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Abstract.  Energy consumption and prolonging network lifetime are ianpry challenge in many
studies on Wireless Sensor Networks (WSN). Thus, since remhomunication and routing protocol
transmission are in general the main cause of power consamplifferent techniques proposed in lit-
erature to improve energy efficiency have mainly focusednitihg transmission/reception of data. To
this aim, we propose an adaptive and efficient techniquedbaseompressive sensing for improving
the performance of routing in wireless sensor network. Téréopmance of our technique is evaluated
by applying it to PEGASIS (power efficient gathering in seniséormation systems), which is one of
the most popular protocols for routing in wireless senséwaek. A comparison of PEGASIS and PE-
GASIS with Huffman coding shows the advantage of the propasehnique in terms of reducing the
energy consumption and network lifetime.
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1 Introduction sensor node to BS is very high, thus nodes die quickly

and hence reducing the lifetime of the network. There-

\\//vvigzlflsasrieste nz?raneltiv(\:/gtril;iévgggisr? C\?vri]thb?ngiﬁgri?r%re’ use a few transmissions as possible leads to ef-
y pp g 9ficient energy utilization. Routing protocols from one

(health environments, seismic, etc.), control (object ; 2 .
. . : .~ of the most important communication paradigms that
detection and tracking), and surveillance (battlefiel :
. . . greatly affect the performance of the wireless sensor
surveillance, perimeter and topology discovéry [2]1, 3]; ) o .
R dl th licati . hich th networks; so that designing routing protocols for sensor
egardiess the application in whic € SenSOletworks is a vital aspect. Many routing protocols have

\r/]vit;ll\(/o(;\ljelrlstusai;vgiéttgg gg}serge?jnga;f: S'irr]]ktheHor\];_Been proposed [4] 5] 6] in which consider reducing the
ever, the limited network bandwidth, node/link failurealmount of data transmissions in a WSN by fusing (or

) . o X aggregating) these sensing data. In particular, the data
along with the unreliable communication medlum_po§% gregation techniques usually select a subset of sensor
great F:hallenges on the sensor network communicati des (called aggregation nodes) to collect the sensing
paradlgms. data sent from their neighboring sensor nodes and then
The simplest approach to collect data from SENSQ{;se these sensing data. In this case, the amount of sens-

nodes is direct one where each sensor node transn“t@ data transmitted to the sink can be significantly re-

the data directly to the base station (BS) which is loauced.

cated far away. The Cost of data transmission from each
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One example of routing protocols in WSNs is Powesensor would select randomly one of its neighbors and
Efficient Gathering in Sensor Information Systems (PEsend the packet to it. The same process is repeated un-
GASIS) [6]. PEGASIS protocol distributes the energytil all sensors receive this packet. Using gossiping, a
load evenly among the sensor nodes in the network. PBiven sensor would receive only one copy of a packet
GASIS protocol uses Greedy algorithm to form a chaibeing sent. While gossiping tackles the implosion prob-
of the sensor nodes starting from the node farthest tem, there is a significant delay for a packet to reach
the sink node then randomly selects a leader for thall sensors in a network. LEACH (low energy adaptive
formed chain. Each node in the chain receives from andustering hierarchy) [4] is the first hierarchical cluster
transmits to close neighbors and continue communicalbased routing protocol for WSN. LEACH protocol par-
ing in their turns until the aggregated data reaches th#ions the sensor nodes of WSN into clusters; each clus-
leader which transmits them to the base station (BS). ler has cluster nodes (CNs) and cluster head (CH). CH
that protocol, sensor nodes suffer from heavy data trafeceives data from CNs in their cluster, aggregates the
fic. As a result, compression methods are often adoptethta, and forwards them to the sink. LEACH proto-
to reduce the data size and reduce the required banmbl achieves even energy dissipation by randomly re-
width for transmitting data (i.e., reducing the energychoosing CH at regular intervals. It leads to an eight
consumption arising from communications). Comprestimes improvement compared to the direct transmission
sive sensing[]8] and Huffman codingl [9] are the repprotocol. An Efficient clustering protocol in the large
resentative examples of compression methods. In thizale WSNI[5] is self-organizing and adaptive multi-
paper, we propose a technique called ECST which is drop clustering protocol that uses efficient MAC to dis-
adaptive and efficient compressive sensing based tedhibute the energy load evenly and guarantee minimum
nigue to improve the performance of routing in wireles&nergy consumption for large scale WSNs and the ones
sensor network by compress sensor reading while relathat deployed in frequently ideal environments due to
ing them to the base station. low data occurrence. PEGASIS (Power-Efficient gath-

The rest of the paper is organized as follows: Secering in Sensor Information Systems)[[6] 11} 13], intro-
tion[2 briefly review related work. Compressive Sensduces only a routing protocol that is near optimal for
ing background is presented in sectidn 3. In sedfion 4 data-gathering problem in sensor networks and didn’t
we introduce our approach to carry out the proposeassume any kind or type of data compression. The main
problem. In Sectiofi]5, we give an example scenariadea of the PEGASIS protocol is the formation of a
The simulation of our approach is presented in sectiochain among the sensor nodes so that each node will
[B. In sectiori ¥, we conclude our work. receive from and transmit to a close neighbor. Gathered
data moves from node to node, get fused, and eventually
a designated node transmits it to the BS. The PEGASIS
protocol achieves improvement varies between 100 to
During the past few years surveillance and monitoring,9% when1%, 20%, 50% and100% of nodes die in

applications using WSNs have attracted a lot of attenpe deployed field compared to the LEACH protocol.
tion from the research community. The associated func-

tionalities form a canonical class of applications which " [23], Zytoune et al. present a Stochastic
can be feasible only with WSNs. The work presente&]LOW Energy A_daptlve Clustering Hierarchy protocol

in this paper has been inspired by various existing rd>-EACH), which outperforms the LEACH when the
search efforts. Due to the severe energy constraintdteresting cpllected data is the minimum or the maxi-
of the large number of densely deployed sensor nodedym vaIue_ Ihan area]; S"fEACT‘H usles the same methhod
various routing protocols for wireless sensor networlPr®P0sed in LEACH for forming clusters. Once the
are discussed and compared. For example, flooding Glusters are formed, the cluster head broadcasts in its
a technique in which a given node broadcasts the r&'USter a data message containing its measurement as-
ceived data and control packets to the rest of the nodS4Ming the pertinent value. Only the nodes, having
in the network. This process is repeated until the dednost significant data, send their messages towards the
tination node is reached. Note that the flooding techQ|USter'head'

nique does not take into account the energy constraint In [19], the authors extend the SLEACH algorithm
imposed by WSNs. So that, when it is used for dathy modifying the probability of each node to become
routing in WSNSs, it leads to the problems of implosioncluster-head based on its a required energy to trans-
and overlappind[17]. To overcome the shortcomings ahit to the sink. Their contribution consists in rota-
flooding, another technique known as gossiping can b@n selection of cluster heads considering the remote-
applied [18]. In gossiping, upon receiving a packet, amess of the nodes to the sink, and the network nodes
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residual energy. In[20], the authors proposed an apletely introducing compressive sensing to wireless
gorithm called TB-LEACH which is an improvement sensor network, named Compressive Data Gathering
of LEACH. TB-LEACH constructs the cluster by us- (CDG). It shows a routing tree in which the sink has
ing an algorithm based random-timer, which doesn’t refour children. Each of them leads a subtree. Data gath-
quire any global information. The work described inering and reconstruction are performed on the subtree
[22] proposed Variable-Round LEACH (VR-LEACH). basis. In order to combine sensor readings while re-
VR-LEACH changes the round time according to thdaying them, every node needs to know its local rout-
residual energy of the cluster head at the beginning d@fig structure. It focuses on the introduction of the con-
the round, the energy cost in every frame and the comept, rather than analyzes and solves the energy balance
stants\. In VR-LEACH a constant value fok and the problem. Furthermore, the work did not consider the
frame timeu are determined each round time, where theffect of the choice of the coefficient matrix on the in-
values of\, and . experimentally defined. The work formation content and dependent on grid topology as-
in [21] proposed Energy-LEACH (E-LEACH) protocol sumptions which are not suitable with many real appli-
which is an improvement of LEACH. cations of wireless sensor network.

All the above routing protocols cannot satisfy the In this paper, we propose an adaptive and effi-
huge data traffic on wireless sensor networks. So, it gent CS based technique (ECST) to improve routing in
effective to apply compression before transmitting dat®ireless sensor network, considering that the compres-
to reduce total power consumption by a sensor nod&ion scheme designed for WSNs should be lightweight,
For these reasons, researchers have therefore desigfé the computational requirements of the algorithms
and developed various compression algorithms specifthould be low for efficient operation due to WSNs con-
cally for WSNs. There are two general approaches fditraints in terms of hardware, energy, processing, and
data compression in WSNs . One is the distributed datgemory. ECST reduce the energy consumption pro-

compression approadh [7.]10], and the other is the locInging the life of the whole network remarkably. The
data compression approach][16]. Simulation shows that the proposed protocol achieves a

The Local data compression approach is based dﬂnger netwqu lifetime compared with PEGASIS, and
temporal correlation in WSNs. One example of thid” EGASIS with Huffman.
approach is Huffman codirid[9]. Huffman coding is a
lossless compression algorithm, it uses a variable length  Compressive Sensing Background

code according to the occurrence frequency of symy \ygNs, the distributed sensors observe physical
bols. Therefore, shor.t bits are allocated to high freq.uer&t}1anges in designing area. Since each sensor observes
symbols and long bits are alloc_:ate_d to the relatlvelyéim”ar physical changes, the signals observed from
low frequent Symb_o's- Th_e main disadvantage of 101 sensor have much correlation. The correlated sig-
cal data compression algorithms is that large number ofy .o e compressed for reducing data. The conven-
f:omplex computations necessary by |nd|v.|duall SENsOfs 4| compression (e.g., Joint Entropy) for WSN re-
in the network. These complex computations inCreasgires communication between nodes and exploits cor-
processing and power consumption and are therefogg)ase gata in the compression process. Such a trans-
_not a good fit for_WSNs. D|str_|buted data compressionyisgion strategy makes the network system complex.
is based on the idea of reducing the complex computgs contrast to the conventional schemes, Compressive
tions required by the individual sensors of the networlgensmg is a new decentralized compression technology

and exploiting correlated data at the sink node; examp ¢ achieves low complexity at the individual sensors,
ple of distributed data compression can be foundlin mand its ability to exploit correlated data.

The main disadvantage of this approach is that they pre- Compressive sensing (CS) is a new theory of sam-

define certain data to be main data and other data to Bﬁng in many applications, including data network,
side data. sensor network, digital image and video camera, medi-
A new concept of signal sensing and compressioga| systems and analog-to-digital convertars [14]. CS
has been developed [16, 8] called compressed sensiggables a potentially large reduction in the sampling
(CS), or compressive sensing. CS can sample a signgdd computation costs for sensing data that have a
far below the Nyquist rate if the signal has a sparse re@parse or compressible representation without relying
resentation in one basis. In CS, the signal is samplesh any specific prior knowledge or assumption on data
and compressed simultaneously and accurately recogj. The compressed sensing theory points out that any
structed with high probability. sufficiently compressed data can be accurately recov-
The work presented iri [12] is the first work com-ered from a small number of measurements without go-
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ing through many complex signal processing steps.
The fundamental idea behind CS is to provide
direct method which acquires compressed sample — .----="""00Tteeeooe i *********************

without going through the intermediate stages o
conventional compression. In addition, the CS provide..’
several recovery routines which the original signal ca g
be regenerated perfectly from the compressed sampl'é

The base station generates global seed £ and *
broadeasts it to the entire netwaork K
H

Each node (n;) generates its own seed using the
global seed £ and its unique identification.

l

Leader Selection Phase

[].
:‘é Node (n;) generatesthe corresponding series of 1
5 coefficients (og) i
3.1 Mathematical Definition i |
. . i . \ Construct the chain and select the chain leader ;
Consider a real-valued,finite-length, one-dimensiona - randomiy
discrete-time signah;, which can be viewed as an /:::::::::::::::::::::::&:::::::::::::::::::::1_\
N x 1 column vector inRY with elementsz[n],n = The chain leader passes a token message to node o;

with respect to its position

l

2

=

—

~

o Node ¢, computes its measurement y; and adds it to
= the sum of relayed values (if exist) and transmitsto
2

[

1,2,..,N. Any signal in RN can be represented in
terms of a basis oV x 1 vectors{¥;} ,. For sim-
plicity, assume that the basis is orthonormal. Using th
N x N basis matrixt = [Uq|Ws|Ps]...|¥ ] with the
vectors¥,; as columns, a signal can be expressed as

next node in chain list (with respect to the chain
leader position and so on till the chain leader.

Data Compression

The chain leader transmits to the base station the

N ] message containing the weighted sum of all reading in
AN the chain.

Tr = Z Si\I/i or x = Vs (1) "_‘,‘::::::::::::::: ,,,,,,,,,,,, i‘ fipingiytegteytuplegtegieptegteylgit i :_‘
i=1 ! The base station reproduces the coefficients matrix '
i ) ) = using the global seed £ and the identifications of all !
wheres is the NV x 1 column vector of weighting £ _ nodes. ;
coefficients. The matriw € RV*" is an orthonormal £ £ ] ;
basis. The Signat is K-sparse if it is a linear combi- 2 The base station will use a reconstruction algorithm to '

recover d from only (M) measurements y.

nation of only K basis vectors; that is, only K of the
coefficients in equatidl 1 are nonzero 4 — K') are
zero. The case of interest is whé&h << N. The sig-
nal z is compressible if the representation in equalion 1
has just a few large coefficients and many small coeffi-

cients. The compressive measurements y (compressggyyre 1: The flow chart describing the process of over-
samples) is obtained via linear projections as follows ‘5| gperations in our approach.

y=dzr=0Us =0s (2)

,where the measurement vectoryise RM ,with
M < N, and© = oV is the measurement matrix
Oc RMXN.

of this paper is summarized in three phases; Chain Con-
struction and Leader Selection Phase, Data Compres-
sion and Gathering Phase, and Reconstruction Phase.

Fig.[d shows the flow chart of our ECST technique.
4 Efficient Compressive Sensing based Tech-

nigue (ECST)

In this section, we outline our ECST technique for im— 1 chain Construction and Leader Selection
proving the performance of routing protocol in wireless Phase

sensor network which based on compressive sensing

(CS) technigue. Unfortunately, the computational com4.1.1  Step One

plexity of CS makes it inefficient to be adopted directly _

in sensor nodes. The reason behind that is the energ}€ base station generates global sadd broadcasts
limitation of sensor nodes. For that, our proposed techt to the entire network.

nique shifts the computational complexity from the sen- Upon the global seed is received by each node
sor nodes to the base station, where most of the compf;) in the network, node:; generates its own seed
tations will be at the base station and only minor comusing¢ and its unique identificationn(.:d), and then
putations will be at each sensor node. The contributiogenerates the corresponding series of coefficients:
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Pj1 — The chain leader passes a token message to
; , that will be used to compute its measure- the first noder; .
Djing — Node ¢; computes measurement; and
menty;. These coefficients can be reproduced at the transmits the measuremantto cs.

base station given that the base station knows the global
seed{ and the identifications of all nodes.
Therefore, the global seg€dcan affect both the co-

— Nodec; computes the measuremapt and
transmitsy; + y» to ¢3, and so on till chain

- . . leader.
efficient of a measurement and the information content.
For that we propose an adaptive technique, in which — Then the chain leader node receives data
the base station decides whether it need to dynami- from ¢y, computesE)Y; y; and transmits
cally change the global segdor not upon calibration it to the base station.

the measurement with a random small number of sen- ) o o
sor reading which return to the sink from time to time. ® !f chain leader at the beginning of chain list:
After that, the base station broadcasts the new global
seed to the entire network and sends a message to chain
leader and waits for the measurement vegttr return.

— The chain leader passes a token message to
the last node of the chaity .

— Node ¢y computes measuremenpty and
e ECST construct a chain as in PEGASIS, wherein transmits the measuremeant tocy 1.
it starts with thefurthest node ¢, from the BS and
add itself to the chain, thefy updates the chain list
with the closest neighbor node. Nodec; repeats
the same step by updating the chain list with the

— Node cy_; computes the measurement
yn_1 and transmityy +yn_1 tocy_o, and
so on till chain leader.

closest unvisited neighbor node and so on till all — Then the chain leader node receives data
the nodes are included in the chain. This method from ¢, computesy;_y y; and transmits it
of communication reduces the power consumption to the base station.

required to transmit data per round. ) L )
e If chain leader at positiofyj : 1 < j < N)) of

e Ateach round-, chain leader is selected randomly ~ chain list:
at a random position in the chain. A chain mem-
ber node considers itself as a chain leader, if its
identification number equals mod N, where N
represents the total number of nodes.

— The chain leader passes a token message to
the first node of the chain, and to the last
node of the chairy.

— Node ¢; computes measurement; and

4.2 Data Compression and Gathering Phase transmits the measurementto c,.

The main objective of this phase is to compress sen- — Nodec, computes the measuremeptand
sor readings and gather it to reduce global data traffic transmitsy; + y» t0 ¢3, and so on till chain
and distribute energy consumption evenly to the pro- leader at positiop.

long network lifetime. In order to combine sensing — At the same time Nodey computes mea-
reading while relaying them, every node computes surementyy and transmits the measurement
the measurement = «;d; and transmits the measure- yn 0N _1.

menty; to ¢;1. After that, nodec;,; computes the
measuremeny;; = ai+1di+1 and transmit@i + Yit1

to ¢; 2. Oncec; .o received the values, it computes its
measuremeny; o, adds it to the sum of relaying val-

— Node c¢y_; computes the measurement
yn—1 and transmityy +yn_1 tocy o, and
so on till chain leader at position

ues and transmits the combined value to next node in — Then the chain leader node receives data
chain list (with respect to the chain leader position in from ¢;_; andc; g ComputesZ;V=1 y; and
the chain list)and so on till the chain leader. Finally, the transmits it to the base station.

chain leader transmits to the base station the message

containing the weighted sum of all reading in the chain. The base station receives the compressed data from
The operations in this phase will be as follows: ~ the chain leader, then recovers the original data from

the compressed data using a CS recovery algorithm as
e If chain leader at the end of chain list: shown in the next phase.

INFOCOMP, v. 12, no. 1, p. 1-9, June 2013.
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4.3 Reconstruction Phase

In densely deployed sensor networks, sensors have spa-

tial correlations in their readings. Leé{ sensor read-
ings form a vectord = [dy,ds,...,dy]T), thend
is a K-sparse signal in a particular domain De-

noteW = [U,|U,| T3] ... |V ] as the representational

basis with vectors{¥,;}¥ , as columns, and\ =
[#1, 22, ..., zv]T are the corresponding coefficients.
Thend can be represented in tledomain as:

N
d= XZL\II7 or d=VX 3)
i=1

Where, thel matrix describes the correlation pat-
tern among sensor readings. It is utilized only in datian5 ‘
recovery process, and is not required to be known to
sensors. According to equation (1), the base station is
able to reconstruct sensor readings through solving an

Ly-minimization problem:

mingery || X |1 st y=&d,d=9X (4)

In particular, Orthogonal Matching Pursuit for Sig-
nal Recovery (OMP) algorithni [15] can be used by the

base station to solve the abolig-minimization prob-
lem.
To identify the ideal signalz, we need to deter-

mine which columns ofy participate in the measure-
ment vectory. The idea behind the algorithm is to pick
columns in a greedy fashion. At each iteration the base

station chooses the column afthat is most strongly
correlated with the remaining part gf Then we sub-
tract off its contribution ta, and iterate on the residual.
After M iterations, the algorithm will have identified
the correct set of columns.

5 Example Scenario

In this section, we provide a simple example, with
step by step explanation of our algorithm. Assumed

that, ten sensor nodesV( = 10) are randomly de-
ployed in a region of sizé00 x 100 with a base sta-

tion (BS) located at the center of the network. Where,

the nodeml, ng, N3, N4, N5, Ng, N7, N8, ng,andn10 are

located at (65,90), (72,56), (32,69), (37,6), (87,84),
(90,68), (41,57), (99,58), (17,15), and (82,84), respec-

tively. Letdyywi = (2,4,2,4,5,1,5,3,2,5)7 is a data

vector in which each data value represents the sensing

data at one node. The algorithm goes as follows:-

e Step One: Nodes are organized to form a Chai?]j s

To construct the chain, we use equafidn 5 to co

pute the distanceli(s) between the nodes and the

base station

dis[(z,y), BS] = /(50 — x)2 + (50 — y)? (5)

we will have

dis[ny, BS] = 42.72, dis[ny, BS] = 22.80,
dis[ns, BS] = 26.17, dis[n4, BS] 45.88,
dis[ns, BS] = 50.42, dis[ne, BS] = 43.86,
dis[nz, BS] = 11.40, dis[ng, BS] = 49.64,

dis[ng, BS] = 48.10, anddis[nio, BS] = 46.96
Therefore,ns will be the first node added to the

chain list (as shown in tabld 1), since it is the fur-
thest node to the BS.

N N N A

Table 1: Chain List contains one node

Step Two:

The chain will be updated with the closest node to
the last added one:§)by using equatiofl5 we will
have

dis[ns,mi] = 22.80, dis[ns,ne] = 31.76,
dis[ns,n3] = 57.00, dis[ns,ns] = 92.64,
dis[ns,ne] = 16.27,

dis[ns,n7] = 53.33, dis[ns,ng] = 28.63,

dis[ns,ng| = 98.29, anddis[ns, nig] = 5

Therefore,nqy will be the second node added to
the chain (as shown in tatlé 2).

Repeating the previous processes till all the nodes
added to the chain list(as shown in table 3).

Step Three:

Let the measurement matrix

(I) - (—0.629 —0.509 —0.217  1.099

MxN —0.02 —0.0409 0.691 —0.250
0.0801 —0.108 0.258 —0.082
~0.225 —0.251 —0.478 0.434
—0.408 —0.572

1.232  0.405 )

, whereM =2, N = 10.

mo| [ [ [ [ [ [ [ |

Table 2: Chain List contains two nodes

INFOCOMP, v. 12, no. 1, p. 1-9, June 2013.
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’ n5 ‘ nio ‘ ni ‘ neg ‘ ns ‘ N9 ‘ ny ‘ ns ‘ Ng ‘ o ‘ 6 Simulation Results

Table 3: Chain List contains all the nodes

The network has been simulated in MATLAB, with sta-

tistical data gathered to analyze the performance of of
the proposed technique. In our simulation,the sensor
nodes are randomly deployed in a region of size 100

Each node in the chain compute its measuremeq . 100 m, and the number of deployed sensor nodes

as follows :

To compute the measurementfor n; we use the
following equation

Y1 = oy dy (6)
where d; = 2 and a; = <q)“> =
D)
( —0.62 ) theny, — ( —1.259 )
0.028 ! —0.045 )
Similarly,
[ —2.037 _( —0435
2= (—0.163> IR ( 1.383 )
4.308 0.448
c¥ = U —1003 ) T —1a29 )
~0.108 1.293
o=\ —02s1 )0 YT T ( —2.393 )0 ¥ T
—0.246 —0.817
( 1.303 > v = ( 2.465 ) andyio =

—2.861 for
2029 na, n3| Ny, n5y nGy n71 n81 n91
andn, respectively.
e Step Four:

Let ny, be the chain leader node. Thenr sends a

token message to; andn, to start the data gath-

ering process in whichns sendys to nyg, then
computey;o + y5 and send this value to; .

varies from 25 to 100 nodes in the increments of 25
nodes with the base station at location (x=50, y=50).

In order to measure the energy consumption of sen-
sor nodes, we use the same energy parameters and the
radio model as discussed inl [4], wherein the energy
consumption is mainly divided into two parts: receiv-
ing and transmitting messages. The transmission en-
ergy consumption needs additional energy to amplify
the signal depending on the distance to the destination.
Thus, to transmit &bit message a distandethe radio
power consumption will be,

I Bujee + Legs d®  d < dy

ETa:(lvd) = { | Eojor +l€mp d* d > dy

(7)

and to receive this message, the radio expends will be

ERw<l) =1 Eelec (8)
Simulated model parameters are set as:
Eeee = 5OTLJ/bZt, €fs = 1OpJ/bzt/m2,

Emp = %pj/blt/ﬂ%zl,do = MI and

the initial energy per node2J.

6.1 Performance Metrics

The performance of ECST technique is compared with
PEGASIS [6,[11] and PEGASIS with conventional
compression (we adapt Huffman codirig [9] as con-

Noden,; add the received value to its sample andeéntional compression). The performance is evaluated

computeyo + y5 + y1 then send this value tag.
Nodeng send the valug; + y10 + y5 + yg t0 g,
nodeng sent the valugo + y5 + y1 + ys + ys tO
the chain leader node,.

Similarly, n4 sendy, to ng which add its sample
Yo t0 y4, COMputey, + yo and transmit the result

tons.Thenns sendy, + yo + y3 to n7 ,which send
Y4 + Yo + y3 + yr to the chain leader node;.

Finally, the chain leader node, add its sample
valueys to the received values fromg andny ,
—20.77

o052 ) which

and transmiy = XY, y; =

containing the weighted sum of all readings in the
chain to the base station. Then the base station will

use a reconstruction algorithm to recovefrom
only (M = 2) measurements.

mainly, according to the following metrics.

e Energy Consumption: It is the average energy
consumed by all the nodes in sending, receiving
and forwarding operations. The average energy
consumption per round can be estimated as:

E Zf\; E;(r)

r

9)

WhereN is the number of sensor nodes in the con-
sidered WSN, and is the number of rounds.

Network lifetime: It is the time interval from the
start of operation (of the sensor network) until the
death of the first alive node (or until the death of
half of the nodes).
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Figure 2: Average consumed energy per round as Figure 3: Network life time as a function of number of
function of number of sensor nodes sensor nodes

Number of Nodes ) )
25 1 50 | 75 | 100 63%better than PEGASIS with respect to Half node die

ECST 896 | 757 | 647 | 570| for network size of 25 nodes.
PEGASIS 340 | 298 | 276 | 248 In summary, our simulation results show that our

PEGASIS with Huffman| 692 | 664 | 588 | 477 CS-based technique minimizes the overall energy con-
sumption and therefore, extends the lifetime of the
Table 4: Comparison of Network lifetime with respectWSN. This is due to the fact that if the original data
to Half Node Die are compressed by CS-based technique, each sensor
node produces much smaller traffic volume which can
be transmitted to the base station at a much lower trans-
Fig. [3, shows the average energy consumption pefission power and with a smaller time delay. Moreover,
round. In figl2,the number of sensor nodes are varieghly the joint recovery at the base station is needed.
from 25 to 100 in increment of 25 sensor nodes. IfThus, no intermediate stages are required to gather all
shows that, our approach has less energy consumptigfthe data at a single location and carry out compres-
compared with standard PEGASIS and PEGASIS witkion. In contrast to the PEGASIS with the conventional
Huffman coding. compression, it needs to exploits correlated data for
Fig[3, shows the comparison of ECST, PEGASIScompression in order to made joint compression, which
and PEGASIS with Huffman code in terms of networkcause a transmission delay and spend a lot of energy.
lifetime (first node die). From fid.]13, it can be observed
that ECST clearly improves network lifetime over other.
techniques. Moreover, fig.] 3 illustrates the effective-7
ness of ECST in prolonging network lifetime than itsin this paper, we have proposed an adaptive and effi-
counterparts. ECST offers improvements in networkient compressive sensing based technique for improv-
lifetime by factor 0f70%,30% over PEGASIS, and PE- ing the performance of routing in wireless sensor net-
GASIS with Huffman code, respectively. work. The proposed technique achieves both minimum
Table[4, shows the comparison of network life-energy consumption and increase network lifetime. Ex-
time of ECST, PEGASIS and PEGASIS with Huffmanperimental results demonstrate that the proposed ECST
coding with respect to half node die. It can be oboutperformed PEGASIS and PEGASIS with Huffman
served that the half node dies in ECST happens in tleding in terms of the network life time and energy con-
896th round,in PEGASIS it appears in 340th round andumption. As part of our future work, we are planning
in PEGASIS with Huffman, it comes in 692th round.to investigate how to optimize ECST to work with mo-
ECST is23% better than PEGASIS with Huffman and bile sensor network.
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