and is given by:
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where fx (5 |q> = II fx (L |q) is the proba-
i=1

bility density at the given observations assuming that
the distribution parameters are q. The integration in (1)
is over all possible values of q.

4.1.2 Model Implementation

The implementation of the Bayesian Inference Model is
presented next. Two sets of statistical data are used to
generate the predictions. The first set is called prior set
and it contains data about access patterns observed in
the past, up to a given point in time. This time reference
corresponds to the moment when the model prediction
was updated last. The second set is called current set,
and it contains data from the point in time when the
prior set ends, to the moment when the new updated
prediction is to be generated.

It should be noted that the model prediction updat-
ing is performed at regular time intervals. The exact
duration of these intervals is application dependent and
should take into consideration several factors. The time
intervals should be long enough to allow the accumula-
tion of a representative volume of behavioural data. In
other words, sufficient time should be given to the tar-
get application to perform an adequate amount of oper-
ations to correspond to a sample of typical system oper-
ation. Depending on the target application, the duration
of the time interval may vary from several minutes to
several hours, based on the amount of work being per-
formed by the target system.

If the time periods are too short, the model pre-
diction updating in the end of these (intervals) would
lead to two potential problems. The first of these prob-
lems is that if the current data set collected during this
time period is not representative of the typical applica-
tion behaviour, when the current set is used to update
the model prediction, it may make the model conclude
something that is not true about the target system be-
haviour. The second problem relates to the fact that
very frequent recalculations of the model predictions
may add up to a performance overhead that could be
otherwise avoided.

When the moment for updating the model predic-
tion comes, the probability density functions of the
prior and current data sets are determined. These func-
tions describe the behaviour of the target application,
in terms of data accesses performed for the periods of

time to which the sets belong. Using the current prob-
ability density function, the prior function is updated,
obtaining thus the so-called posterior probability den-
sity function. The posterior function corresponds to the
prediction generated by the model, and describes what
is the most likely future behaviour of the target applica-
tion, in terms of the data it manipulates. Based on the
posterior function, the actual access probabilities for all
of the application domain class fields are calculated.

4.2 Importance Analysis Techniques

4.2.1 Theoretical Base

An Importance Analysis is a procedure for analysing
the potential failure modes within a system by classi-
fying them based on the severity or the effect of fail-
ures on the system. It is widely used in many indus-
tries during various phases of the system life cycle, [9],
[18] and [21]. A failure mode can be defined as the
manner by which a failure is observed and it gener-
ally describes how the failure occurs. Tools used in
the design stage for identifying failures and determining
their consequences are Risk Priority Numbers (RPN),
Occurrence/Severity Matrix (OSM), Risk Ranking Ta-
bles (RRT) and Ceriticality Analysis (CA). For the cur-
rent work, these methods are adapted to indicate which
groups of fields are more critical or important for the
operation of the considered target application.

The Risk Priority Number (RPN) system is a rel-
ative rating system that assigns a numerical value to
the issue in each of three different categories - Sever-
ity (S); Occurrence (O) and Detection (D). The three
ratings are multiplied together to determine the overall
RPN for the issue. The criteria used in each rating scale
are determined based on the particular circumstances
for the item that is being analyzed. Because all issues
are rated according to the same set of rating scales, this
number can be used to compare and rank issues within
the analysis. However, because the ratings are assigned
with regards to a particular analysis, it is generally not
appropriate to compare RPN numbers among different
analyses.

Failure mode, effect analysis and criticality analysis
techniques are used throughout industry for a variety of
applications and consist in a flexible analysis method
that can be performed at various stages in the system
life cycle. These analyses can be employed to support
design, development, manufacturing, service and other
activities to improve reliability and increase efficiency.

INFOCOMP, v. 10, no. 4, p. 01-14, December of 2011.



Stoyan Garbatov and Jodo Cachopo

Data Access Pattern Analysis and Prediction for Object-Oriented Applications 7

4.2.2 Model Implementation

The implementation of the Importance Analysis model
shall be considered next. Based on the gathered access
pattern statistical data, the local and global access prob-
abilities for all domain class fields are calculated. The
local access probability corresponds to the likelihood
of accessing a certain piece of information within the
scope of a given context, which has been identified to
exist during the execution of the target system. The
global access probability is defined by the likelihood of
accessing a given datum at the level of the whole appli-
cation. Once the local and global access probabilities
are calculated, they are submitted to a normalization
process that generates an access probability classifica-
tion, within which all access probabilities are placed. If
a given access probability has the value of p , then its as-
sociated access probability class i would be calculated
according to the following formulae:

i = flOOT [(p + (pmaz - pmzn)) / (pmaz - pmzn)}

@

where p € [0,1] and pyin and ppq. correspond

to the minimum and maximum access probabilities ob-

served for that classification type (local or global). The

local and global access probability class indices are two

of the three input arguments used to generate the final
result of the Importance Analysis model.

The third and last input is called the impact factor.
The impact factor corresponds to an expert judgement
coefficient whose value should be provided by some-
one who has solid knowledge of how the application
operates (e.g. developers). It is a subjective indication
of how important a given piece of domain data is for
the execution of the target application, from an "expert"
point of view. If no impact factor is provided, for a
given application class field, the implementation of the
model provides a default "neutral” value to be used in-
stead.

The RPN value (for a given domain class field) can
be calculated by multiplying the local access probabil-
ity class, the global access probability class and the im-
pact factor. The RPN values give an indication of how
important are their respective fields to the execution of
the target application.

4.3 Markov Chains

This section deals with the Markov Chain model [30]
and its implementation in the current work. The model
analysis procedure is composed of several phases. Dur-
ing the first phase, a transition matrix is built. This ma-
trix contains the probabilities of navigating from one

system state to another (automata theory). As one of
the main goals of this work is to allow the identification
and prediction of access patterns performed by object-
oriented applications, the states correspond to the ma-
nipulation of a given domain class field. In the transi-
tion matrix 7' = [t;;], the cell ¢;; contains the proba-
bility of manipulating field i immediately after having
manipulated field j.

To calculate these probabilities, all confexts (that
have been identified so far) keep a hash table contain-
ing the statistical data concerning the sequences of ob-
served field accesses. The keys of the hash table cor-
respond to PFields, while the associated values are sets
of PFields. The PField sets contain access information
for the situations when they have been accessed imme-
diately after the hash table key (PField) to which they
are associated.

All the required input for the analysis is collected
during a training period. The training is to be performed
only once, as long as it is representative of the applica-
tion service life. During this period, every time there
is a field access, the surrounding context is determined.
Subsequently, the last field that has been accessed in
that context is identified and used to index the context’s
hash table containing statistical data about what access
sequences have been seen. After this, the data is up-
dated to reflect the current field access and, finally, the
last accessed field is updated to the current one. This
allows the gathering of data about what fields are ac-
cessed after a given one and the number of times this
has been observed.

When the accumulated statistical data is represen-
tative, the transition matrix can be built. First, a square
matrix 7" of size n X n is created, where n is the number
of fields in all of the application domain classes. This is
used as a base for the calculations, which result in the
transition matrix, and, subsequently, in the stationary
vector.

For each column j € [1,n] of the matrix T, each
of its i € [1, n] cells contains the number of times that
the field ¢ has been accessed immediately after j. A
normalization phase is performed next. For a column
J» the value of each of its cells is divided by > t,;,i €
[1, n], obtaining the normalized transition matrix, 7.

This matrix does not present all the necessary prop-
erties in order to be suitable for the Power method [2].
This method consists in calculating the powers of the
transition matrix to obtain the stationary distribution.

The Random Surfer Model [6] is employed to make
the matrix suitable. The newly formed matrix is iterated
through, identifying the columns whose elements are
all zero. For any such column j, its elements are set to
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tij =1 / n.

Following this, a perturbation matrix E with size
n x n is constructed. All of its cells have the value
of 1/n. Once this is done, the T matrix is defined as
T=al+(1-a)E, where ) < a < 1.

Finally, based on the T matrix, the Power method is
applied, calculating the stationary distribution matrix.
Any of its columns yields the stationary vector, whose
elements represent the global probability of accessing
or manipulating a given domain class field of the appli-
cation.

5 Results and Evaluation of the System

To evaluate the effectiveness of each method for pre-
dicting data access patterns in object-oriented applica-
tions, we resorted to two different benchmarks. The
first benchmark was the TPC-W, which was originally
presented by Smith [32] and specifies an e- commerce
workload that simulates the activities of a retail store
website. Emulated users can browse and order products
from the website.

The second of the benchmarks is the 007, firstly pre-
sented by Carey [7]. It is often used to assess the per-
formance of object-oriented persistence mechanisms. It
strives to present a broad set of operations, allowing for
the building of a comprehensive performance profile.
The 007 has been designed to boast properties common
to different CAD/CAM/CASE applications, although in
its details it does not model any specific application.
The evaluation is performed through the execution of a
series of traversals, updates, and query operations over
the underlying object model.

Due to the fact that the results from the two bench-
marks are very similar, both in terms of the precision
of the predictions generated by the models as well as
with regards to the performance overheads due to the
gathering of statistical information, only the results ob-
tained from the 007 benchmark shall be presented and
discussed here.

There are some random behavioural elements in the
007 benchmark, but these are not sufficient to demon-
strate the validity of a system that aims to predict the
behaviour of a target application. Accounting for that,
Monte Carlo simulations [3] are employed, making
the 007 benchmark behave like a stochastic process.
A stochastic process is one whose behaviour is non-
deterministic in that a system’s subsequent state is de-
termined both by the process’s predictable actions and
by a random element. This is done by modelling the
number of invocations of the methods that compose the
benchmark. A triangular distribution is used to per-
form the modelling. This type of distribution is chosen

because it is the one most commonly employed when
dealing with a system about which there is little or none
information regarding its behaviour. Three different tri-
angular distributions are generated to model the bench-
mark invocations, namely with left, middle and right
mode locations.

5.1 Bayesian Inference

As described in Section 4.1, the Bayesian inference
technique uses two sources of data to make a predic-
tion. One of them is the previous, and the second one
is the current. The current data is used to update the
previous collected information, by making it reflect the
patterns that have been most recently observed.

Based on the Bayesian method, both the physical
uncertainty related to the considered variable as well as
the statistical uncertainty related to the model param-
eters can be quantified. An important property of the
Bayesian analysis is that the uncertainty of the predic-
tion is reduced. This may be seen in Figure 2 (up).

The x-axis of the histogram (Figure 2, down) repre-
sents the index of the probability classes within which a
field belongs. The index i is defined by i = floor[(p +
0.1)/0.1] where p € [0,1]. It should be noticed that,
whereas the bars in the previous and current histograms
indicate the number of fields whose observed probabil-
ity of being read/written belongs to a given class, the
predicted histogram reflects the fluctuation in the rela-
tive importance of each of the classes, which is expected
to be seen in the following executions of the application
(see textbook on Bayesian statistics, e.g. [S] and [26]).

As these results show, the great majority of the ap-
plication fields belong to low probability classes, while
there are only a few, which present the maximum prob-
ability of being accessed. This field distribution sim-
plifies the process of making decisions with regards to
optimizations. This is because most of the fields are
not likely to be accessed and, as a result of that, the set
of fields and associated classes, which need to be dealt
with, is compact and easier to handle.

To evaluate the precision of the results generated by
the system, it is necessary to compare the predictions
generated during a given run of the benchmark with
the actual patterns observed during its following run.
To check whether the mean of the prediction is signifi-
cantly different from the one observed in the next exe-
cution, we resorted to a null hypothesis test.

The null hypothesis states that the mean value of the
prediction is not significantly different from the mean
value of the patterns that were actually observed during
the subsequent execution.
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The Z test statistic for this type of check can be
found in Box [5] as:

Z = — pa/\Joi/n1+ a5 /ng 3)

where 11 and po are the mean values, 0% and o3
are the variances and n; and ny are the sample sizes,
for the predicted and the observed, respectively. This is
also known as the decision rule.
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Figure 2: Bayesian inference, left mode location

The critical value for Z is defined as +=1.96 , which
corresponds to 0.05 level of significance to reject the
null hypothesis, and equals to 95% of the area below
the curve of the normal probability density function. It
should be also noted that this particular value of 0.05
for the level of significance was chosen because it cor-
responds to the most common value used in engineering
practice for such tests.

For the three different input modes tested here (left,
middle and right), the calculated Z values (Z; = —0.33,
Zm = 0.34 and Z, = 1.49) belong to the area of 95%
level of confidence. This means that at the 0.05 level of
significance, there is no significant difference between
the mean values of the predicted and subsequently ob-
served (patterns). Consequently, we may conclude that

the predictions created by the system are precise. They
are able to indicate correctly the tendencies that are ac-
tually observed in the next executions of the applica-
tion.

5.2 Importance Analysis

The results obtained by applying the Model based on
Importance Analysis over the 007 benchmark shall be
presented in this section. Before the results themselves
are shown, it is important to take under consideration
the criticality rank table below.

Table 1: Criticality rank table

s|l1|2|3|a|s|s|7|s|3|1
1 1123 5

2| 2|4

3|3

4| 4 40
S| 5 0 4 0
13 60
T 0
s 0 6 0
3 90
» 0 0 60 70 80 0 100

As has been explained in the theoretical section of
the Model based on Importance Analysis, tables such as
the one presented in Table 1 are used as guidelines for
the decision making process of determining whether a
given item should be considered as important or critical,
with regards to the type of analysis being performed.
In the context of the current work, such an item corre-
sponds to the field of a given application class, whereas
its importance or criticality is associated with the prob-
ability of that field being accessed by the application in
a given context. Consequently, if, by using the RPN
value of a given field, the position obtained belongs to
the ones in the dark grey area, then the field is consid-
ered highly important for the operation of the applica-
tion. If, on the other hand, the position of a field is
within the non-shaded area, then it is very unlikely that
it will be needed by the application. For the remain-
ing fields in the intermediate area, their importance is
deemed as average.

Passing on to the actual results, these may be ob-
served in the histograms presented in Figure 3, where
the left mode location is shown. The z-axis of this his-
togram corresponds to the number of fields whose RPN
values equal the number obtained by multiplying their
associated x and y values. The x-axis indicates the local
probability access class to which a given field belongs,
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while the y-axis is relative to the global probability ac-
cess class of the fields.

A remark to be made is that most of the application
fields belong to the lowest probability classes, while, at
the same time, very few of them belong to the higher
probability classes. This trend is similar to the one ob-
served in the Bayesian Inference model results, and the
benefits ensuing from it are the same, namely a smaller
data set of likely to be needed data is easier to manage
when trying to perform optimizations.

Frequency

Probability
Class, j

Local P robability Class, i

Figure 3: Criticality, left mode location

5.3 Markov Chains

The results generated when using the Markov Chain
model over the 007 benchmark shall be presented next.
The two main outputs of this analysis technique are an
access probability transition matrix and an access prob-
ability stationary vector. The matrix contains the ob-
served probabilities of accessing a given field immedi-
ately after having accessed another field. The stationary
vector presents the global access probabilities, which,
in the work presented here, is calculated based on the
Power Method.

The results achieved from executing the left mode
location of the 007 benchmark may be observed in Fig-
ure 4 and 5. Figure 4 presents the access probability
matrix for the left mode location. The value present in a
cell with coordinates (i, j) corresponds to the probabil-
ity of accessing field < immediately after field j has been
accessed. It should be noted that the diagonal formed
from the lower left corner, towards the upper right cor-
ner, results from consecutive accesses to the same field,
which correspond, most likely, to iterative access pat-
terns.

Figure 4: Access probability transition matrix, left mode

Due to the fact that the matrix generated has a size
of 90 x 90, which corresponds to the number of fields
present in the classes of the benchmark, it is not pos-
sible to present the numerical values of the cells of the
matrixes. As such, the format employed only shows
precisely where the probability is greater than zero and
gives an indication of how high that probability is based
on the degree of shading applied to the cell under con-
sideration.
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Figure 5: Access probability stationary vector, left mode location

Figure 5 shows the access probability stationary
vector for the left mode location. The x-axis of the his-
togram corresponds to the field identificators, whereas
the y-axis indicates the global probability of that field
being accessed by the application. The y-axis is nor-
malized, and, as such, all values belong to the inter-
val [0,1]. It is important to note that the minimum of
the histograms, along the y-axis, is adjusted so that the
bars of any field, whose probability of being accessed
equals 0.00344, are not displayed. This is done with
the aim of presenting in a clearer way the fields, which
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have been effectively accessed during the execution of
the benchmark. As a result of the application of the
Random Surfer Model, any field that has never been ac-
cessed ends up with a minimal residual probability of
being accessed, which, in the current situation, equals
0.00344.

It should be noted that the trend observed in the
results of the other two models, with regards to the
general distribution of fields (and associated classes)
within the probability classes is preserved here. In other
words, most of the fields have very low probability of
being accessed, while the ones with the highest proba-
bility form a small and compact set.

@ Obsered
@ Prediction

Figure 6: Populations used for Z value test, left mode

The null hypothesis test employed in Section 5.1 is
employed here, once again, with the aim of evaluating
the results generated by this model. The null hypothe-
sis is formulated in the same way as the one used for the
Bayesian Inference model, and, as such, the prediction
generated by the system, under the form of the station-
ary vector with the field access probabilities, is com-
pared to the actual access probabilities observed dur-
ing a subsequent execution of the benchmark, modelled
with the same location mode invocations. The data on
which the test is based can be seen in Figure 6, where
the left mode location is presented. The Z values ob-
tained for the three mode location invocations of the
benchmark are all practically equal to zero (belong to
the area of 95% level of confidence). This leads us
to the conclusion that the predictions generated by the
system, while employing the Markov Chain model, are
very precise. They are able to indicate correctly the ac-
tually observed tendencies in future executions of the
target application.

6 Model Evaluation

It is possible to perform a comparison in terms of the
properties presented by each of the three distinct mod-
els developed in this work. With regards to the seman-
tic complexity presented by these three models, the one
based on Bayesian Inference is clearly the most intri-
cate, followed by the one based on Markov Chains, and
lastly, the simplest of the three is the one based on Im-
portance Analysis. It should be noted that the scale for
this comparison is relative, and, as such, even the "sim-
plest" of the models is far from trivial in practice.

The stability of the output produced by each of the
models, in function of the fluctuations observed in the
behaviour of the target application is considered next.
It has been verified that the most stable of all mod-
els is the Markov Chain, the one based on Importance
Analysis presents an intermediate stability, whereas the
one based on Bayesian Inference reveals itself the most
prone to fluctuations, based on the variations observed
in the application behaviour.

Finally, with regards to the results generated by the
three models, it is very difficult to compare them, be-
cause the models employed are significantly different
and only by using their outputs in some optimization
technique, such as guided prefetch or caching policies
could they be compared effectively. Regardless of this,
it is possible to observe a common trend shared by the
results of all three of the three new models developed
here, with regards to the majority of fields belonging
to the lowest probability classes. In all three models,
only a few of the application fields belong to higher ac-
cess probability classes. The most likely to be accessed
fields are the same for all three models.

7 Overhead Analysis

There is a significant amount of code injected in the ap-
plication to collect all the information needed to build
the models. The need to execute this code causes over-
heads and penalizes the performance of the application,
in comparison with its non-instrumented version. Con-
sequently, it is important to measure those overheads to
determine whether they are acceptable in the context of
the normal operation of the application. Another aspect
to be taken under consideration is the memory space
needed for the storage of the statistical data gathered up
to a given point in time.

The mechanisms for gathering the input data for the
Importance and Bayesian analysis models are signifi-
cantly different from those employed for the Markov
chain analysis, and, as such, their respective overheads
shall be taken under consideration separately. Addition-

INFOCOMP, v. 10, no. 4, p. 01-14, December of 2011.



Stoyan Garbatov and Jodo Cachopo

Data Access Pattern Analysis and Prediction for Object-Oriented Applications 12

ally, it should be noted that whereas the data acquisition
mechanisms for the former two analysis models are ex-
pected to operate without interruptions, while the appli-
cation is operating normally, the gathering of data for
the Markov chain analysis takes place only during the
training period of the model. Consequently, the restric-
tions regarding the overheads introduced by the Markov
chain data collection are much less strict than the ones
for the other two models, since they are expected to
keep gathering their data during the normal execution
of the application.

The overhead analysis for the first two models
(Bayesian and Importance Analysis) is presented next.
The weighted average, overhead , is calculated as:

n

Z Ouerheadmethod,i X tmethad,i
- =
overhead = * 4)

n

Z tmethod,i
i=1

where n is total number of methods,
overheadmethoa,; is the overhead, in percentage,
associated with method with index ¢ and t,ethod,s
is the execution time of method indexed by i. The
weighted average of the performance overhead equals
5.15%. As a result of that, the instrumented version,
for the Bayesian and Importance Analysis models is,
on average, about 5% slower, in its execution, when
compared with the original one. It is deemed that this
performance penalty is acceptable.

With regards to the analysis of overheads introduced
by data gathering for the Markov Chain model, the
overhead weighted average, calculated by Eqn (4), for
this case is 9.14%. Consequently, whenever the tar-
get application is in training mode for the acquisition
of statistical data for the Markov Chain based model,
it will be performing, on average, 9% slower than its
non-instrumented version.

With regards to the additional memory require-
ments, due to the storage of the statistical data of ob-
served access patterns, it is not possible to verify any
"observable" difference in the memory needed by the
original benchmark and the one employing the system
developed here. An actual example would be to say
that the statistical data gathered from several executions
of the benchmark did not exceed several hundred KB,
when saved on the hard disk, while the benchmark pro-
cess would require a couple of hundred MB of mem-
ory, when executing. This allows us to conclude that
the memory requirements for the storage of the statisti-
cal data necessary for the generation of predictions by
the system are negligible.

8 Conclusions

The work presented here developed a new system for
analyzing and predicting the most probable access pat-
terns performed over domain data during the execution
of object-oriented applications. The correct and accu-
rate functioning of the system was established through
the execution of the TPC-W and oo7 benchmarks.
The three stochastic models implemented with the sys-
tem are Bayesian Inference, Importance Analysis, and
Markov Chains. Through them, predictions about the
data access patterns, which are most likely to be per-
formed by target applications during their execution,
are generated.

Several distinct benchmark cases were simulated
and analysed. The results were shown to be satisfac-
tory for each of the models employed. The statistical
data used as input for the models is acquired through
code that is injected automatically into the target appli-
cations at compile-time. The overheads introduced into
the target applications, associated with the data gather-
ing process, are acceptable and range from 5% for the
Bayesian Inference and Importance Analysis models to
9% for the Markov Chains.

The methodology developed with this work has
been demonstrated to be flexible enough to be applied
to any object-oriented application. It is not necessary to
make any modifications whatsoever to the new system
developed here in order to apply it to different target
applications.
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