
Transformation by Modeling MOF 2.0 QVT: From UML to MVC2
Web model

REDOUANE ESBAI1

MOHAMMED ERRAMDANI2

SAMIR MBARKI3

IBTISSAM ARRASSEN4

ABDELOUAFI MEZIANE5

MIMOUN MOUSSAOUI6

MATSI Laboratory, EST
Mohammed First University, Oujda, Morocco

1es.redouane@gmail.com
6moussaoui@est.univ-oujda.ac.ma

Department of Management, EST
Mohammed First University, Oujda, Morocco

2mramdani69@yahoo.co.uk

Department of Computer Sciences, Faculty of Science
Ibn Tofail University, Kenitra, BP 133, Morocco

3mbarkisamir@hotmail.com

Department of Mathematics and Computer Sciences, Faculty of Science
Mohammed First University, Oujda, Morocco

4arrassen@yahoo.com
5abdelouafi_meziane@yahoo.fr

Abstract. The continuing evolution of business needs and technology makes Web applications more de-
manding in terms of development, maintenance, and management. To cope with this complexity, several
frameworks have emerged. Given this diversity of solutions, the generation of a code based on UML
models has become important. This paper presents the application of the MDA (Model Driven Architec-
ture) to generate, from the UML model, the Code following the MVC2 pattern (Model-View-Controller)
using the standard MOF 2.0 QVT (Meta-Object Facility 2.0 Query-View-Transformation) as a transfor-
mation language. This standard defines the meta-model for the development of model transformation.
The transformation rules defined in this paper can generate, from the class diagram, an XML file con-
taining the Actions, the Forms, and JSP pages. This file can be used to generate the necessary code of a
web application.

Keywords: MDA, model transformation, MVC 2, transformation rules, MOF 2.0 QVT, meta-model,
OCL.

(Received January 11st, 2011 / Accepted July 16th, 2011)

1 Introduction

In recent years many organizations have begun to con-
sider MDA as an approach to design and implement en-
terprise applications. The key principle of MDA is the
use of models at different phases of application devel-

opment by implementing many transformations. These
changes are present in MDA, and help transform a CIM
(Computation Independent Model) into a PIM (Plat-
form Independent Model) or to obtain a PSM (Platform
Specific Model) from a PIM.

MVC2 is a programming scheme that takes into ac-

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 2

count the entire architecture of a program. It catego-
rizes the different types of objects that make up the ap-
plication into three categories: The model manages the
behavior and data of the application domain, the view
corresponding to the interface with which users inter-
act, and the Controller that supports event management
synchronization to update the model. This pattern saves
time for maintenance as well as upgrading and greater
flexibility to organize the development of different de-
velopers (independent data, display and actions). Many
frameworks that implement the MVC2 pattern have
emerged; for instance: Struts [1], PureMVC [4], Gwit-
tir [3], SpringMVC [5], Zend [6], ASP.NET MVC2 [2].
Struts remains the most mature and highly trusted solu-
tion among developers.

Mbarki and Erramdani [26, 27], both source and tar-
get meta-models have been developed. The first corre-
sponds to a specific PIMmeta-model class diagram, and
the second is a PSM meta-model for MVC2 web appli-
cation. The development was done via RSM (Rational
Software Modeler) based on a programming approach.
This means that programming transformations models
was done in the same way as programming computer
applications. This paper aims to rethink the work pre-
sented in [26, 27]. However, we develop the transfor-
mation rules using the MOF 2.0 QVT standard to gener-
ate an XML file which contains actions, forms and JSP
pages used to produce the code for the target applica-
tion. The advantage of this standard is the bidirectional
execution of transformation rules.

This paper is organized as follows: related works
are presented in the second section, the third section de-
fines theMDA approach, and the fourth section presents
the MVC2 model and its implementation as a frame-
work, Struts in this case. The transformation language
MOF 2.0 QVT and the language of OCL constraints are
the subject of the fifth section. In the sixth section, we
present the UML and MVC2 meta-models. In the sev-
enth section, we present the transformation rules using
MOF 2.0 QVT from UML source model to the MVC2
target model. The last section concludes this paper and
presents some perspectives.

2 Related Work

A much relevant work on meta-modeling was com-
pleted in 2007 [22] in which the authors have developed
a meta-model for web needs. This meta-model takes
into account concepts such as usage cases. The authors
have developed transformation rules, but the main pur-
pose of this work was the use of this meta-model as a
CIM to turn it into a PIM and then to a PSM.

Two other works followed the same logic and have

been the subject of two works [20, 24]. A meta-model
for Ajax was defined using AndroMDA tool. The gen-
eration of Ajax code has been illustrated by an appli-
cation CRUD (Create, Read, Update, and Delete) that
manages people.

Kraus, Knapp and Koch [25] show how to build
JSP pages and JavaBeans using the UWE [31], (UML-
based Web Engineering) and the ATL transformation
language [15].

Nasir, Hamid and Hassan [30] have presented
an approach to generate a code for the .Net
application Student Nomination Management
System. The method used is WebML and the code
was generated by applying the MDA approach, but the
creation was not done according to the .Net MVC2
logic.

The work presented by Amen, Abdelaziz and Samir
[13] aims at providing a generic approach to auto-
mate the translation of conceptual models’ integrity
constraints to the relational context of the MDA ap-
proach. To do this, the authors proposed a transfor-
mational model based on the UML meta-model. The
rules of that transformation are described by the graph-
ical notation of QVT-Relations language.

Oberortner, Vasko and Dustdar [32] have examined
the safety aspects. A meta-model was developed to in-
tegrate the roles of users to access various pages of the
Web application. Each page contains navigation rules
and each rule contains a decision (if, else if, else).

Recently, Mbarki, Rahmouni and Erramdani [28]
were conducted to model Web MVC2 generation using
the ATL transformation language.

This paper aims to rethink the work presented by
Mbarki and Erramdani [26, 27], by applying the stan-
dard MOF 2.0 QVT to develop the transformation rules
aiming at generating the MVC2 target model. It is ac-
tually the only work for reaching this goal.

3 Model Driven Architecture (MDA)

In November 2000, OMG, a consortium of over 1 000
companies, initiated the MDA approach. The key prin-
ciple of MDA is the use of models at different phases
of application development. Specifically, MDA advo-
cates the development of requirements models (CIM),
analysis and design (PIM) and code (PSM).

The MDA architecture [29] is divided into four lay-
ers. In the first layer, we find the standard UML (Uni-
fiedModelling Language), MOF (Meta-Object Facility)
and CWM (Common Warehouse Meta-model). In the
second layer, we find a standard XMI (XML Metadata
Interchange), which enables the dialogue between mid-
dlewares (Java, CORBA, .NET and web services). The

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 3

third layer contains the services that manage events,
security, directories and transactions. The last layer
provides frameworks which are adaptable to different
types of applications namely Finance, Telecommunica-
tions, Transport, medicine, E-commerce and Manufac-
ture, etc.).

The major objective of MDA [16] is to develop sus-
tainable models; those models are independent from the
technical details of platforms implementation (Java EE,
.Net, PHP or other), in order to enable the automatic
generation of all codes and applications leading to a sig-
nificant gain in productivity. MDA includes the defini-
tion of several standards, including UML [7], MOF [8]
and XMI [9].

4 The MVC2 Pattern

The Model-View-Controller (MVC) architectural pat-
tern is a widely used software and was created in 1980
by Xerox PARC for Smalltalk-80. Lately it has been
recommended as a model for Java EE by Sun. The
model also won strong popularity among PHP develop-
ers. The MVC pattern is a useful addition to developer
tools, whatever the language used is.

The MVC pattern is a type of Design Patterns in the
Architectural Patterns category. It is simple
and very useful, and can essentially build an application
using three levels: model, view and controller.

Figure 1 shows the architecture of the MVC2 pat-
tern. The main feature of this pattern is to be composed
of a single Servlet control. This pattern distinguishes
the business logic, server-side processing and the dis-
play. Each component is reusable and replaceable.

Figure 1: MVC2 Architecture

Based on this model many frameworks are designed
to help developers build the presentation layer of their
web applications. In the Java community, the Jakarta
Struts project is one of the best examples.

4.1 The Struts framework

The Struts project [1] is managed within the commu-
nity of Apache Software Foundation among the Jakarta
projects. The motivation of this project is to provide the
Java community with a framework based on the MVC2
architectural pattern while using Java EE technologies
standard [19]: JSP / Servlet, JavaBeans, XML.

However, Struts is not the only framework for man-
aging the presentation layer. Indeed, other frameworks
have been designed for the same goal, but Struts is the
most mature. The main advantage of Struts is the re-
duced complexity compared to other frameworks of the
same degree of power [27], for instance, PureMVC,
Gwittir and WebWork.

4.2 Architecture and functioning of Struts frame-
work

The structure of the Struts framework derives from the
MVC2 model (see Figure 2). In this model, there is a
controller, views and access to the model.
Controller: The controller of the Struts framework
is responsible for making the link between the view
and model. It receives all client requests and for-
wards them to specific actions. These correspondences
(mapping) are described in a configuration file called
struts-config.xml.
View: The view is a set of JSP pages. To facilitate
construction, the Struts framework provides several tag
libraries.
Model: According to the MVC2 pattern, the model is
independent from the controller. The Struts framework
does not impose any; instead, technological choice is
up to the developer (JDBC, EJB, JDO, and XML), etc
according to his needs.

Figure 2: Principle of operation of the Struts framework

The interaction between the three components is
managed by the main controller. In order to better to

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 4

understand the working of the framework, we retail the
life cycle of a HTTP request, schematized in figure 2:

1- The customer sends his HTTP request to the appli-
cation. This request is taken in charge by the main
controller, in the ActionServlet case;

2- The request is redirected towards the adequate con-
troller;

3- The chosen controller handle the request. A dia-
logue with business logic is started when necessary;

4- The model provides the requested data;

5- The main controller is notified about the result of the
treatment. In case of success, data are encapsulated
in the JavaBeans (ActionForm) and then transmitted
to the JSP selected by the controller;

6- The JSP constructs the answer according to the
transmitted data;

7- The answer is sent to the browser.

5 The transformations of MDA models

MDA establishes the links of traceability between the
CIM, PIM and PSM models through to the execution of
the models’ transformations.

The models’ transformations recommended by
MDA are essentially the CIM transformations to PIM
and PIM transformations to PSM.

5.1 Approach by modeling

Currently, the models’ transformations can be written
according to three approaches: The approach by Pro-
gramming, the approach by Template and the approach
by Modeling.

The approach by Modeling is the one used in the
present paper. It consists of applying concepts from
model engineering to models’ transformations them-
selves. The objective is modeling a transformation,
to reach perennial and productive transformation mod-
els, and to express their independence towards the plat-
forms of execution. Consequently, OMG elaborated a
standard transformation language called MOF 2.0 QVT
[11]. The advantage of the approach by modeling is the
bidirectional execution of transformation rules. This as-
pect is useful for the synchronization, the consistency
and the models reverse engineering [18].

Figure 3 illustrates the approach by modeling. Mod-
els transformation is defined as a model structured ac-
cording to MOF 2.0 QVT meta-model. The MOF 2.0

QVT meta-model expresses some structural correspon-
dence rules between the source and target meta-model
of a transformation. This model is a perennial and pro-
ductive model that is necessary to transform in order to
execute the transformation on an execution platform.

Figure 3: Approach by Modeling

5.2 MOF 2.0 QVT

Transformations models are at the heart of MDA, a
standard known as MOF 2.0 QVT being established to
model these changes. This standard defines the meta-
model for the development of transformation model.
The QVT standard has a hybrid character (declarative
/ imperative) in the sense that it is composed of three
different transformation languages (see Figure 4).

The declarative part of QVT is defined by
Relations and Core languages, with different lev-
els of abstraction. Relations are a user-oriented lan-
guage for defining transformations in a high level of
abstraction. It has a syntax text and graphics. Core
language forms the basic infrastructure for the decla-
ration part; this is a technical language of lower level
determined by textual syntax. It is used to specify
the semantics of Relations language in the form of a
Relations2Core transformation. The declarative vision
comes through a combination of patterns, source and
target side to express the transformation.

The imperative QVT component is supported by
Operational Mappings language. The vision requires an
explicit imperative navigation as well as an explicit cre-
ation of target model elements. The Operational Map-
pings language extends the two declarative languages
of QVT, adding imperative constructs (sequence, selec-
tion, repetition), etc and constructs in OCL edge effect.

The imperative style languages are better suited for
complex transformations including a significant algo-
rithm component. Compared to the declarative style,
they have the advantage of optional case management

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 5

in a transformation. For this reason, we chose to use an
imperative style language in this paper.

Finally, QVT suggests a second extension mecha-
nism for specifying transformations invoking the func-
tionality of transformations implemented in an external
language Black Box.

Figure 4: The QVT Structure

This work uses the QVT-Operational mappings lan-
guage implemented by SmartQVT [23]. SmartQVT
is the first open source implementation of the QVT-
Operational language. The tool comes as an Eclipse
plug-in under EPL license running on top of EMF
framework. This tool is developed by France Telecom
R & D project partially funded by the European IST
Model Ware.
SmartQVT is composed of 3 components:

• QVT Editor: helps end users to write QVT spec-
ifications.

• QVT Parser: converts the QVT concrete tex-
tual syntax into its corresponding representation in
terms of the QVT metamodel.

• QVT Compiler: produces, from a QVT model, a
Java program on top of EMF generated APIs for
executing the transformation. The input format is
a QVT specification provided in XMI 2.0 in con-
formance with the QVT meta-model.

Figure 5: Transformation Scenario with SmartQVT tool

In Figure 5, presents a scenario of minimal process-
ing:

• The parser is called and gets as input a text file
containing a QVT code (qvtCode ).

• The parser returns the model conforming to the
QVT metamodel.

• Then the returned model is passed to the compiler.

• Finally, we get a Java file implementing the trans-
formation (javaFile).

5.3 OCL (Object Constraint Language)

Object Constraint Language (OCL) is a formal lan-
guage used to describe expressions on UML models.
These expressions typically specify invariant conditions
that must hold for the system being modeled or queries
over objects described in a model. Note that when the
OCL expressions are evaluated, they do not have side
effects. OCL expressions can be used to specify oper-
ations / actions that, when executed, do alter the state
of the system. UML modelers can use OCL to specify
application-specific constraints in their models.

Currently, several tools of OCL exist, including
ATL [14] Dresden OCL Toolkit [21], Eclipse MDT
OCL [10] KMF [12], Ocle [17], etc.

In MOF 2.0 QVT, OCL is extended to Imperative
OCL as part of QVT Operational Mappings.
Imperative OCL added services to manipulate the sys-
tem states (for example, to create and edit objects, links
and variables) and some constructions of imperative
programming languages (for example, loops and condi-
tional execution). It is used in QVT Operational Map-
pings to specify the transformations.

QVT defines two ways of expressing model trans-
formations: declarative and operational approaches.
The declarative approach is the Relations language
where transformations between models are specified as
a set of relationships that must hold for successful trans-
formation.

The operational approach allows either defining
transformations using a complete imperative approach
or complementing the relational transformations with
imperative operations, by implementing relationships.
Imperative OCL adds imperative elements of OCL,
which are commonly found in programming languages
like Java. Its semantics are defined in [11] by a model
of abstract syntax. The complete abstract syntax Imper-
ativeOCL is shown in Figure 6.

The most important aspect of the abstract syntax is
that all expression classes must inherit OclExpression.
OclExpression is the base class for all the conventional
expressions of OCL. Therefore, Imperative Expressions
can be used wherever there is OclExpressions.

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 6

Figure 6: Imperative Expressions of ImperativeOCL

6 The UML and MVC2 meta-models

To develop the algorithm of transformation between the
source and target model, we present in this section, the
different meta-classes forming the UML source meta-
model and the MVC2 target meta-model. The meta-
model source structure simplified UMLmodel based on
a package containing the data types and classes. These
classes contain properties typed and characterized by
multiplicities (upper and lower). The classes contain
operations with typed parameters. Figure 7 shows the
source meta-model:

Figure 7: Simplified UML Meta-model

Figure 8 illustrates the first part of the target meta-
model. This meta-model is a simplified diagram of re-
lational databases. It consists of several tables, them-
selves composed of typed columns.

Figure 8: Simplified meta-model of a relational database

Figure 9 illustrates the second part of the target
meta-model. This is the business model of the appli-
cation to be processed. In our case, we opted for com-
ponents such as Beans. We recall that Struts does not
provide specific classes.

Figure 9: Simplified meta-model of a modelPackage

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 7

Figure 10 illustrates the third part of the target meta-
model. This meta-model illustrates the models that rep-
resent the display of the application. In this model, the
servlet calls the execute() method on the instance
of the class action. It performs its processing and then
calls the mapping.findForward() method with a
return to the JSP page specified.

Figure 10: Simplified meta-model of a viewPackage

Figure 11 shows the fourth part of the target meta-
model. This meta-model is the package controller. This
meta-model illustrates models that represent the con-
troller application. The controller is responsible for re-
ceiving applications sent by the client, with the invoca-
tion of the class action. It, thus, interacts with the busi-
ness model and coordinates with the display by sending
it to the client.

Figure 11: Simplified meta-model of a controllerPackage

The works of Mbarki and Erramdani [26, 27] con-
tain more details related to this section topic.

7 The process of transforming UML source
model to MVC2 target model (Struts)

CRUD operations (Create, Read, Update, and Delete)
are most commonly implemented in all systems. That
is why we have taken into account in our transformation
rules these types of transactions. In [26], it was imple-
mented that read operation, however, our work aims to
implement all CRUD operations.

We first developed ECORE models corresponding
to our source and target meta-models, and then we im-
plemented the algorithm (see sub-section 7.1) using the
transformation language QVT Operational Mappings.
To validate our transformation rules, we conducted sev-
eral tests. For example, we considered the class dia-
gram (see Figure 12). After applying the transforma-
tion on the UML model, composed by the classes De-
partment, Employee and City (ville), we generated the
target model (see Figure 16).

Figure 12: UML instance model

7.1 The transformation rules

By source model, we mean model containing the
various classes of our business model. The elements of
this model are primarily classes.
Main algorithm:
input umlModel:UmlPackage
output strutsModel
:StrutsProjectPackage
begin
create StrutsProjectPackage struts
create ViewPackage vp
vp = transformationRuleOne(e)
create ControllerPackage cp
cp = transformationRuleTwo(e)
link vp to struts
link cp to struts
return struts
end

function
transformationRuleOne(e:Class)
:ViewPackage
begin

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 8

create ViewPackage vp
for each e ? source model
if e.methods.name ? ’remove’
create JspPage page
link page to vp
end if
end for
return vp
end

function
transformationRuleTwo(e:Class) :
ControllerPackage
begin
create ControllerPackage cp
create ActionMapping am
for each page viewPackage
link page to actionForward
create actionForm
create Action action
create ActionForward actionForward
actionForm.input=page
actionForm.attribute=action
link page to actionForward
link actionForward to action
put action in am
end for
link am to cp
return cp
end

Figure 13 illustrates the first part of the transforma-
tion code of UML source model to the MVC2 target.

Figure 13: The transformation code UML2Strut

The transformation uses as input a UML type
model, named umlModel, and as output a STRUTS type
model named strutsModel. The entry point of the trans-

formation is the main method. This method makes the
correspondence between all elements of type UmlPack-
age of the input model and the elements of type Strut-
sProjectPackage output model.

The objective of the second part of this code is to
transform a UML package to Struts package, creating
an item such View package and Controller pack-
age. It is to turn each class in UML package, into JSP
in the View package, and into Action in the Controller
package making sure to give names to different pack-
ages.

Figure 14: The mapping class2view and Operation2JspPage

The methods presented in Figure 14 means that each
operation in a class corresponds to JSP page.

Figure 15: The mapping class2action

The method presented in Figure 15 means that each
class corresponds to one or more actions as the name
and type of operations which contains it.

The codes and models are publicly available
online http://sites.google.com/site/
uml2mvc/.

7.2 Result

Figure 16 shows the result after applying the transfor-
mation rules.

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 9

Figure 16: Generated PSM MVC2 Web model

The first element in the generated PSM model
is: viewPackage that contains the nine JSPs, namely
DisplayVillePage.jsp, DisplayDepartementPage.jsp,
DisplayEmployePage.jsp, CreateVillePage.jsp, Cre-
ateDepartementPage.jsp, CreateEmployePage.jsp,
UpdateVillePage.jsp, UpdateDepartementPage.jsp
and UpdateEmployePage.jsp. Since the opera-
tion of the removal requires any form, we’ll go
to the controllerPackage element, which contains
a single element ActionMapping. The latter
contains eighteen actions whose names are respec-
tively DisplayXAction, CreateXAction,
UpdateXAction, RemoveXAction,

CreateXEndAction, UpdateXEndAction,
where X should be replaced by City(Ville) by De-
partment, and Employee. Operations for creation
and update, add forms to enter new values. For
this reason, we add CreateXEndAction and
UpdateXEndAction.

For each element, for example,
DisplayDepartementAction contains two
elements: the attribute element indicat-
ing the form entered in this action is the Ac-
tionForm DisplayDepartementForm, and
Forwards element with forward attribute
DisplayDepartementPage.jsp. The Action ele-
ment DisplayVilleAction contains only one
Forwards element with forward attribute Dis-
playVillePage.jsp.

The remaining actions follow the same principle.

8 Conclusion and perspectives

In this paper, we applied the MDA to generate the
MVC2 code web application based on UML class di-
agram. The purpose of our contribution is to rethink
the works presented by Mbarki and Erramdani [26, 27].
However, the transformation rules were developed ap-
plying the approach by modeling and MOF 2.0 QVT, as
transformation language, to browse the class diagram
and generate, through these rules, an XML file contain-
ing all the actions, forms and JSP pages. This file can be
used to produce the necessary code to the target applica-
tion. The transformation algorithm handles all CRUD
operations. The advantage of this approach is the bidi-
rectional execution of transformation rules.

Moreover, this work can be complemented by ad-
vanced features of Web applications. For example, we
can provide some user interface as well as the ability
to incorporate other features: the persistence of objects
in relational database (Hibernate) and dependency in-
jection (Spring) to produce a complete web application
according to the n-tier architecture. This is the subject
of a work in finalization phase.

References

[1] Apache software foundation: The apache
struts web application software framework.
http://struts.apache.org.

[2] Asp.net mvc site http://www.asp.net/mvc/.

[3] Gwittir site http://code.google.com/p/gwittir/.

[4] Puremvc framework http://puremvc.org/.

[5] Spring framework http://www.springsource.org/.

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 10

[6] Zend framework http://framework.zend.com/.

[7] UML Infrastructure Final Adopted Spec-
ification, version 2.0, September 2003.
http://www.omg.org/cgi-bin/doc?ptc/03-09-
15.pdf.

[8] Meta Object Facility (MOF), version 2.0, January
2006. http://www.omg.org/spec/MOF/2.0/PDF/.

[9] XML Metadata Interchange (XMI), version 2.1.1,
December 2007. http://www.omg.org/spec/XMI/.

[10] MDT-OCL-Team, MDT OCL, 2008.
http://www.eclipse.org/modeling/mdt/?project=ocl.

[11] Meta Object Facility 2.0 Query
View Transformation (MOF 2.0
QVT), Version 1.1, December 2009.
http://www.omg.org/spec/QVT/1.1/Beta2/PDF/.

[12] Akehurst, D. and Patrascoiu, O. The kent model-
ing framework (kmf). University of Kent, 2005.
http://www.cs.kent.ac.uk/projects/ocl.

[13] Ali, A. B. H., Abdellatif, A., and Ahmed, S. B.
Transformation des contraintes d’intégrité - des
modèles conceptuels vers le relationnel. In IN-
FORSID, pages 398–415, 2007.

[14] Allilaire, F., Bézivin, J., Jouault, F., and Kurtev,
I. Atl - eclipse support for model transformation.
In In Proceedings of the Eclipse Technology eX-
change workshop (eTX) at the ECOOP 2006 Con-
ference, 2005.

[15] Allilaire, F., Bézivin, J., Jouault, F., and Kurtev.,
I. Atl: A model transformation tool. Science
of Computer Programming-Elsevier, 72:31–39,
2008.

[16] Blanc, X. MDA en action : Ingénierie logicielle
guidée par les modèles. Eyrolles, 2005.

[17] Chiorean, D. and OCLE-Team. Object con-
straint language environment 2.0., 2008.
http://lci.cs.ubbcluj.ro/ocle/.

[18] Czarnecki, K. and Helsen, S. Classification of
model transformation approaches. In In online
proceedings of the 2nd OOPSLA’03 Workshop on
Generative Techniques in the Context of MDA,
October 2003.

[19] Davis, M. Struts, an open-source MVC implemen-
tation : Manage complexity in large Web sites with
this servlets and JSP framework. IBM, Feb 2001.

http://www.ibm.com/developerworks/library/j-
struts/.

[20] Distante, D., Rossi, G., and Canfora, G. Modeling
business processes in web applications: An analy-
sis framework. In In Proceedings of the The 22nd
Annual ACM Symposium on Applied Computing,
page 1677.

[21] Dresden-OCL-Team. Dresden OCL Toolkit, 2008.
http://dresden-ocl.sourceforge.net.

[22] Escalona, M. J. and Koch, N. Metamodeling the
requirements of web systems. Lecture Notes in
Business Information Processing, 1:267–282, Au-
gust 2007.

[23] France Telecom. SmartQVT documentation,
2007. http://smartqvt.elibel.tm.fr/doc/index.html.

[24] Gharavi, V., Mesbah, A., and van Deursen, A.
Modelling and generating ajax applications: A
model-driven approach. In Proceeding of the 7th
International Workshop on Web-Oriented Soft-
ware Technologies, page 38, New York, USA,
2008.

[25] Kraus, A., Knapp, A., and Koch, N. Model-
driven generation of web applications in uwe.
In Proceeding of the 3rd International Workshop
on Model-Driven Web Engineering, CEUR-WS,
2007.

[26] Mbarki, S. and Erramdani, M. Toward automatic
generation of mvc2 web applications. InfoComp
- Journal of Computer Science, 7(4):84–91, De-
cember 2008.

[27] Mbarki, S. and Erramdani, M. Model-driven
transformations: From analysis to mvc 2 web
model. International Review on Computers and
Software (I.RE.CO.S.), 4(5):612–620, September
2009.

[28] Mbarki, S., Rahmouni, M., and Erramdani, M.
Transformation atl pour la génération de mod-
èles web mvc 2. In 10e Colloque Africain sur la
Recherche en Informatique et en Mathématiques
Appliquées (CARI), 2010.

[29] Miller, J. and Mukerji, J. MDA Guide Version
1.0.1, 2003. http://www.omg.org/docs/omg/03-
06-01.pdf.

[30] Nasir, M., Hamid, S., and Hassan, H. Webml and
.net architecture for developing students appoint-
ment management system. Journal of applied sci-
ence, 9(8):1432–1440, 2009.

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.



Redouane Esbai et al. Transformation by Modeling MOF 2.0 QVT: From UML to MVC2 Web model 11

[31] Nora, K. Transformations techniques in the
model-driven development process of uwe. In
Proceeding of the 2nd International Workshop
Model-Driven Web Engineering, page 3, Palo
Alto, 2006.

[32] Oberortner, E., Vasko, M., and Dustdar, S. To-
wards modeling role-based pageflow definitions
within web applications. In Proceeding of the 4th
Model Driven Web Engineering Workshop, 2008.

INFOCOMP, v. 10, no. 3, p. 01-11, September of 2011.


