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Abstract. Inspired by The Theory of Neuronal Group Selection (TNGS) we have conducted a compara-
tive storage and retrieval analysis of a multi-level or hierarchically coupled associative memory through
evolutionary computation and Hebbian learning. The TNGS establishes that memory processes can be
described as being organized, functionally, in hierarchical levels, where higher levels coordinate sets of
functions of the lower levels. The most basic units in the cortical area of the brain are formed during
epigenesis and are called neuronal groups, which are defined as a set of localized tightly coupled neu-
rons constituting what we call our first-level blocks of memories. On the other hand the higher levels
are formed during our lives, or ontogeny, through selective strengthening or weakening of the neural
connections amongst the neuronal groups. In this sense, this paper describes and compares a method of
acquiring the inter- group synapses for the proposed coupled system using both evolutionary computa-
tion and Hebbian learning. The results show that evolutionary computation, more specifically genetic
algorithms, is more suitable for network acquisition than Hebbian learning because it allows for the
emergence of complex behaviours which are potentially excluded due to the well known crossover effect
constraints presented in Hebbian learning. Simulations have been carried out considering a wide range
of the system parameters.
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Introduction

some brain features through the subdivision of the neu-

Theories and mathematical models have been studied
over the years in an attempt to capture particular fea-
tures of the brain mainly of the neurons and their inter-
actions [2], [7], [8], [91.[11], [14], [20], [27], [28], [30],
[35], and [37]. It is reasonable to assume that many of
the general principles upon which the nervous system is
conceived may be described through a much simplified
model that takes into account the most relevant features
of each neuron and the interactions amongst them. Al-
though incomplete, some models are suitable for the-
oretical investigations and can enable us to understand

ral networks into smaller structures [7].

In general, these studies treat the neocortex is re-
garded as an associative memory in which some of the
long and short-range cortical connections are responsi-
ble for the storage and retrieval of global patterns. From
this perspective, the neocortex could be divided into
various discrete modular units where the short-range
connections correspond to the synapses between neu-
rons of the same module while the long-range connec-
tions can be represented as synapses between neurons
of different modules [7], [9], and [20].
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Consenquently, Gomes et al. [16] addressed in their
work the pattern storage and retrieval problem and they
also considered the implication of developmental or-
ganisation of neurobiological structure. This develop-
ment may result in pre-existing synaptic connections as
well as the hierarchically coupled organisation of the
network. Thus, based on the same principles of multi-
module organisation, the Theory of Neuronal Group Se-
lection (TNGS), proposed by Edelman [11], establishes
that memory processes can be described as being orga-
nized, functionally, in hierarchical levels, where higher
levels coordinate sets of functions of the lower levels. In
Edelman’s theory, synapses of the localized neural cells
in the cortical area of the brain generate a hierarchy of
cluster units denoted as: neuronal groups (clusters of
tightly coupled neural cells), local maps (reentrant clus-
ters of coupled neuronal groups) and global maps (reen-
trant clusters of coupled neural maps). Edelman argues
that the neuronal group is the most basic unit in the cor-
tical area of the brain and, it is the basic constructor of
memories. These neuronal groups are a set of tightly
coupled neurons, firing and oscillating synchronically,
developed in the embryo as well as during the begin-
ning of a child’s life, i.e., they are structured during
phylogeny and are responsible for the most primitive
functions in human beings. In other words, the neuronal
groups are hardwired, meaning that they are difficult to
change. Considering these principles, these neuronal
groups would be, equivalently, the first-level memories
of our artificial model.

Immediately after birth, the human brain rapidly
starts creating and modifying synaptic connections be-
tween neuronal groups. According to this proposition,
Edelman proposed an analogy based on the Darwin’s
Theory of Natural Selection and Darwinian theories
of population dynamics. The term Neural Darwinism
could be used to describe a physical process observed
in neurodevelopment in which synapses, which were
used amongst different clusters (neuronal groups) are
strengthened, while unused ones are weakened, giv-
ing rise to a second level physical structure regarded
in the TNGS as a local map. Each of these arrange-
ments of connections amongst clusters within a given
local map results in a certain inter-neuronal group activ-
ity which yield a second-level memory. In other words,
the second-level memory could be viewed as a correla-
tion amongst the first-level memories. This process of
coupling smaller structures through synaptic intercon-
nections between neurons of different neuronal groups
in order to generate larger ones could be repeated recur-
sively. Consequently, new hierarchical levels of mem-
ories emerge through selected correlations of the lower

level memories [11].

Based on these arguments, Gomes et al. [13],
[15], and [16] presented a model of multi-level associa-
tive memory having its first level structure formed by
generalised-Brain-State-in-a-Box (GBSB) neural net-
work. They also proposed an energy function for the
coupled model and they proved that the inter-group cou-
pling that enabled the emergence of second-level mem-
ories do not destroy the first-level memory structures.

The strategy adopted by Gomes et al. [16] is basi-
cally to build a predefined non-symmetric weight ma-
trix for these neuronal groups, i.e. synthesised, by
means of an algebraic calculation proposed by Lillo and
collaborators [23], to meet the main characteristics of
the TNGS theory. Thus, the matrix was carefully de-
signed to store all of the desired patterns while minimis-
ing the number of the spurious states (undesired asymp-
totically stable equilibrium points). In addition, the sec-
ond level was designed to follow the generalised Hebb
rule or Outer Product Method algorithm through the se-
lected patterns extracted from the first-level memories.
This strategy for building a network where the first level
is designed with tightly synaptic weights as the cou-
pling amongst the other levels exhibit synaptic plastic-
ity (Hebbian Learning) is closer to the model of neu-
ronal organisation proposed by Edelman. Hence, the lo-
cal maps or our second level memories, are not synthe-
sized, instead, the correlations would emerge through a
learning or adaptive mechanism.

As a result, this paper describes and compares a
method of acquiring the inter-group synapses for the
proposed coupled system using both evolutionary com-
putation and Hebbian learning and is organized as fol-
lows. In section 2 we present the model of hierarchi-
cally coupled GBSB neural networks and show how
multi-level memories may emerge from it. Section 3
illustrates the analysis made through a sequence of ex-
periments, showing the behaviour of the global network
and its capacity of convergence to global patterns for or-
thogonal and linearly independent (LI) vectors for both
Hebbian learning and evolutionary computation. Fi-
nally, Section 4 concludes the paper.

2 Multi-level memories

In order to develop this new model, Gomes [13] uses
an extension of the original BSB - Brain-State-in-a-
Box [4] called GBSB (Generalized-Brain-State-in-Box)
[18] which can be applied in the implementation of as-
sociative memories, where each stored pattern, i.e., a
memory, is an asymptotically stable equilibrium point
[34]. The design of artificial neural network associative
memories have been explored in the last two decades
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and some methods have been proposed in [10], [17],
[21], [22], [24], [25], and [31]

Associative memories have also been studied, par-
ticularly in the cases where they are a part of a hi-
erarchical or coupled system. Some authors regard
the neocortex as being a kind of associative memory
in which some of the long and short-range cortico-
cortical connections implement the storage and retrieval
of global patterns [29], [32], and [36]. Thus, the cor-
tex could be divided into various discrete modular ele-
ments where the short-range connections will be those
synapses between neurons of the same module while
the long-range connections would be synapses between
neurons of different modules. In addition, these au-
thors have considered in their models, symmetric con-
nections, asynchronous updating, local and global fea-
tures formed by Hebbian learning [30], [27], [28], and
[35]. Notwithstanding, these synapses are expected to
mimic some important characteristics inherent to bio-
logical systems [11], which have not been considered:
parallelism amongst synapses in different regions of
the brain, re-entrant and asymmetric connections, syn-
chronous activation, different bias as well as different
maximum and minimum fire rates, redundancy, non-
linear dynamics and self-connection for each neuron.
For this reason, taking as inspiration the Theory of Neu-
ronal Group Selection (TNGS) proposed by Edelman
[8], and [11], a multi-level or hierarchically coupled as-
sociative memory based on coupled Generalized-Brain-
State-in-a-Box (GBSB) neural networks was proposed
and analyzed in [13], [15], and [33].

The Generalized-Brain-State-in-a-Box (GBSB)
model [18] can be described by the following equation:

X = (1, + SW)x* + 1), (1)

where L, is the n x n identity matrix, 5 > 0 is a small
and positive gain factor, W ¢ R"*" is the weight ma-
trix, which need not be symmetrical, and f ¢ R" is the
bias field allowing us to better control the extent of the
basins of attraction of the fixed points of the system. It
is worth mentioning that when the weight matrix W is
symmetric and f = 0, the original model discussed in
[39] will be recovered.

The activation function  is a linear saturating func-

tion whose i*" component is defined as:

af T = p(yh)
+1 ifyf > +1
2)
e(yf) =< yf if-1<yf <41

-1 ifyF < -1,

where y¥ is the argument of the function ¢ in (1).

In our multi-level memories, each GBSB neural net-
work plays the role of our first-level memory inspired
by Neuronal Groups of the TNGS. In order to build
a second-level memory we can couple any number of
GBSB networks by means of bidirectional synapses.
These new structures will play the role of our second-
level memory memories analogous to the local maps of
the TNGS. Hence, some global patterns could emerge
as selected couplings of the first-level stored patterns.

Figure 1 illustrates a two-level hierarchical memory
via coupled GBSB model where each one of the neural
networks A, B and C, represents a GBSB network. In
a given network, each single neuron has synaptic con-
nections with all neurons of the same network, i.e., the
GBSB is a fully connected non-symmetric neural net-
work. Besides, some selected neurons in a given net-
work are bidirectionally connected with some selected
neurons in the other networks [2], [3], [7], [27], [28],
and [35]. These inter-network connections, named in
this paper inter-group connections, can be represented
by a weight inter-group matrix W.,,., which accounts
for the interconnections of the networks due to cou-
pling. An analogous procedure could be followed in
order to build higher levels in the proposed aforemen-
tioned hierarchy [1], and [11].

Second-level memories
A
i
WCor(i.a)(i.b)

Wz:o,g‘,b)(i,a) .

First-level

Memories

/ ¢
J
B
)
GBSB Nets Wiaio

Figure 1: Coupled neural network design

In order to observe the results of coupling of a given
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GBSB network with the remaining GBSB networks,
one should extend (1) by adding to it a term which
represents the inter-group coupling. Consequently, our
general version of the multi-level associative memory
model can be defined by:

N,

k+1 __ k - k
2ty = ¢ | 2liay + D BaWia) )20
i=1
N, Ny
k
Baf(ia) + 1 Z ZW(a,b)wcor(i,a)(j,b)l“(j,b) , (3
b=1 j=1
b£a

where o:ki, ) is the state of the i*" neuron of the a'" net-
work at time k, 8, > 0 is a small and positive constant
referred to as intra-group gain of the a'” network and
[(i,a) is the bias field of the i*" neuron of the a'" net-
work, w(; 4)(j,a) 18 the synaptic weight between the ith
and the j th neuron of the a™ network, N, is the number
of neurons of the a'" network N, is the number of net-
works, IV, is the number of neurons of the bt" network,
i.e., the number of neurons of the b*" network that are
coupled to i*" neuron of the a'" network, p is the cou-
pling density amongst the networks, Weor (3,a)(5,b) 15 the
synaptic weight between the i, of the a;, network and
the j.h neuron of the by, network, and (4 ) is a pos-
itive constant referred to as inter-group gain between
the a'” and b*" network, and xl&b) is the state of the
4" neuron of the b*" network at time k. To sum it up,
the first three terms represent the ayj, single GBSB net-
works. The fourth term of (3), the sum over j, labels
the N, neurons in the b** network that are connected to
neuron i in the a' network being the inter-group gain
and the coupling density parameterised by 7(4,5) and p
respectively.

It is important to note that, in this general model,
different 3, and v(, ) values could be assigned to each
network as well as to pairs of them, respectively. How-
ever, without loss of generality we will be analyzing a
particular case of this general version of the multi-level
associative memory model in which the intra-group and
inter-group gains are constant, i.e.:

Ba

B
Ya,b )

Y(a,b) Y

Equation (3) can be rewritten, in vectorial notation,
as:

N,
X = | (I + BWa)XE + Bla+ 1y Y WeorXf
b=1,ba
&)
being N, = N, = N,, that is, the networks have the
same number of neurons.

In our model, it is necessary to consider that the
weight matrix W, is designed by following the algo-
rithm proposed in [23]. Such algorithm ensures that the
patterns which are symmetrical to the desired ones are
not automatically stored as asymptotically stable equi-
librium points of the network, therefore causing a min-
imisation in the number of spurious states as a result.

3 Simulation results

Up to this point, we have presented a model of multi-
level associative memories and its associated equations
that allow the system to evolve dynamically towards a
global pattern when one of the networks is initialized
in one of the previously stored patterns as a first-level
memory [16].

In their work, [16] presented some simulations that
validated their claims. The computational experiments
consisting of three or more GBSB networks connected
as in Figure 1 were conducted and each network was
designed to present the same number of neurons and
patterns stored as first-level memories. The weight ma-
trix of each individual network was designed according
to the algorithm proposed in [23], which ensures that
those patterns symmetrical to desired ones are not au-
tomatically stored as asymptotically stable equilibrium
points of the network, minimizing the number of spu-
rious states as a result. The second-level memories, or
global emergent patterns, were built by randomly se-
lecting a set of patterns, which were stored as first-level
memories considering linearly independent (LI) or or-
thogonal vectors. Assuming that each network con-
tains m stored patterns or memories, a vector state in
the 1" memory configuration could be written as P,
w=1,...,m. In addition to this, the number and val-
ues of the stored patterns can be different in each net-
work.

The selected patterns extracted from the first-level
memories used to form a global pattern determine the
inter-group weight matrix W ,,.(4,5) by observing two
analyses, one based on the generalized Hebb rule or
Outer Product Method proposed in [16] and the other
based on evolutionary algorithms.
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3.1 Hebbian analysis

The inter-group weight matrix W, ) considering
the generalized Hebb rule was calculated as follows:

1 2 /
Weor(ap) = W Z Pla)P ) ©)

pn=1

where, W, (4, is the inter-group weight matrix be-
tween the a'” network and the b*" network, NN, is the
number of neurons of the a** network, IV, is the num-
ber of neurons of the b network and p is the number
of stored patterns chosen as first-level memories to be
second-level memories.

In our simulations each network contains 12 neu-
rons producing 4096 possible patterns from which 6
were selected to be stored as our first-level memories.
The selected set of 6 patterns stored as first-level mem-
ories were chosen randomly considering LI or orthog-
onal vectors. In addition, in the first experiment 3
amongst the 63 = 216 possible combinations of the 3
sets of first-level memories have been chosen randomly
to be our second level memories.

The system was initialized at time £ = 0; randomly
in one of the networks A, B or C, and in one of its first-
level memories which compose a second level memory
considering a typical value of 8 (8 = 0.2878) [16].

The two other networks, in their turn, were initial-
ized in one of the 4096 possible combination of pat-
terns, also at random. Then, we measured the number
of times that a system consisting of three coupled net-
works converged to a configuration of triplets. A triplet
is one of the global emergent patterns (vector length 36)
which constitutes a second-level memory when three
networks are coupled. In the experiment, we consid-
ered a density of coupling amongst the inter-group neu-
rons of 100%. The neurons which took part in the inter-
group connections were chosen randomly and the rate
of memory recovery in our experiments were averaged
over 1000 trials for each value of . The results for LI
and orthogonal vectors can be seen in Figure 2 which
shows that our model presented a mean recovery rate
of global patterns higher than 80% for LI vectors and
a rate near 100% for orthogonal vectors considering a
specific optimal value of 7y (Table 1).

Table 1: Maximum mean rate of memory recovery and gamma values
for orthogonal and LI vectors considering 3, 4 and 5 coupled networks

3 4 5
ORT | LI |ORT | LI | ORT | LI
CONV. (%) 984 | 827 ] 955 | 81.8 | 90.2 | 70.6
optimal gamma | 0.9 14 0.7 1.2 0.6 1

100

—Ll
—— Orthogonal

Mean rate of memory recovery (%)

0 2 4 6 8
gamma

Figure 2: Triplets measured for LI and orthogonal vectors.

In the second experiment, we analyzed the capac-
ity of convergence to a global pattern in systems when
three, four and five networks are Coupled and three pat-
terns of each network (first-level memories) were cho-
sen at random to be second-level memories.

For example, considering a system with three cou-
pled networks as shown in Figure 3, we assume that
the stored patterns Py 4, P4, 4) and P 4y from net-
work A, P gy, P(5, gy and P(g ) from network B and
that Py ), P(3,c) and P(5 o) from network C were
chosen as first-level memories of each network to be
the second-level memories. Therefore, our second-
level memories will be a combination of these first-level
memories, which are:

e second-level Memory 1: [Py 4y P2 B) P(1,0)];
e second-level Memory 2: [Py 1) P(5,5) P3,0)]5
e second-level Memory 3: [P 4) P(s, ) P(5,0)]-

The proceeder for four, five or more coupled net-
works is a straightforward extension of the previous
one.

A comparison between all these different couplings
can be seen in Figures 4 and 5. It can be observed that,
for both LI and orthogonal vectors, the capacity of con-
vergence to a global pattern decreases when more net-
works are coupled. In the experiment the system pre-
sented a better performance in relation to its capacity of
convergence when orthogonal vectors were used (table
1).

In the experiments carried out so far, we stored 6
patterns (first-level memories) in each network. How-
ever, only 3 of these 6 stored patterns were chosen
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p stored patterns were chosen
randomly of each network

|
|
|
w ¥

Cor (a.b)

Stored patterns
First-level memories

Figure 3: Coupled neural network design

100 ‘ : ‘
S
> 80r 1
[
>
o
O +
o
> 601 3
5]
£
£
5 40r —— 3 networks 1
% —+—4 networks
S 20- ——5 networks ]
[0}
=
0 i i i
0 2 4 6 8

gamma

Figure 4: Mean rate of memory recovery for 3 to 5 coupled networks
- LI vectors.

to compose the second-level memories. In the fol-
lowing experiment considering 3 coupled networks we
will choose from 1 to 6 of these first-level memories
to compose our second level-memories. Therefore we
will have up to 6 different sets of triplets or global
memories. In addition to it simulations considering
£ = 0.2878 and LI and orthogonal vectors will be per-
formed. In Figures 6 and 7 we drew the convergence
graph of the system. It can be observed that the system
looses its capacity when a larger set of triplets is chosen
to perform a second-level memory. This happens be-
cause our inter-group weight matrix (Weop (4,a)(5,5)) has
been determined by the generalized Hebb rule whose

100
S
E‘ 80’ =
[}
>
8 f
Q
> 60’ 1
S
1S
£
5 40 ——3networks| |
% —+—4 networks
5 20/ |5 networks| |
(]
=
0 Il Il Il
0 2 4 6 8

gamma

Figure 5: Mean rate of memory recovery for 3 to 5 coupled networks
- Orthogonal vectors.

absolute capacity is equal #(N), where N is the to-

tal number of neurons. Furthermore, the differences in
the rate of memory recovery between LI and orthog-
onal vectors owe to the term called Cross Talk or In-
terference Term which appears interfering with the re-
covery capacity. The aforesaid term is extremely de-
pendent on the number and representation of the input
vectors. In this way, when LI vectors are used to be
our patterns this error term will represent an important
value affecting the recovery rate of the system. On the
other hand, when orthogonal vectors are used, this term
will be equal to zero, thus decreasing the error rate of
the system when retrieving the stored patterns. Table 2
shows the maximum mean rate of memory recovery and
gamma values for orthogonal and LI vectors consider-
ing from 1 to 6 patterns chosen as first-level memories.

Table 2: Maximum mean rate of memory recovery and gamma values
for orthogonal and LI vectors considering from 1 to 6 patterns chosen
as first-level memories

Patterns Type Conv (%) gamma

ORT 100 1
1 LI 100 1
ORT 99.4 1

2 LI 98 1.2

ORT 98.4 0.9

3 LI 82.7 1.4

4 ORT 76.6 0.9
LI 60 1

5 ORT 64.5 0.6

LI 40.3 0.5

ORT 53.9 0.6

6 LI 38.2 0.7
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Number of patterns

——1 2 3 4 ——5 6]
100 .

40f 1

20f ]

Mean rate of memory recovery (%)

0 2 4 6 8
gamma

Figure 6: Mean rate of memory recovery obtained for 3 coupled net-
works considering from 1 to 6 patterns chosen as first-level memories
- LI vectors.

Number of patterns
4 ——5 6

| ——1 2 3

Mean rate of memory recovery (%)

Figure 7: Mean rate of memory recovery obtained for 3 coupled net-
works considering from 1 to 6 patterns chosen as first-level memories
- orthogonal vectors.

3.2 Evolutionary analysis

The convergence and capacity of the system was mea-
sured using the inter-group value () and the inter-group
weight matrix W ,,.(4,5) Which was calculated in accor-
dance with a genetic algorithm strategy. In our simula-
tions, the characteristics of the networks were as used
in section 3.1 considering three to five GBSB networks
connected as shown in Figure 3.

Firstly, the representation of each individual cho-
sen was composed of real-valued variables, or genes.
The aforementioned individual variables account for
the «y values and the components w;; of the inter-group
weight matrix We,,(q5)- This representation acts as

the genotypes (chromosome values) and is uniquely
mapped onto the decision-variable (phenotypic) do-
main.

The next step is to create an initial population con-
sisting of 50 individuals whose first variable of each sin-
gle one is the ~y value. The remaining variables of each
individual represent each one of the w;; elements of the
inter-group weight matrix W ,,.(q,5)- v is a random real
number uniformly distributed and ranges from 1 to 2
and w;; is a random real number uniformly distributed
which ranges from -0.5 to 0.5 (Figure 8) Moreover, one
individual of the initial population has been seeded with
the inter-group matrix developed in section 3.1. This
technique aims to guarantee that the solutions produced
by the Genetic Algorithm (GA) will not be less effective
than the one generated by the Hebbian analysis.

Gamma value

/—H
7 VV(IJ) M/(l.l\ M/(I.J\ - W,

(LN,)

vv(z,l) - M/IN“.N,,\

Inter-group matrix

Figure 8: Individuals - Chromosome values.

The objective function used to measure how individ-
uals have performed a convergence to a global pattern
was settled at {-10, -5, -2 0}, being —10 the payoff for a
complete recovery (N, — Number of networks), —5
and —2 for a partial recovery (N, — 1 — Number of
networks minus 1 and N, — 2 — Number of networks
minus 2, respectively) and O for no recovery.

The fitness function used to transform the objective
function value into a measure of relative fitness was de-
veloped through a linear ranking method. The selec-
tive pressure was chosen equal 2 and individuals were
assigned a fitness value according to their rank in the
population rather than their raw performance. This fit-
ness function suggests that by limiting the reproductive
range, no individual generates an excessive number of
offspring in order to prevent premature convergence [5].

The next phase, a number of individuals is chosen
for reproduction, such individuals will determine the
number of offspring a population will produce. The se-
lection method used was the Stochastic Universal Sam-
pling (SUS) [6] with a generation gap of 0.7 (70%).

Once the individuals to be reproduced are chosen,
a recombination operation takes place. The type of
crossover developed in this paper was intermediate re-
combination, considering that we are using real-valued
encoding of the chromosome structure. Intermediate re-
combination is a method of producing new phenotypes
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around and between the values of the parents pheno-
types [26]. Offspring are produced according to the rule

O1 =P +a(P, — P1), (N

where « is a scaling factor chosen uniformly at random
over some interval, typically [-0.25, 1.25] and P, and
P; are the parent chromosomes [26]. Each variable in
the offspring is the result of the combination of the vari-
ables in the parents’ genes according to the above ex-
pression with a new « chosen for each pair of parent
genes.

Now as in natural evolution, it is necessary to es-
tablish a mutation process [12]. For real-valued popu-
lations, mutation processes are achieved by either per-
turbing the gene values or by doing a random selection
of new values within the allowed range [38, 19]. A real-
valued mutation was carried out at a mutation rate of
1/Nyar, where N, is the number of variables of each
individual.

Given the fact that by means of recombination, the
new population becomes smaller than the original one
by 30% (generation gap of 70%), it becomes necessary,
in order to maintain the size of the original population,
we decided to reinsert 90% of the new individuals into
the old population in order to replace its least fitted
members.

The system was initialized randomly at time &k = 0
in one of the networks, and in one of its first-level mem-
ories which compose a second level memory. The other
networks, in their turn, were initialized in one of the
4096 possible combination of patterns, also at random.
In the experiment, we considered a density of coupling
amongst the inter-group neurons of 100%. The GA was
run in 5 trials being the algorithm terminated after a
number of 100 generations. After all, the quality of the
best members of the population was tested against the
definition of the problem.

In the first experiment a typical value of S was cho-
sen (8 = 0.2878) and we measured the number of times
that a system consisting of three coupled networks con-
verged to a configuration of triplets. The rate of mem-
ory recovery in our experiments were averaged over 5
trials of 1000 iterations of the algorithm proposed in
section 2 for each population.

The capacity of convergence of the global system
can be seen in Figures 9 and 10 which show that our
model presented a maximum mean rate of memory re-
covery higher than 90% for LI vectors and a rate of
nearly 100% for orthogonal vectors (Table 3 - 3 cou-
pled networks). The upper and lower limit, which rep-
resent the mean curve of the maximum and minimum
convergence in all trials were close to the mean score

of the system. Fig 11 and 12 depict the standard devi-
ation of the population whilst Figures 13 and 14 show
the evolution of the mean error of the system. The high-
est score achieved was 97.3% and 92.2% for orthogo-
nal and LI vectors, respectively (Table 3). Moreover,
the system developed through genetic algorithm pre-
sented a slightly better recovery performance than it did
in Hebbian analysis when 3 networks were coupled and
LI vectors were used (Tables 1 and 3).
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Rate of memory recovery (%)
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Figure 9: Score of triplets in the population as a function of the num-
ber of generations averaged across all 5 trials for LI vectors.
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Figure 10: Score of triplets in the population as a function of the
number of generations averaged across all 5 trials for orthogonal vec-
tors.

In the second experiment, we analyzed the capac-
ity of convergence into a global pattern in systems
when three, four and five networks are coupled. Three
patterns of each network (first-level memories) were
chosen at random to be the second-level memories as
shown in the example of the subsection 3.1.
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Figure 11: Mean and standard deviation of the triplets in the popula-
tion as a function of the number of generations averaged across all 5
trials for LI vectors.
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Figure 12: Mean and standard deviation of the triplets in the popula-
tion as a function of the number of generations averaged across all 5
trials for orthogonal vectors.

Table 3: Maximum rate of memory recovery and gamma values for
orthogonal and LI vectors considering 3, 4 and 5 coupled networks

ORT | LI ORT | LI
CONVW. (%) | 97.3 | 92.2 85.18 | 70.9
gamma 142 | 155 | 1.53 | 1.55 | 1.64 | 1.55

ORT | LI
91.4 | 83.9

A comparison between all these different couplings
can be seen in Figures 15 and 16. It can be observed that
the memory recovery into a global pattern decreases
when more networks are coupled. Comparing the re-
sults depicted in the tables 1 and 3 it is possible to infer

0x105 ‘

——Mean error

1000 iterations error

Y 20 40 60 80 100
Generations

Figure 13: Error Evolution as function of the number of generations
for LI vectors.
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|
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Figure 14: Error Evolution as function of the number of generations
for orthogonal vectors.

that the system did not show considerable discrepancies
amongst the methods (GA and Hebbian). However, the
system recovery rate for LI vectors proves to be better
when GA is used. Likewise as seen in Hebbian analysis
(subsection 3.1), the system presented a better perfor-
mance regarding its capacity of memory recovery when
orthogonal vectors were used.

Finally, repeating the last experiments carried out
in section 3.1, considering 3 coupled networks we will
choose from 1 to 6 of these first-level memories to com-
pose our second level-memories. Therefore we will
have up to 6 different sets of triplets or global memo-
ries. In Figures 17 and 18 we plot the recovery capacity
of the system to the chosen global patterns (Table 4). It
can be noticed that the system loses its capacity of re-
covering when a larger set of triplets are chosen to per-
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Figure 15: Mean score of memory recovery for 3 to 5 coupled net-

works - LI vectors.
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Figure 16: Mean score of memory recovery for 3 to 5 coupled net-
works - Orthogonal vectors.

form a second-level memory, however as can be seen
in Table 5 the system, performing GA method, presents
a better performance mainly when the number of pat-
terns increase for both LI and orthogonal vectors. Be-
sides that, despite a decrease in recovery capacity for all
cases, the difference between LI and orthogonal vectors
remains almost level or present a variation of around
12% for genetic algorithm whereas a more intense de-
terioration in its recovery capacity of global patterns,
especially for LI vectors, occurs in the Hebbian learn-
ing method. This happens, as exposed in subsection 3.1,
due to the term Cross Talk or Interference Term which
appears interfering with the recovery capacity.

Number of patterns
—A—q 2 3 4 ——5 6

Mean rate of memory recovery (%)

0 20 40 60 80 100
Generations

Figure 17: Mean score of triplets in the population as a function of
the number of generations averaged across all 5 trials for LI vectors
considering from 1 to 6 patterns chosen as first-level memories.
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Mean rate of memory recovery (%)

0O 20 40 60 80 100
aamma

Figure 18: Mean score of triplets in the population as a function of
the number of generations averaged across all 5 trials for orthogonal
vectors considering from 1 to 6 patterns chosen as first-level memo-
ries.

4 Conclusions

comparative information storage and retrieval analysis
of a multi-level or hierarchically coupled associative
memory based on coupled Generalized-Brain-State-in-
a-Box (GBSB) neural networks through evolutionary
computation and Hebbian learning

In this paper, we have perfomed a comparative in-
formation storage and retrieval analysis of multi-level
associative memories using a set of coupled GBSB neu-
ral networks as basic building blocks. We performed
numerical computations for a two-level memory system
by following two strategies, Hebbian and GA analysis.

It was verified that the capacity of convergence to a
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Table 4: Maximum rate of memory recovery and gamma values for
orthogonal and LI vectors considering from 1 to 6 patterns chosen as
first-level memories

Patterns Type Conv (%) gamma

1 ORT 100 1.49
LI 100 1.43

ORT 99.4 1.44

2 LI 99.3 1.49
ORT 97.3 1.42

3 LI 92.16 1.55
ORT 81.6 1.49

4 LI 71.2 1.42
ORT 72.0 1.48

5 LI 64.0 1.52
ORT 61.2 1.63

6 LI 53.7 1.39

Table 5: Maximum rate of comparison of memory recovery between
Genetic and Hebbian algorithms for orthogonal and LI vectors con-
sidering from 4 to 6 patterns chosen as first-level memories

Algorithms —p» Genetic Hebbian
Patterns Type Conv (%) Conv (%)
4 ORT 81.6 76.6
LI 71.2 60
ORT 72.0 64.5
3 LI 64.0 40.3
ORT 61.2 53.9
6 LI 53.7 38.2

global pattern proved to be significant for both LI and
orthogonal vector, even though the percentage of con-
vergence achieved for orthogonal vectors exceeded that
of LI vectors in both cases, Hebbian and GA analysis,
as expected.

However, when GA was used, our experiments
showed that the performance of the system was better
than it was when Hebbian learning was applied. The re-
covery of global patterns were even more evident as the
number of first-level memories that compose the reper-
toire of the second-level memories were increased. In
fact, GA performs a compensation, reducing the effect
of the Cross Talk or Interference Term which appears
in Hebbian learning, suggesting that in those cases one
should be using GA and orthogonal vectors.

Our experiments showed that it is possible to build
multi-level memories and that higher levels could
present higher performance when built using GA. In
particular, we are interested in comparing multi-level
memories with two-level memories that have the same
number of first-level memories in further works. We
expect that the simulations presented in this paper can

be used to design further experiments that may lead to
a better understanding of the behavior and capacity of
hierarchical memory systems.
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