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Abstract. In a typical image classification task, the analyst decides beforehand the number of classes
and which image channels to use. If there is a need to modify the classes or data channels, it is necessary
to start over. This paper proposes a scenario analysis tool for the task of image classification as a way of
automating this process. Each scenario represents the parameters that will be used in a complete super-
vised classification task, including training and classification. The proposed method uses multi-objective
optimization to evaluate different sets of attributes and classes, and presents the compromising solutions,
regarding the user objectives. A class hierarchy structure is used to generate different class sets, and the
system attempts to find the most appropriate combinations of class and attribute sets. In this work, the
system is applied to remote sensing problems and we consider three objectives: the best classification
accuracy, the smallest attribute set and the biggest class set. The system shows the compromising combi-
nations of class and attribute sets, along with the accuracy on a testing sample. The user can then choose
which combination to use for the image classification.
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1 Introduction

This paper proposes a scenario analyst intended to be
used for remote sensing applications. Remote sensing
is the process of collecting data about objects or land-
scape features without coming into direct physical con-
tact with them. Remotely sensed data are usually stored
as arrays of two-dimensional data referred to as im-
ages. Pattern recognition aims to associate categories
or classes to objects represented by a set of measure-
ments, named feature vector or pattern. In the task of
image classification for remote sensing applications, the
features usually correspond to the image itself, that is,
the digital values of the image matrices. Derived infor-
mation such as texture, band math and principal com-

ponent analysis can also be used [10], [13], [1].

In some cases, there are more available features than
it is necessary to the classification task. The aim of fea-
ture selection is to choose the most important of them
in order to reduce their number and at the same time re-
tain as much of their class discriminatory information as
possible [19]. In other words, no new feature is created,
the ones that are considered irrelevant or redundant are
discarded, and we ideally would end up with the best
possible feature subset, the one with minimum size and
which leads to a minimum classification error rate. In
practice, we usually try to select a reduced subset of
features that does not significantly decrease the classi-
fication accuracy [5]. The feature selection strategy has
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a direct influence on the accuracy of pattern recognition
applications [19].

The pattern recognition task of assigning classes to
feature vectors can be supervised, semi-supervised or
unsupervised. In supervised learning, the user gives the
classifier a training set of labeled examples for each
class, which are used to estimate the class model or
boundaries between classes. After that, it is possible
to assign each unknown pixel or region to the appropri-
ate class. All classifications performed in this work use
supervised learning.

Several attempts have been made to improve classi-
fication by automatically choosing the input elements.
In [2], decision trees are used to find a compromising
solution for class set specificity and classification accu-
racy. In [11], the authors use a genetic algorithm to se-
lect the features and, concurrently, find the best param-
eters for a support vector machine classifier. A multi-
objective optimization technique is used by [17] to se-
lect features in data bases. The addition of new vari-
ables and objectives in these methods can not be done
with little effort. In [2], only the classes are consid-
ered, and [17] varies only the feature subset. In [11], the
classes are not considered. Besides, the objectives are
combined in an equation with weights that reflect how
important the user considers each one of the objectives,
and these weights have to be set before the optimization
process.

In the method proposed in this paper, we consider as
part of the varying scenario a set of features and a set of
classes, as in Figure 1. The idea is to generate different
feature and class sets and evaluate the performance of
these different scenarios in the image classification task.

Figure 1: Scenario elements

In order to decide what a good classification is, sev-
eral types of objectives can be considered. The system
is flexible to allow the addition of new objectives with
little programming effort. In this implementation we
considered three: the best classification accuracy, the
smallest attribute set and the biggest class set, meaning
more specific classes. Other examples could be the best
generalization power, reduced classification time or in-
creased uniformity inside some predefined size window.

2 Multi-objective optimization

A multi-objective optimization approach is necessary
when there are at least two conflicting objectives aimed
for a problem and there is no unique solution that is best
for all objectives [9]. In this case, one possible tactic is
to find the set of all non-dominant solutions, referred to
as the Pareto set approach [20].

In the multi-objective optimization problem shown
in the formulation (1), the goal is to find the best vector
~x of N variables, to minimize M objective functions.
The feasible searching space is limited by lower and
upper bounds for each variable xi, and also J inequality
and K equality constraints [6].

Min
fm(~x), m ∈ {1, 2, · · · ,M}

Subject to
gj(~x) ≥ 0, j ∈ {1, 2, · · · , J}
hk(~x) = 0, k ∈ {1, 2, · · · ,K}
xi

L ≤ xi ≤ xiU , i ∈ {1, 2, · · · , N}

(1)

Using the Pareto set approach, the aim is to find S
non-dominant solutions ~xs, S ≥ 1. Dominance is de-
fined as the relation� and a solution ~xs1 is said to dom-
inate another solution ~xs2 if both conditions (2) and (3)
are true.

(∀m)(fm( ~xs1) ≤ fm( ~xs2)) (2)
(∃m)(fm( ~xs1) < fm( ~xs2)) (3)

Condition (2) states that there is no objective func-
tion where ~xs1 is worse than ~xs2 and condition (3) states
that ~xs1 is strictly better than ~xs2 in at least one objec-
tive [3]. If there is at least one pair (m1,m2) for which
fm1( ~xs1) < fm1( ~xs2) and fm2( ~xs1) > fm2( ~xs2) then
neither of the solutions dominates the other, because it
is not possible to say that one solution is better than
the other for both objectives. Since it is a minimization
problem, ~xs1 is a better solution for objective function
fm1, while ~xs2 is better for fm2. The Pareto set is a
set of viable solutions where none of them dominates
any of the others [6] and is formally defined in expres-
sion (4).

P ∗ = { ~x1| 6 ∃ ~x2 : ~x2 � ~x1)} (4)

In the Pareto set, the elements are solutions, or val-
ues for the minimization problem variables. The set of
the objective functions values for the Pareto set is called
Pareto frontier and is given by expression (5).

PF ∗ = {~f(~x)|~x ∈ P ∗} (5)
INFOCOMP, v. 11, no. 3-4, p. 15-22, September-December 2012.
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The image classification task can be seen as a
multi-objective problem, because choosing more spe-
cific classes usually results in lower accuracy, so it
makes sense to find compromising solutions. Particu-
larly in remote sensing applications, one typical use of
classification is to derive a land cover or land use map
[16]. How specific this map can be, given the available
data, is a question frequently faced by human analysts.
Choosing to discriminate only “agriculture” instead of
“corn” and “sugarcane” usually requires less attributes,
and leads to a more accurate map, with less confusion
between classes. Descending in class hierarchy makes
accuracy worse, but depending on how worse that is, it
can be considered a better map, because it is more spe-
cific; and all this is affected by the number of features
used.

When we try to minimize the number of features
while maximizing the classification accuracy and de-
scend as low as possible in the class taxonomy, we are
doing multi-objective optimization. They are conflict-
ing objectives because optimizing one of them degrades
at least one of the others [19], [16]. There is no unique
optimal solution, but a set of solutions representing a
trade-off surface among several objectives. None of
these solutions can be considered better than the others
with respect to all goals simultaneously. It is the user,
with some higher level information, who can choose the
one to be adopted [6]. In the end of the process of this
proposed method, a report with the evaluation of the
scenarios which produced the trade-off results is gen-
erated. Therefore, the final report contains the descrip-
tion and the classification result analysis of the scenar-
ios which have the best compromise of the three goals.

In this work, the implementation of the multi-
objective optimization solution was based on the
M_GEO algorithm [7], a multi-objective version of
the Generalized Extremal Optimization (GEO) algo-
rithm [8]. GEO is an evolutionary algorithm where the
species are represented by a string of bits that encodes
the variables of the optimization problem. Each bit is
forced to “evolve” with a probability that is proportional
to its fitness. The M_GEO algorithm is shown in Fig-
ure 2.

The only free parameter to adjust, the τ in Figure 2,
step 11, controls the determinism level of the search,
from completely random (τ = 0) to a deterministic
search (τ → ∞). For each specific problem, there is
a value for τ that maximizes the search efficiency [7].

The species were implemented as a bit string rep-
resenting two variables, the feature and the class set,
according to the scenario definition presented in Sec-
tion 3.

Figure 2: M_GEO algorithm

3 Scenario Definition

In the context of this work, a scenario consists of a fea-
ture and a class set, as in Figure 1. These variables val-
ues are altered by the scenario generator. A classified
image is generated when a classifier uses the scenario
components to classify an image (Figure 3). The idea
in this system is to evaluate different scenarios and find
the compromising ones according to two or more ob-
jectives sought for the classification result.

Figure 3: Classification task using scenario

Formally, we define scenario as a pair S = (Φ,Ω),
where Φ is the attribute or feature set and Ω is the class
set. When S is applied to image I , the classified image
IS is generated.

The proposed method supposes the existence of la-
beled samples and an initial class hierarchy (Figure 4),
built or loaded by the system user. This class tree repre-
sents a vision of the scene, a rough description of what
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the user expects the classifier to find in the image. The
ideal is that the hierarchy is based on semantic informa-
tion, not on attributes values or classes spectral behav-
ior. However, if this information is not available, it is
possible to generate the hierarchy automatically, using
information from the available features [14].

Figure 4: Example of a class tree

The labeled samples provide information about
available features, allowing the scenario generator to
build different attribute combinations, the different sets
Φ. Any subset of the initial set of all attributes can be
generated, except the empty set, since it is not possible
to perform a classification with no features.

The generation of class sets Ω is guided by a class
tree. Let Γ be the set of all the most specific classes,
those that would be the class tree leaves. If no class
tree was used, any partition of Γ could be used as a
set Ω except the one where all classes are included
in the same subset (the root of the class tree). If we
used this partition, no classification would take place,
since there would be only one class including all sam-
ples. But in this work, we use the class tree to exclude
other semantically less meaningful partitions. For ex-
ample, consider the class tree in Figure 4, built from
Γ = {a, b, c}. There are five possible partitions for
Γ: {{a, b, c}},{{a, b}, {c}},{{a, c}, {b}},{{a}, {b, c}}
and {{a}, {b}, {c}}. The first one is the set of all
classes, therefore cannot be used as Ω. And only
{{a, b}, {c}} and {{a}, {b}, {c}} are allowed by the
class tree in Figure 4. It is not possible to merge classes
b and c in the same class, leaving a alone, because this
is not how the tree is structured.

4 Scenario Analyst

The scenario analyst uses a multi-objective optimiza-
tion algorithm to find compromising scenarios, accord-
ing to the intended objectives. Figure 5 shows the
methodology steps implemented by the system.

The implementation of the scenario generation fol-
lowed the model stated in Section 3. The string that is
used to represent these design variables is a L-bit string,
whereL = F+C, F is the number of available features

Figure 5: System architecture

and C is the total number of all classes considered, in-
cluding all leaves and internal nodes of the class tree,
except the root.

The only attribute set constraint is to be non-empty,
so, if the scenario generator is altering the value of the
firstF string bits and an all-zeroF -bits substring is gen-
erated, it is ignored, and another one is produced. Any
other combination is allowed.

As for the last C bits, the constraints are more com-
plex, because they consider the class hierarchy that
guides the class set generation. There are two con-
straints that must be true for all classes in the hierarchy:

• If a class is included in a class set, then none of its
ascendants or descendants can be in the set at the
same time.

• If a class is not included in a class set, then either
one of its ascendants or descendants must be in the
set.

With these two constraints, the class set is guaran-
teed to follow the proposed formal model. In practice,
it guarantees that no class is ever removed from the sce-
nario; it either joined its siblings forming a superclass
or was divided into subclasses.

After the reference data input, M_GEO algorithm is
used to control the loop where different scenarios are
generated and evaluated. The labeled samples are di-
vided into three subsets: half of the samples are used
for training the classifier, 1/4 for the evaluation of the
objective function on step 5 of M_GEO (Figure 2) and
the remaining 1/4 is used to evaluate the final classifi-
cation. Differently from step 1 of the original M_GEO,
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we initialize the system with the complete scenario, the
one where all features are used, and the most specific
classes are discriminated.

5 Case Study

As a system application, the land cover was extracted
from a Landsat-5 image []. The study area is located
in the Amazon region of Brazil, in Para state. The op-
tical image is from sensor TM (Thematic Mapper) and
was acquired on June, 29th, 2010. We use 6 bands:
B1-B5 and B7. The image has 30 meters of spatial res-
olution, 8 bits of radiometric resolution and 1672000
pixels, structured in 1900 lines and 880 columns.

The original image can be obtained from INPE Im-
age Catalog [12]. The field samples were assigned to a
previously segmented image, and only a spatial subset
was used, in order to fit other data source. The com-
plete processing of the input data is described in [15].
The channels B3 and B4 from the whole used image
can be seen in Figure 6 and a more detailed view can be
observed in the subset shown in Figure 7.

Figure 6: Bands 3 and 4 from TM image

The classes to be discriminated originated from sev-
eral field works performed in 2010 and include some
types of forests, agriculture and pasture. A class tree
was built by a remote sensing specialist and can be seen
in Figure 8. Table 1 shows the meaning of the classes
and the size of the available samples in pixels.

Three objective functions were considered: the ac-
curacy of the classification and both sizes of the class

Figure 7: Detail of bands 3 and 4 from TM image

Figure 8: Class tree for the application
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Table 1: Meaning of the classes from the class tree

class meaning sample size

OR old regeneration 2518
DF degraded forest 2306
IntR intermediate regeneration 453
PF primary forest 7035
EF exploitation forest 3635
NR new regeneration 794
DP dirty pasture 828
FL7 fallow land 7-24 months 269
FL fallow land 1306
S40 soybean 40 days 134
S100 soybean 100 days 581
CPI clean pasture and inaja 753
CP clean pasture 906

and the feature set. The Maximum Likelihood (ML)
classifier was used to perform the pixel wise, supervised
classifications.

Several ways to measure accuracy are available, but
there is no agreement about which one is the best. Most
quantitative methods use the confusion matrix [18] de-
rived from classification data and reference data. The
kappa coefficient, presented by Cohen [4], is a widely
used measure in remote sensing applications.

In this application, we use kappa coefficient (κ) to
assess the agreement between the result of the classifi-
cation and the reference data (the labeled samples). Our
three objective functions are shown in the set of equa-
tions (6).

f1 = −|Ω|
f2 = |Φ|
f3 = −κ

(6)

The negative signs in f1 and f3 are needed because
we solve it as a minimization problem, and we want to
maximize these values. We have only one restriction:
the value of κ must be at least 0.5 so the classification
can be considered satisfactory.

The resulting Pareto set and frontier can be observed
in Table 2. The elements of the Ωi sets, i from 1 to 6,
are in Table 3. The size of the Ω sets was included in
Table 2 for emphasis. The notation PF.EF means that
the samples from the two classes PF and EF were all
relabeled to one single class, forming their parent class
shown in the class tree.

Six different class sets were included by the system
in the Pareto set, and five different feature sets. The best
feature set, that is, the smallest one, is 1, 2, 5, 6, which
suggests these bands are the most powerful to discrimi-
nate the user classes in Ω3. The scenario with all classes
and all features has a low kappa, 0.5295, and removing
one feature (thus improving f2) does not make it better.

A much better kappa is obtained when the user is satis-
fied with discriminating only the top four classes from
the class tree (Ω6).

Table 2: Selected scenarios

bands classes |Φ| |Ω| κ

1,2,3,4,5,6 Ω1 6 13 0.5295
1,3,4,5,6 Ω1 5 13 0.5181
1,2,3,5,6 Ω1 5 13 0.5181
1,2,3,4,6 Ω1 5 13 0.5181

1,2,3,4,5,6 Ω2 6 12 0.5694
1,2,5,6 Ω3 4 12 0.5249

1,2,3,4,5,6 Ω6 6 4 0.7986
1,2,4,5 Ω6 4 4 0.7957

1,2,3,4,5,6 Ω4 6 10 0.5865
1,2,4,5,6 Ω5 5 7 0.6401

Table 3: Ω elements

set elements

Ω1 AP,AP7,RA,FP,PL,RI,S40,S100,FD,FPE,PLI,RInt,PS
Ω2 AP,AP7,RA,PL,RI,S40,S100,FD,FP.FPE,PLI,RInt,PS
Ω3 AP,AP7,RA.FD,PL,RI,S40,S100,FP,FPE,PLI,RInt,PS
Ω4 RA.FD,RInt,FP.FPE,RI,PS,AP7,S40.S100,AP,PL,PLI
Ω5 RA.FD,RInt,FP.FPE,RI.PS.AP7,S40.S100,AP,PL.PLI
Ω6 RA.RInt.FD.FP.FPE,RI.PS.AP7,S40.S100.AP,PL.PLI

The image was classified using the scenarios of Ta-
ble 2. Figure 9 shows the detailed view of three classi-
fied images. In order to obtain the classification in Fig-
ure 9a, all 13 classes were used, and all 6 image bands.
The accuracy for this classification is κ = 0.5295 and
the classified image has a lot of isolated pixels, sug-
gesting great confusion between classes. Figure 9b was
generated with the class set Ω5, with 7 classes, and 5
bands (1,2,4,5,6) were used. Even with fewer bands, the
accuracy of this classification was better (κ = 0.6401),
which can be explained by the use of fewer classes. Fig-
ure 9c used class set Ω6 (4 classes) and only 4 bands,
obtaining κ = 0.7957. This last classified image shows
a better definition of the discriminated classes, with less
isolated pixels.

The graph in Figure 10 shows the variation of the
three objectives for the eight different solutions in the
Pareto set. The optimal solutions of each function are
marked. The values of kappa were multiplied by 10 so
the variation could be placed in the same range as the
other objective functions.

As can be observed in the graph, the optimal points
are never together in the same solution. After exam-
ining the analysis result, the user can choose the one
that will best fit his needs. If the expectations are not
reached with a low kappa, a higher scale map will be de-
rived, with less specific classes. If there is need of more
specific classes, the available features are not enough to
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Figure 9: Detail of classified images for scenarios with
(a) 13 classes, 6 bands; (b) 7 classes, 5 bands; and (c) 4
classes, 4 bands

Figure 10: Variation of the objective functions

give a good kappa.

6 Comments and Future Work

The image classification task can be improved by a
choice of the best classification scenario. An automated
analyst makes it easier to consider the possible options
for generating different scenarios. The multi-objective
optimization proved to be a good method to solve this
issue. Finding the best Pareto set of compromising sce-
narios will help the user to consider the best possibili-
ties. The final choice of the best result will depend on
the user application, resources availability and model
restrictions. Although this method was created to be
used in remote sensing applications, it may also be ap-
plied to other pattern recognition problems.

The flexibility aimed for the system was reached
with respect to the definition of new objectives to be op-
timized and the selection of the project variables among
the ones already coded. The addition of new variables,
however, requires more computational effort. New data
structures and means to generate their values authomat-
ically need to be developed.

As future steps, we will add more variables to the
scenario, such as the type of classifier and its parame-
ters, and include other objective functions, like the gen-
eralization power. We also consider using a priority
value to the classes, thus reducing the possibility of the
system eliminate the ones that are more important to the
user.
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