
An Experimental Study of k -vertex Connectivity Algorithms

AZZEDDINE RIGAT

Hunan University
CISE - College of Information Science and Engineering,

DCS - Departement of Computer Science
41000 - Changsha- China

rigat.azzeddine@yahoo.com

Abstract. We present an algorithm for the k-vertex connectivity problem, which runs in O(km) time.
The time complexity of the algorithm depends on the connectivity, k, and the edges number, m. The
algorithm mainly performs Breadth first search (BFS) to find all the disjoint paths. The goal of this paper
is to provide an experimental comparison of the efficiency of k-vertex algorithms. We compare the run-
ning times of several standard algorithms, as well as a new algorithm that we have recently developed.
We study the state-of-art Max-Flow/Min-Cut algorithms; ‘Dinic’, ‘Push-relabel’, and ‘Pseudoflow’. Ex-
periments show that our algorithm performs well on k-vertex connectivity problem.

Keywords: graph algorithms, k-vertex connectivity, maximum flow, minimum cut, network design prob-
lem, reliability.

(Received April 24th, 2012 / Accepted June 28th, 2012)

1 Introduction

Let G = (V,E) be an undirected graph with |V | = n
and |E| = m. The vertex connectivity of two vertices
s,t ∈ V , denoted by k(s, t), is defined as the least
number of vertices chosen from V \ {s, t}, whose dele-
tion from G would destroy every path between s and
t, and if (st) ∈ E then let k(s, t) = n − 1. A graph
is called k-vertex-connected if its vertex connectivity
is k or greater. This means a graph G is said to be k-
connected if there does not exist a set of k − 1 vertices
whose removal disconnects the graph.

Menger’s theorem [17] was the first which charac-
terizes the connectivity of a graph in terms of the num-
ber of independent paths between vertices. The vertex-
connectivity statement of Menger’s theorem is as fol-
lows: Let G be a finite undirected graph and s and t
two nonadjacent vertices. Then the theorem states that
the size of the smallest vertex cut for s and t is equal to
the maximum number of pairwise vertex-independent
paths from s to t.

Vertex-independent path: If s and t are vertices of a

graph G, then a collection of paths between s and t is
called vertex-independent paths if no two of them share
a vertex (other than s and t themselves).

Even and Tarjan [7] were among the first to present
Max-Flow based connectivity algorithms. Subsequent
results include the work of Kleitman [15], Galil [9, 10],
Esfahanian and Hakimi [5], and Henzinger and Rao
[12]. The problem of determining whether the connec-
tivity is larger than a prescribed value, without com-
puting the actual value of k has been studied by Tarjan
[20].

Many algorithms were proposed, among which
there are some well-know k-vertex connectivity algo-
rithms and Max-Flow algorithms that show optimal per-
formances, such as:

1.1 For the k -vertex connectivity algorithms

• Gabow algorithm [8] using expander graph in
O((n+min{k5/2, kn3/4})m)

• Piotr algorithm [18] using matrix techniques in
O(n1.575+nk2)

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 2

• Yuichi and Hiro algorithm [21] using property test-
ing with a time complexity depends exponentially
on k.

1.2 The Max-Flow/Min-Cut algorithms show better
experimental performance to find the graph
connectivity or the k -vertex connectivity, these
are the best well known and standard algo-
rithms for this kind of problem:

• Dinic [4] using augmenting paths technique with
time complexity of n

√
m [7]

• Goldbereg-style [3] using push-relabel methods in
O(nmlog(n))

• Pseudoflow [13] using normalized tree [16]in
O(nmlog(n))

• Boykov and Kolmogorov [1] using augmenting
paths technique in O(kn2m), this algorithm out-
performs all the Max-Flow/Min-Cut algorithms in
some of the Computer Vision and Pattern Recog-
nition problems.

The goal of this paper is to compare experimentally
the speed of several Max-Flow/Min-Cut algorithms on
graphs typical for k-vertex connectivity, as well as pre-
senting a new k-vertex connectivity algorithm. In Sec-
tion 2, we describe the interested Max-flow/Min-cut al-
gorithms. In Section 3, we provide the relation be-
tween Max-Flow/Min-Cut algorithms and k-vertex con-
nectivity problem. Section 4, introduces a new k-vertex
connectivity algorithm that we developed. In Section
5, we tested our new algorithm and the three standard
Max-Flow/Min-Cut algorithms: pseudoflow algorithm
[13, 2], Hi_pr version of Goldberg-style ‘push-relabel’
method [11, 3], and Dinic algorithm [4]. More detailed
conclusions are presented in Section 6.

2 Description of Max-Flow/Min-Cut Algo-
rithms

2.1 Dinic algorithm

In order to describe this algorithm we need this defini-
tion.
Layered Network: Given a flow, f , and the corre-
sponding residual graph, Gf = (V, Ef), a layered
network AN(f) (AN stands for Auxiliary Network) is
constructed as follows:
Using breadth-first-search (BFS) in Gf , we construct a
tree rooted at s. Each node in V gets a distance label
which is its distance in the BFS tree from s. Thus, the
nodes that have an incoming arc from s get assigned
a label of 1 and nodes at the next level of the tree get

a label of 2, etc. Nodes with the same label are said
to be at the same layer. Let the distance label of t be
k = d(t) then all nodes in layer k are removed from the
layered network and all arcs are removed except those
which go from a node at one layer to a node at the next
consecutive layer. This layered network comprises all
of the shortest paths from s to t in Gf .

The basic process of the Dinic algorithm is outlined
below.

1. The Dinic algorithm constructs a layered network
between s and t.

2. If a layered network of edges between s and t
could not be constructed then the total flow is max-
imum thus stop.

3. Edge flows in the layered network are updated us-
ing augmenting paths to give a maximal flow in the
layered network by finding the shortest s→ t path
along non-saturated edges of the residual graph. If
a path is found then the algorithm augments it by
pushing the maximum possible flow that saturates
at least one of the edges. Repeat this step until
there is no s→ t path.

4. The flows in the layered network are then used to
update the flows in the main network.

5. Repeat from step 1.

2.2 Goldbereg-style algorithm

Push-relabel algorithm uses quite a different approach.
It maintains some pre-flow f , during the algorithm,
there are ‘active’ nodes that have a positive ‘flow ex-
cess’ other than s and t. The algorithm repeatedly looks
for a vertex u �= t with excess flow, and tries to reduce
its excess by complementing f(e) on some arc of Gf

out of u, preferably one that may lead to the sink. The
algorithm stops when there are no vertices other than s
with positive excess. While, the algorithm maintains a
labeling of nodes giving a low bound estimate on the
distance to the sink along non-saturated edges. The al-
gorithm attempts to ‘push’ excess flows towards nodes
with smaller estimated distance to the sink. Typically,
the ‘push’ operation is applied to active nodes with the
largest distance (label) or based on FIFO selection strat-
egy.

2.3 Pseudoflow algorithm

The first step in the Pseudoflow algorithm is to start by
a Simple-Init, during this phase all the Source-adjacent

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 3

and sink-adjacent arcs are saturated, thus the source and
sink have no role to play in the next Stage. The second
step is the Min-Cut phase where the algorithm is look-
ing for (pushing flow) an admissible arc for merging;
looking for a path from the source to the sink. A rela-
beling of a node is the increase of a node’s label by one
unit. A node of label h is relabeled to h + 1, if there
is no merger arc in the residual graph to a neighbor of
label h − 1, and if all its children have label at least
h + 1. The algorithm stops when there are no vertices
with positive excess and of label ≺ n.

3 Adaptation of Max-Flow Algorithms to
Solve k -vertex Connectivity Problem

In this section, we will cover some of the basic ideas in
computing the vertex connectivity of a graph G, using
Max-Flow/Min-Cut algorithms; similar ideas are appli-
cable to digraphs. All edges in the graph are assigned
some capacity. It has been shown that k(s, t) for a pair
of non adjacent vertices s and t can be determined by
solving a Max-Flow problem in a particular network, as
described below [6]:

• Input: Graph G = (V,E), and a pair of non-
adjacent vertices s and t.

• Output: Value for k(s, t).

1. Replace each edge pq∈ E with arcs (p, q) and
(q, p), and call the resulting digraph D.

2. For each vertex u other than s and t in G,
replace u with two new vertices u1 and u2,
and then add the new arc (u1, u2). Connect
all the arcs that were coming to u in G to u1,
and similarly, connect all the arcs that were
going out of u in G to u2 in D.

3. Assign s as the source vertex and t as the sink
vertex.

4. Assign the capacity of each arc to 1, and call
the resulting network H .

5. Find a Max-Flow function f in H .

6. Set k(s, t) equal to the total flow of f . Stop.

4 New k -vertex Connectivity Algorithm

In this section, we present our new algorithm, which
improved empirical performance of augmenting path
techniques for k-vertex connectivity. Normally, aug-
menting path based algorithms (for example Dinic [4]),
start a new BFS (Breadth-First-Search) for source →

sink paths as soon as all paths of a given length are ex-
hausted. The new algorithm presented here is mainly
based on BFS; worldly speaking our algorithm builds
BFS of each vertex-independent path.

4.1 Algorithm’s Overview

Our algorithm composes of three phases: initialization,
building, and augmentation. In the initialization phase
it inserts all the Source-adjacent in the list SA, and then
it maintains a search tree S with root at the source s.
The vertices that are not in S are called ‘free’. We have
: S ⊂ V , s ∈ S.

The free vertices can be either ‘deactivated’ or ‘vis-
ited’. The visited vertices represent the vertex partic-
ipate in a previous vertex-independent path while the
deactivated vertices are the vertices which can add to
the tree. The S tree composes of ‘active’ and ‘passive’
vertices. The active vertices represent the outer border
in the tree while the passive vertices are internal. The
tree can not grow when it finds a Sink-adjacent deac-
tivated vertex, or when there is no active vertex. An
augmenting path is found as soon as the algorithm finds
a Sink-adjacent deactivated vertex.

The algorithm executes the initialization phase, and
then iteratively repeats the following two stages:

• building phase: search tree S grows until it finds
an s→ t path

• augmentation phase: the found path is augmented.

At the initialization phase all the Source-adjacent
vertices add to SA and assign the Source as their par-
ent, and then assign the Sink as parent for all the Sink-
adjacent vertices.

At the building phase the active vertices explore ad-
jacent vertices and acquire new children from a set of
deactivated vertices. The newly acquired vertices be-
come active members of the search tree. As soon as all
neighbors of a given active vertex are explored, we pass
to the next active vertex. The building phase terminates
if an active vertex encounters a neighboring vertex that
has sink as its parent. In this case, we detect a path from
the source to the sink. The augmentation phase assigns
visited value to all the vertices within the path found.

After the augmentation phase is completed the al-
gorithm returns to the building phase. The algorithm
terminates when the search tree S has no active vertices
left. This implies that all vertex-independent paths are
listed.

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 4

4.2 Details of our Implementation

Assume that we have a directed graph G = (V, E). We
will keep a list of all the active vertices, A, and all the
Source-adjacent, SA. The general structure of the algo-
rithm is:

Initialization: S←{Source};

SA←{Source-adjacent vertices};

A←�;

PARENT{Source-adjacent vertices} ← Source;

PARENT{Sink-adjacent vertices} ← Sink;

GlobalLabel← 1;

initialize all the vertices’ label with Label← 0;

while TRUE do

Build S to find an augmenting path P from s
to t;

if P = � then
terminate

end

GlobalLabel ← GlobalLabel + 1;

Augment on P ;
end

The details of the building and augmentation stages
are described below. It is convenient to store content of
search tree S via flag TREE(p) indicating affiliation
of each vertex p so that:

TREE(p) = s if p ∈ S or TREE(p) = � if p is
‘free’

If vertex p belongs to the search tree S then
the information about its parent will be stored as
PARENT (p).

4.2.1 Building phase

At this stage the search tree S builds.

while SA do
Pick a vertex p ∈ SA;
if V isited(p) = FALSE then

if PARENT (p) = Sink then
PARENT (p) ← Source;
return p;

end
for every neighbor q do

if V isited(q) = FALSE then
if Label(q) ≺ GlobalLabel then

if PARENT (q) = Sink
then

PARENT (q) ← p ;
Return q;

end
Label(q) ← GlobalLabel;
PARENT (q) ← p;
A← A{q};

end
remove the edge from p to q;

end

end
remove the edge from the source to p;
remove p from SA;

end

end
while A �= � do

Pick an active vertex p ∈ A;
for every neighbor q do

if V isited(q) = FALSE then
if Label(q) ≺ GlobalLabel then

if PARENT (q) = Sink then
PARENT (q) ← p;
return q;

end
Label(q) ← GlobalLabel;
PARENT (q) ← p;
A← Aq;

end
remove the edge from p to q;

end

end
Remove p from A;

end
P ← �;

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 5

4.2.2 Augmentation phase

The input of this stage is sink-adjacent vertex p.

while p �= source do
V isited(p) ← TRUE;
p← PARENT (p);

end

The building phase is a simple BFS and it stops
when the tree can not grow, in the case when the tree
encounters a sink-adjacent vertex; that mean there is at
least one path from the source to the sink, by backtrack-
ing the parents from the sink-adjacent to the source-
adjacent we have the shortest path between the source
and the sink. Each vertex that participates in the cur-
rent shortest path will be removed from the graph by
assigning it as visited. At the End, the algorithm has
k-vertex independent paths, which lead to the k-vertex
connectivity according to Menger’s theorem [17].

4.3 Time Complexity

The building stage is repeated at most k + 1 times ex-
ecuting BFS which leads to O(km), while in the aug-
mentation stage the algorithm backtracks the parents at
most n times for all the vertex-independent paths which
leads to O(n), because every time when the algorithm
trackbacks a parent it assigns the current vertex as vis-
ited and will not use it further. Then as a result the time
complexity of this algorithm is O(km).

5 Experimental Tests on k -vertex Connectiv-
ity

5.1 Implementation

In this section, we test our algorithm in addition to the
following standard Max-Flow/Min-Cut algorithms:

• DINIC [4]

• Push_Relabel [3]

• Pseudoflow [13]

For DINIC, we used the implementations written by Se-
tubal [19], for Push_Relabel, we used the implementa-
tion of the Two-Level Push-Relabel Algorithm (hi_pr,
version 3.6), and for Pseudoflow, we used the highest
label pseudoflow implementation (Pseudo_fifo, version
3.2)[2].

5.2 Computing Environment

The experiments were run on a CentOS-5 workstation
with a dual core of 2.7 GHz CPU and 4 GB of RAM.
All codes were written in C and compiled with the gcc
compiler using ‘-O4’ optimization option.

6 Problem Classes

We test codes performance on DIMACS problem fam-
ilies [14] and on a random graph. We use RMF-Long,
RMF-Wide, Wash-Line-Moderate, AK, Acyclic-Dense
problem families, and the random graph family. The
instance generated depends on a random seed. These
problem classes are:

• AC: The acyclic dense network family with pa-
rameter k has n=2k nodes and n(n+ 1)/2 arcs.

• AK: The AK generator was designed by Goldberg
and Cherkassky (1997) as a hard set of instances
for push-relabel and Dinic’s algorithms. Given a
parameter k, the program generates a unique net-
work with 4k + 6 nodes and 6k + 7 arcs. The
instance does not depend on a random seed in that
the graph, given the number of nodes, is unique.

• GENRMF-Long: This family is created by the
RMFGEN generator of Goldfarb and Grigo-riadis
(1988). A network with n=2x nodes is generated
using parameters a=2x/4 and b=2x/2.

• GENRMF-Wide: This family is created by the
RMFGEN generator. A network with n=2x

nodes is generated using parameters a=22x/5 and
b=2x/5.

• Washington Line-Moderate: A network with n =
2x nodes in this family is generated by the Wash-
ington generator using function = 6, arg1 = 2x−2,
arg2 = 4, and arg3 = 2(x/2)−2.

• Random graph: its random function depends on
the seed, and the vertex degree (vertex neighbors)
is randomly selected for each vertex; from zero to
the half participated vertices of the current prob-
lem size.

6.1 Testing Methodology

For each problem type of a particular size, we generated
10 instances each using a different seed. The sequence
of seeds was itself generated randomly. For each in-
stance, we average over 5 times runs. Thus, for in-
stances that depend on a random seed, each data point
for a given problem size is the average of 50 runs.

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 6

6.2 Results and Analysis

In this section, we provide the results of our experi-
ments for each problem family.

6.2.1 Acyclic-Dense problems

Figure 1 shows that ‘Our’ and Pseudo_fifo codes are
the fastest; it’s clear here that Dinic implementation is
too slow and can not solve AC problems bigger than 8.4
millions arcs.

Figure 1: Running times for AC instances

6.2.2 AK problems

For these family problems, Figure 2 shows that ‘Our’
code is the fastest. On the other hand Hi_pr does not
support the adaptation phase (3) for the AK problems.

Figure 2: Running times for Ak instances

6.2.3 RMF_Long problems

Figure 3 shows that ‘Our’ implementation has a linear
growth rate and is the fastest for most of the instances,
but it loses against Hi_pr at the last instance. On the

other hand Pseudo_fifo shows abnormally in some in-
stances which cost it a big time consumption.

Figure 3: Running times for RMF_LONG instances

6.2.4 RMF_Wide problems

Figure 4 shows that ‘Our’ and Hi_pr codes are the
fastest; but Hi_pr beat ‘Our’ algorithm at the last in-
stance. It’s clear here also that Pseudo_fifo code shows
no linear growth rate.

Figure 4: Running times for RMF_Wide instances

6.2.5 Wash_Line_Moderate problems

Figure 5 shows that while the running time of ‘Our’ im-
plementation keeps converging to that of Hi_pr algo-
rithm. Pseudo_fifo code is the fastest.

6.2.6 Random problems

Figure 6 shows that ‘Our’ code is the fastest for all the
instances except the last one, where it falls in the middle

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 7

Figure 5: Running times for Wash_Line_Moderate instances

of the Pseudo_fifo and Hi_pr codes.

Figure 6: Running times for Random instances

6.2.7 Details on the Algorithm and the Reading
phases

Finally, in the tables from 1 to 12 we have these nota-
tions:

• N : number of vertices

• M : number of edges

• PF : Pseudo_fifo

• HI: Hi_pr

• xxxx : the code crashes on the target instances.

• — : we do not include that running time.

• m : million

• k : thousand

These tables show the details of the Reading phase
and Algorithm phase of all families, we did not include
the Reading phase of Dinic algorithm because its Algo-
rithm phase already shows slower convergence to solve
k-vertex connectivity problems. The Reading phase of
‘Our’ algorithm outperforms all the other algorithms,
because our implementation does not need the adaption
of Max-Flow algorithms (section 3). Note : all the run-
ning times are in Seconds

Table 1: Running times of Algorithm phase for AC instances

N/k 2.0 2.9 4.1 5.8 8.2
M/m 2.0 4.2 8.4 16 33.6

Dinic 192.940 729.900 2361.390 xxxx xxxx
HI 0.043 0.091 0.182 0.362 0.729
PF 0.000 0.001 0.001 0.002 0.003
Our 0.000 0.001 0.001 0.002 0.003

Table 2: Running times of Reading phase for AC instances

N/k 2.0 2.9 4.1 5.8 8.2
M/m 2.0 4.2 8.4 16 33.6

Dinic — — — — —
HI 2.297 5.007 11.083 24.614 57.779
PF 1.799 3.792 7.610 15.448 30.821
Our 1.012 2.136 4.276 8.579 17.228

Table 3: Running times of Algorithm phase for Ak instances

N/m 0.13 0.3 0.5 1.0 2.0
M/m 0.2 0.4 0.8 1.6 3.1

Dinic 27.70 128.51 558.04 2252.99 9020.38
HI xxxx xxxx xxxx xxxx xxxx
PF 0.011 0.021 0.042 0.083 0.166
Our 0.001 0.002 0.004 0.007 0.015

Table 4: Running times of Reading phase for Ak instances

N/m 0.13 0.3 0.5 1.0 2.0
M/m 0.2 0.4 0.8 1.6 3.1

Dinic — — — — —
HI xxxx xxxx xxxx xxxx xxxx
PF 0.284 0.553 1.107 2.234 4.516
Our 0.113 0.227 0.461 0.907 1.852

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 8

Table 5: Running times of Algorithm phase for RMF_LONG in-
stances

N/m 0.3 0.5 1.0 2.1 4.1
M/m 1.3 2.6 5.1 10 20

Dinic 1.493 2.857 5.704 12.731 xxxx
HI 0.120 0.354 0.729 1.487 0.823
PF 0.295 1.125 0.332 10.970 26.601
Our 0.089 0.216 0.464 0.966 1.929

Table 6: Running times of Reading phase for RMF_LONG instances

N/m 0.3 0.5 1.0 2.1 4.1
M/m 1.3 2.6 5.1 10 20

Dinic — — — — —
HI 2.793 5.662 11.825 25.350 54.612
PF 1.489 2.924 6.011 12.138 24.049
Our 0.789 1.547 3.139 6.387 12.853

Table 7: Running times of Algorithm phase for RMF_WIDE in-
stances

N/m 0.13 0.3 0.5 1.0 2.1 4.2
M/m 0.66 1.3 2.6 5.2 10 20

Dinic 1.163 2.45 4.771 9.415 23.015 xxxx
HI 0.097 0.234 0.355 1.166 2.268 2.49
PF 0.066 4.386 0.248 42.06 0.905 346.3
Our 0.118 0.252 0.573 1.207 2.523 5.456

Table 8: Running times of Reading phase for RMF_WIDE instances

N/m 0.13 0.3 0.5 1.0 2.1 4.2
M/m 0.66 1.3 2.6 5.2 10 20

Dinic — — — — — —
HI 1.351 2.711 5.756 12.00 25.196 52.87
PF 0.766 1.476 3.082 6.278 12.551 25.85
Our 0.417 0.805 1.682 3.391 6.779 13.96

Table 9: Running times of Algorithm phase for
WASH_LINE_MODULAR instances

N/k 16 32 65 130 260
M/m 0.5 1.4 4.2 12 33.6

Dinic 1.580 4.960 17.820 67.900 xxxx
HI 0.031 0.088 0.262 0.796 2.468
PF 0.008 0.019 0.044 0.110 0.294
Our 0.025 0.068 0.232 0.663 1.929

7 Conclusion and Future Work

The objective of k-vertex connectivity between two ver-
tices s, t is to know the least number of vertices chosen
from V \ {s, t}, whose deletion from the graph would

Table 10: Running times of Reading phase for
WASH_LINE_MODULAR instances

N/k 16 32 65 130 260
M/m 0.5 1.4 4.2 12 33.6

Dinic — — — — —
HI 0.782 2.415 7.583 24.460 84.261
PF 0.500 1.395 4.010 11.562 42.070
Our 0.279 0.785 2.270 6.428 18.621

Table 11: Running times of Algorithm phase for RANDOM in-
stances

N/k 2.0 1 8.1 4.1
M/m 0.049k 0.054k 3.3 8.4

Dinic 0.299 0.320 181.158 2158.250
HI 0.002 0.002 0.157 0.366
PF 0.002 0.001 0.134 0.002
Our 0.001 0.001 0.096 0.360

Table 12: Running times of Reading phase for RANDOM instances

N/k 2.0 1 8.1 4.1
M/m 0.049 0.054 3.3 8.4

Dinic — — — —
HI 0.052 0.054 4.452 10.294
PF 0.047 0.049 3.217 7.766
Our 0.023 0.023 1.633 4.010

destroy every path between s and t. Our work is of
significance because it was widely accepted until now
that Dinic algorithm was the fastest algorithm, because
of its low time complexity at the k-vertex connectiv-
ity problem, but the other algorithms; push-relabel and
pseudoflow outperform it in practice.

This paper introduces a new algorithm for k-vertex
connectivity in Õ(m) time complexity, and shows that
its running time is the best for most problems and is
close to that of the others implementations in the other
problems family, on the other hand, our algorithm out-
performs all of the three algorithms if we include the
reading phase of each algorithms, because the adapta-
tion of Max-Flow/Min-Cut algorithms to solve k-vertex
connectivity problem multiplies the number of vertices
and edges by two, which leads also to more memory
consumption. As part of our future research, we will
use BFS just one time along with some heuristic func-
tions to speed up our algorithm implementation, be-
cause the BFS is considered expensive to perform it for
every vertex-disjoint path in ‘Our’ algorithm.

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

Azzeddine Rigat An Experimental Study of k-vertex Connectivity Algorithms 9

References

[1] Boykov, Y. and Kolmogorov, V. An experimental
comparison of min-cut/max-flow algorithms for
energy minimization in vision. IEEE Trans. Pat-
tern Anal. Mach. Intell., 26(9):1124–1137, 2004.

[2] Chandran, B. G. and Hochbaum, D. S. A compu-
tational study of the pseudoflow and push-relabel
algorithms for the maximum flow problem. Oper-
ations Research, 57(2):358–376, 2009.

[3] Cherkassky, B. V. and Goldberg, A. V. On im-
plementing the push-relabel method for the max-
imum flow problem. Algorithmica, 19(4):390–
410, 1997.

[4] Dinic, E. A. Algorithm for solution of a problem
of maximum flow in networks with power estima-
tion. Soviet Math. Doklady, 11:1277–1280, 1970.

[5] Esfahanian, A.-H. and Hakimi, S. L. On com-
puting the connectivities of graphs and digraphs.
NETWORKS, 14:355–366, 1984.

[6] Even, S. Graph algorithms. Computer Science
Press, 1979.

[7] Even, S. and Tarjan, R. E. Network flow and
testing graph connectivity. SIAM J. Comput.,
4(4):507–518, 1975.

[8] Gabow, H. N. Using expander graphs to find ver-
tex connectivity. J. ACM, 53(5):800–844, 2006.

[9] Galil, Z. Finding the vertex connectivity of
graphs. SIAM J. Comput., 9(1):197–199, 1980.

[10] Galil, Z. and Italiano, G. F. Reducing edge con-
nectivity to vertex connectivity. ACM SIGACT
News, 22:57–61, 1991.

[11] Goldberg, A. V. and Tarjan, R. E. A new ap-
proach to the maximum-flow problem. J. ACM,
35(4):921–940, 1988.

[12] Henzinger, M. R., Rao, S., and Gabow, H. N.
Computing vertex connectivity: New bounds from
old techniques. J. Algorithms, 34(2):222–250,
2000.

[13] Hochbaum, D. S. The pseudoflow algorithm: A
new algorithm for the maximum-flow problem.
Operations Research, 56(4):992–1009, 2008.

[14] Johnson, D. S. and McGeoch, C. C. Network
flows and matching: First dimacs implementation
challenge. AMS, pages 1–18, 1993.

[15] Kleitman, D. J. Methods for investigating connec-
tivity of large graphs. IEEE Trans.Circuit Theory.,
16(2):232–233, 1969.

[16] Lerchs, H. and Grossmann, I. F. Optimum design
of open-pit mines. Trans., Canadian Inst. Mining
and Metallurgy, 68:17–24, 1965.

[17] Menger, K. Zur allgemeinen kurventheorie. Fund.
Math, 10:96–115, 1927.

[18] Sankowski, P. Faster dynamic matchings and ver-
tex connectivity. In SODA, pages 118–126, 2007.

[19] Setubal, J. C. New experimental results for bipar-
tite matching. In NETFLOW93, pages 211–216,
1993.

[20] Tarjan, R. E. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146–160,
1972.

[21] Yoshida, Y. and Ito, H. Property testing on
k-vertex-connectivity of graphs. Algorithmica,
62(3-4):701–712, 2012.

INFOCOMP, v. 11, no. 2, p. 01-09, June of 2012.

