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Abstract. Dimensionality reduction is demonstrated crucial to improve the predictive capability of mod-

els by means of linear or nonlinear projections. Non-negative matrix factorization (NMF) is a popular

multivariate analysis technique for part-based data representation. It attempts to find an approximation

of a high dimensional matrix as the product of two low dimensional matrices under the non-negative con-

straint. Recently a graph regularized non-negative matrix factorization (GNMF) provides a formal way

to incorporate the geometrical structure into the NMF decomposition, particularly applicable to the data

embedded in submanifolds of the Euclidean space. In this paper, the usage of GNMF in financial analysis

is discussed from the perspectives of unsupervised clustering and supervised classification. Experimental

results on a French bankruptcy data set show the potential of GNMF on data representation.
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1 Introduction

Bankruptcy prediction aims to predict the probability

that the company may become bankrupt in the follow-

ing years given a set of financial ratios that describe

the situation of a company over a given period. In

the world faced with the global economic and financial

crisis, there has been a raising interest in seeking for

more accurate predictive models able to better under-

stand the financial data and prevent the sudden distress

of companies. So far a large number of methods have

been proposed following the research direction of sta-

tistical or intelligent approaches [2]. Statistical tech-

niques aim to find an optimal linear combination of

explanatory input variables in order to model, analyze

and predict corporate default (bankrupt) risk. The pio-

neer statistical techniques include univariate, multivari-

ate discriminant analysis, risk index models, and con-

ditional probability model. Due to the criticism on tra-

ditional statistical models, many recent efforts are de-

voted into state-of-the-art intelligent approaches, which

offer theories about how financial crises could be pre-

dicted. Various prediction models have been proposed

using a wide range of intelligent methods including

neural network (NN), fuzzy set theory (FS), decision

tree (DT), case-based reasoning (CBR), support vec-

tor machine (SVM), and soft computing [16]. Neural

Networks (NNs) have been actively used in bankruptcy

prediction yielding reasonably accurate models [1, 6].

A multi-layer perceptron (MLP) obtains desirable out-

come on Taiwan and United States markets [9], and Ira-

nian companies [15]. In [8] a stable credit rating model

based on Learning Vector Quantization (LVQ) is ap-

plied to corporate failure prediction and credit risk anal-
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ysis. Likewise, SVM has been proven to yield sound

predictive performance with a relatively small amount

of data [13, 23].

Dimensionality reduction is an effective informa-

tion visualization approach capable to project the high-

dimensional input data to a low-dimensional output

space so that the intrinsic relationship can be captured

and graphically represented. A large variety of di-

mensionality reduction methods have been proposed

to provide appealing solution to the task, including t-

test, correlation matrix, factor analysis, principle com-

ponent analysis (PCA) [17], independent component

analysis (ICA) [7], etc. Regarding the financial data,

some variables have small discriminatory capabilities

for default (bankrupt) prediction with linear statistical

models, whereas non-linear approaches can extract rel-

evant (and discriminatory) information improving the

visualization and classification. Manifold learning in-

cludes a number of non-linear approaches to data analy-

sis that exploit the geometric properties of the manifold

on which the data is supposed to lie. Their properties

make them often used in financial applications due to

their excellent capability to treat non-linear data. Man-

ifold learning methods such as ISOMAP, Supervised

ISOMAP algorithm (ES-ISOMAP), local linear embed-

ding (LLE), Laplacian Eigenmaps have been used suc-

cessfully in this task [20, 21].

Non-negative matrix factorization (NMF) [10] is a

multivariate analysis technique which factorizes a ma-

trix X into two matrices U and V so that X ≈ UV T .

Different from other factorization methods, such as

principal component analysis (PCA) and singular value

decomposition (SVD), it enforces the non-negative con-

straint on the decomposition, in other words, the values

of U and Vmust be equal to or greater than zero. Differ-

ent objective functions have been proposed leading to a

number of variants of NMF algorithms, in which two

commonly used are the squared error [14] and the di-

vergence [11]. Accordingly, optimization schemes are

derived to minimize the underlying objective functions

by iterative update rules. NMF receives considerable

attentions in diverse domains including pattern recog-

nition, computer vision and information retrieval. It is

demonstrated that NMF outperforms other matrix fac-

torization techniques in document clustering and face

recognition [12]. In the field of financial analysis, NMF

is used to extract the discriminative features by the em-

bedded learning process to which classification and pre-

diction algorithms can be easily applied [19].

In a recent study [5], a graph regularized non-

negative matrix factorization (GNMF) uses a new ob-

jective function which incorporates a nearest neighbor

graph structure, to reflect the geometrical property of

the data in the resulted part-based representation. The

new optimization scheme makes GNMF particularly

applicable to detect the manifold structure embedded

in the Euclidean space. Among various dimensionality

reduction techniques, GNMF is beneficial to discrimi-

native feature extraction by encoding the intrinsic geo-

metric information into matrix factorization, and hence

helpful to the subsequent classification. It is shown

that GNMF combined with SVM is very effective for

both bankruptcy prediction (supervised) and visualiza-

tion (unsupervised) [18]. In this paper, GNMF is used

to get more compact representation of financial data

through a clustering process, and to construct hybrid

classification models combined with advanced learning

methods. The contribution of this study is twofold: to

investigate the the potential of GNMF on predictive per-

formance enhancement, and to compare some hybrid

prediction models based on GNMF.

The remainder of this paper is organized as follows.

The next section introduces the principle and optimiza-

tion scheme of graph regularized non-negative matrix

factorization. Section 3 presents the experimental re-

sults on a real world financial data. Lastly, the conclu-

sions and future directions are discussed in section 4.

2 A Brief Introduction of GNMF

The problem of non-negative matrix factorization

(NMF) is stated as follows: given a matrix X =
{xij} ∈ Rm×n, decompose X into two non-negative

matrices U = {uij} ∈ Rm×k and V = {vij} ∈ Rn×k

so that X ≈ U ∗ V T . The squared Euclidean dis-

tance (F-norm) is the commonly used objective func-

tion, thereby NMF can be formulated as an optimiza-

tion problem:

MinU,V ||X − UV T ||2

st. uij ≥ 0, vij ≥ 0
(1)

In real applications, usually k � m and k � n,

thus each data vector xj(j = 1, ..., n) can be approx-
imated by a linear combination of the columns of U,

weighted by the components of V.

The rational behind GNMF is that the intrinsic geo-

metrical structure of the data is approximated by man-

ifold rather than the Euclidean space. The local geo-

metric structure can be modeled by a nearest graph to

which a weight matrix W is specified by the p-nearest

neighbors manner. The weighting schemes include bi-

nary weighting, heat kernel weighting and dot-product

weighting [5].

We denote zj = {vj1, ..., vjk}, j = 1, ..., n as the
row vector of V, andWjl as the weight of the edge be-
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tween point xj and xl on the graph. The smoothness of

low dimensional representation is measured as:

R =
1

2

n�

j,l=1

||zj − zl||
2Wjl (2)

GNMF intends to combine the geometrically based

regularizer with the traditional objective function of

NMF in a more sophisticated objective function, de-

fined as:

||X − UV T ||2 +
λ

2

n�

j,l=1

||zj − zl||
2Wjl (3)

In the above function, λ ≥ 0 is the regularization pa-
rameter, in particular when λ = 0, GNMF becomes
traditional NMF. Normally, the optimization is solved

by updating U and V alternatively through an iterative

process:

1. Construct a p-nearest neighbor graph, taking each

column vector of matrix X as a point;

2. Assign the weight matrixW of the graph;

3. Initialize the matrix U and V randomly;

4. Fix U , optimize V to minimize the objective func-

tion:

uik = uik

(XV )ik
(UV TV )ik

(4)

5. Fix V , optimize U to minimize the objective func-

tion:

vjk = vjk
(XTU + λWV )jk
(V UTU + λDV )jk

(5)

6. Repeat from 4 until it converges.

3 Experiment and Discussion

As was known, GNMF can be employed for different

usages. Firstly, the results of GNMF forms a natural

clustering of original data in the way that each instance

can be regarded as the additive mixture of the column

vectors of matrix U , and the matrix V implies the mem-

bership values. Secondly, GNMF can be used as a di-

mensionality reduction method before the classification

process. In this section, we apply GNMF to a French

data set and explore its usage in both clustering and

classification. We use the Matlab implementation of

GNMF provided in [3].

3.1 Data Description

The French data set contains financial ratios of small or

medium sized companies. In the total 1200 instances,

600 examples are distressed in 2007. The financial ra-

tios used to describe the statement of companies in the

year 2006 include Number of Employees (x1), Capital

Employed / Fixed Assets (x2), Financial Debt / Cap-

ital Employed (x3), Depreciation of Tangible Assets

(x4), Working Capital / Current Assets (x5), Current

Ratio (x6), Liquidity Ratio (x7), Stock Turnover days

(x8), Collection Period days (x9), Credit Period days

(x10), Turnover per Employee (x11), Interest / Turnover

(x12), Debt Period days (x13), Financial Debt / Eq-

uity (x14), Financial Debt / Cashflow (x15), Cashflow /

Turnover (x16), Working Capital / Turnover days (x17),

Net Current Assets/Turnover days (x18), Working Cap-

ital Needs / Turnover (x19), Export (x20), Added Value

per Employee (x121), Total Assets Turnover (x22), Op-

erating Profit Margin (x23), Net Profit Margin (x24),

Added Value Margin (x25), Part of Employees (x26),

Return on Capital Employed (x27), Return on Total As-

sets (x28), EBIT Margin (x29), and EBITDA Margin

(x30). In the preprocessing phase, the data is normal-

ized to unity range. Figure 1(a) illustrates the mean

values of the financial ratios with respect to bankrupt

companies and healthy companies. The significance

test results (p-value) are shown for each ratio in Figure

1(b). As can been seen, all financial ratios except x10

(p=0.148624) and x19 (p=0.113525) are significantly

different between bankrupt and healthy companies at

the level 5%.

3.2 Clustering

In this experiment, GNMF is used for clustering

and compared with two popular clustering algorithms,

namely PCA and K-means.

PCA is the simplest multivariate analysis method

for dimensionality reduction and visualization by com-

puting the eigenvectors of covariance matrix. PCA is a

linear orthogonal transformation in the sense that the

new features (components) are orthogonal with each

other and represented as a linear combination of the

original features. By extracting a small number of com-

ponents which account for the most variability of the

data, the high dimensional data is projected to a low

dimensional space. For comparison, PCA projects the

original data into a 2-d space, thereby the instances are

separated into two clusters according to the dominant

component.

K-means is one of the most widely used cluster anal-

ysis method which partitions the data into k clusters
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Figure 1: Data analysis of distressed companies and healthy compa-

nies

by the nearest neighbor principle. In the setting of K-

means algorithm, the number of clusters (k) is 2, and

the number of runs with different initial centers is 5.

As a part-based representation, GNMF decomposes

an instance into a combination of k ranks with the coef-

ficients indicating the membership of the clusters, thus

the instances can be assigned to the cluster with the

maximal membership. Regarding GNMF, the binary

weighting assignment is used to construct the weight

matrix, that is to say Wij = 1 if and only if xi

and xj are among the 5-nearest neighbors with each

other, otherwise Wij = 0. The value of λ is set as
0, 1, 10, 100, 1000, 10000 respectively.

As is conventional in the literature, we evaluate the

clustering results in terms of three measures, namely

purity, rand index and normalized mutual information.

We denote the real clustering asC and the resulted clus-

tering as C �.

To compute purity (Pu), each resulted cluster is as-

signed by the majority label of the members, and the

purity is the percent of the correctly assigned instances.

In the following definition, c(xi) is the real label of xi,

c�(xi) is the clustered label, and δ is the indicator func-
tion taking the value 1 when the condition satisfies, oth-

erwise 0.

Pu =

�
1≤i≤n δ(c(xi) = c�(xi))

n
(6)

Rand index (RI) is the percent of the pairs that be-

long to the same or different classes simultaneously in

the real and resulted clustering respectively.

RI =

�
i�=j δ(c(xi), c

�(xi))

n(n− 1)
(7)

where δ(c(xi), c(xj)) = 1 if c(xi) = c(xj)
�
c�(xi) =

c�(xj) or c(xi) �= c(xj)
�
c�(xi) �= c�(xj), otherwise

0.

Mutual information (MI) measures the correlation

between two clustering using entropy. Let P (ci) be the
probability of instances selected from the ith cluster of

C, P (c�i) be the probability selected from the i
th cluster

of C �, P (ci
�
c�j) be the probability selected from ith

cluster of C and jth cluster of C � simultaneously, the

mutual information is defined as:

MI =
�

ci∈C

�

cj∈C�

P (ci
�

c�j) log2
P (ci

�
c�j)

P (ci)P (c�j)
(8)

The normalized mutual information (NMI) is de-

fined in several forms. Here we use the one defined

in [4], where Ec and Ec� are the entropy of real and

resulted clustering respectively.

NMI =
MI

max(Ec, Ec�)
(9)

Table 1 shows the clustering results of PCA, K-

means and GNMF. As was seen from this table, GNMF

always outperforms PCA and K-means in terms of pu-

rity and rand index regardless of the λ values. When

using NMI, GNMF performs comparatively with K-

means but still better than PCA in all cases. This sug-

gests that GNMF has a good clustering capability by

leveraging the power of part-based representation and

geometrical structure.

3.3 Classification

Given the class label, the problem of the classification

task is to predict whether a company may go bankrupt
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Table 1: Clustering results of 3 methods (Pu: Purity, RI: rand index,

NMI: normalized mutual information).

Method Pu RI NMI

PCA 0.823 0.708 0.351

K-means 0.823 0.709 0.388

GNMF(λ = 0) 0.836 0.726 0.382

GNMF(λ = 1) 0.837 0.727 0.383

GNMF(λ = 10) 0.832 0.720 0.372

GNMF(λ = 100) 0.833 0.721 0.376

GNMF(λ = 1000) 0.831 0.719 0.375

GNMF(λ = 10000) 0.837 0.727 0.387

according to the historical situation. In the hybrid ap-

proaches, GNMF serves as a dimensionality reduction

method, followed by the classification methods to con-

struct the prediction model. In the present study, we

used 5 advanced learning models, namely Decision Ta-

ble, BayesNet, Logistic, SVM, and Multilayer Percep-

tron (MLP) for the complicated non-linear separation

problem. The experiments are performed in Weka, an

open-source data mining tool [22]. For all models, we

use the default parameters and test different values of

dimension (rank). The experiments are performed as

follows (illustrated in Figure 2):

1. Set the number of rank k;

2. The entire data set is divided randomly into 10

folds for cross-validation;

3. For each training data set Dtrain, GNMF is per-

formed to calculate the decomposition matrices: U

and Vtrain so that Dtrain ≈ U ∗ V T
train;

4. For the test data set Dtest, calculate the trans-

formed matrix V T
test = U � ∗ Dtest where U

� is

the Moore-Penrose pseudoinverse of matrix U ob-

tained in the training stage.

5. Construct classification models using the data set

Vtrain;

6. For validation, feed the resultant Vtest to the model

and predict the class.

7. After the experiment is repeated 10 times, evaluate
the performance by averaging the results of each

run.

The experiment is done with 10-fold validation, and

we average the results by running each model 10 times.

The classification accuracy is shown in Table 2, giving

the accuracy and standard deviation. Due to the fact

that the performance on default company (true positive

rate) is more important than that on non-default com-

pany (true negative rate), we also list the results of true

positive rate in Table 3. The significance test is per-

formed for each row taken Decision Table as the base-

line model. The first row shows the performance of

models without GNMF, and the following rows show

the performance of hybrid models using different ranks

(k = 2, 4, 9, 16, 25, 36, 64, 81). As can be seen, all

hybrid models for specific k (ranks) yield better per-

formance in terms of both overall accuracy and true

positive rate compared to the stand-alone models with-

out GNMF. Indeed, we observe the accuracy improved

by 0.82% (Decision Table), 0.23%(BayesNet), 0.43%

(Logistic), 0.6% (SVM), and 1.15% (MLP), while the

true positive rate improved by 2% (Decision Table),

0.2% (BayesNet), 0.21% (Logistic), 1.23% (SVM), and

1.27% (MLP). It suggests that GNMF is effective to im-

prove the predictive accuracy.

The statistical significance of the difference among

five models using a t-test is summarized in Table 4 and

Table 5. The significance level is set as 5%, so that the

p-value less than 5% indicates that the two underlying

methods are significantly different in the mean. As was

observed, method (d) and (c) significantly outperform

the other three methods in terms of prediction accuracy

as shown by the p-values less than 5%. The p-values

0.001181 and 0.001681 show that model (e) is signif-

icantly better than (a) and (b). Meantime, in terms of

true positive rate method (c) and (e) perform signifi-

cantly better than (a) and (d), followed by (b). It can

be concluded that Logistic, MLP and SVM have higher

prediction power than Decision Table and BayesNet.

4 Conclusions

Nonlinear projection is demonstrated effective in

bankruptcy prediction problem reducing the dimension-

ality of data and improving the prediction performance.

In this paper, we discuss the usage of graph regularized

non-negative matrix factorization (GNMF) in financial

analysis as a tool of clustering and classification. Ex-

perimental results show GNMF is applicable to explore

the intrinsic structure of the high dimensional bankrupt

data and enhance the predictive ability in corporation

with classification models.

Future work will extend this study in several re-

search directions. There are several parameters of

GNMF algorithm, such as λ, weighting scheme, and

number of nearest neighbors. We intend to optimize

the the parameters through a comparative study. In the

presented work, we use the random initialization for

the decomposition matrices, however, other initializa-

tion methods which are reported to achieve a desired
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Figure 2: The classification experiments

Table 2: Accuracy results of classification using (a) Decision Table, (b) BayesNet, (c) Logistic, (d) SVM, (e) MLP

Dataset (a) (b) (c) (d) (e)

D 86.92±3.05 86.60±2.96 91.09±2.51 ◦ 90.57±2.41 ◦ 88.95±2.72 ◦

D2 84.78±3.11 83.96±3.22 • 84.88±3.01 83.90±2.94 • 84.52±3.20

D4 82.61±3.31 83.28±3.25 ◦ 84.75±2.99 ◦ 84.22±2.82 ◦ 84.18±2.92 ◦

D9 84.22±3.33 84.22±2.82 85.40±3.24 ◦ 85.32±3.28 ◦ 84.50±3.34

D16 85.40±3.01 85.56±2.74 89.92±2.57 ◦ 89.32±2.59 ◦ 87.17±3.01 ◦

D25 85.14±3.11 86.83±2.95 ◦ 91.52±2.55 ◦ 91.17±2.40 ◦ 88.67±2.81 ◦

D36 86.21±2.86 84.54±3.09 • 91.11±2.25 ◦ 91.06±2.47 ◦ 90.05±2.65 ◦

D49 84.95±2.91 85.62±2.72 ◦ 90.34±2.68 ◦ 90.96±2.53 ◦ 89.41±2.75 ◦

D64 87.74±2.70 85.78±2.91 • 90.19±2.80 ◦ 91.12±2.49 ◦ 90.00±2.79 ◦

D81 86.19±2.81 85.60±2.94 • 89.56±2.88 ◦ 91.43±2.16 ◦ 90.10±2.67 ◦

Average 85.42 85.20 88.87 88.91 87.75

◦, • statistically significant improvement or degradation

Table 3: True positive rate results of classification using (a) Decision Table, (b) BayesNet, (c) Logistic, (d) SVM, (e) MLP.

Dataset (a) (b) (c) (d) (e)

D 82.10±5.33 79.35±4.83 • 88.82±3.77 ◦ 85.47±4.14 ◦ 87.95±3.89 ◦

D2 78.95±4.93 77.90±5.00 • 77.90±4.75 • 74.00±5.09 • 79.45±5.73

D4 76.88±6.04 77.53±5.18 77.90±4.71 ◦ 74.27±4.73 • 79.27±5.17 ◦

D9 77.03±5.74 73.57±5.16 • 79.42±4.97 ◦ 76.90±5.00 81.13±5.92 ◦

D16 79.70±5.06 77.13±4.85 • 86.67±4.36 ◦ 84.22±4.50 ◦ 85.62±4.30 ◦

D25 81.28±5.65 79.55±4.82 • 89.03±3.69 ◦ 86.70±4.23 ◦ 87.52±4.09 ◦

D36 82.97±5.07 79.18±4.99 • 88.63±3.51 ◦ 86.25±4.16 ◦ 88.77±4.07 ◦

D49 80.35±5.53 78.17±4.50 • 88.70±3.49 ◦ 86.60±4.38 ◦ 88.30±3.72 ◦

D64 84.10±4.79 78.28±4.79 • 88.32±3.49 ◦ 86.65±4.28 ◦ 88.82±4.21 ◦

D81 82.82±4.91 76.83±4.89 • 87.77±3.72 ◦ 86.48±3.96 ◦ 89.22±3.85 ◦

Average 80.62 77.75 85.32 82.75 85.60

◦, • statistically significant improvement or degradation

solution (e.g., the cut-weighted NMF [5] and K-means

[19]) will be included in the classification method.
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