Task Petri Nets for Agent based computing
PRAJNA DEVI UPADHYAY ! SUDIPTA ACHARYAZ2 ANIMESH DuUTTAS

I Indian Institute of Technology, Delhi, 2 Indian Institute of Technology, Patna,
Department of Computer Science and Engineering, Department of Computer Science and Engineering,
New Delhi-110016, India Patna-800005, India
kirtu26 @gmail.com sudiptaacharya.2012@gmail.com
3 National Institute of Technology,
Department of Information Technology,
Durgapur-713209, India
animeshrec@gmail.com

Abstract. Agent Based Computing is an emerging area of research fdasheouple of decades. The
agents must be capable of maintaining the inherent depeiedebetween different tasks or handling
resource constraints while working together. There is alrdea formal tool that can represent this
autonomous behavior and task delegation property of agdris paper proposes a new formal tool
called Task Petri Nets to represent the collaboration ohtsgim Multi agent system (MAS). A Task
Petri Nets is an extended Petri Nets tool which can reprakerdutonomous behavior of agents while
executing any task maintaining the happened before rakttips and handling resource constraints.
It can also evaluate the performance of the system using thetrics- Total Execution Time, Agent
Utilization and Resource Utilization.

Keywords: Agent; Multi Agent System; Petri Nets; Task Assignment; &®ese Constraint.

(Received February 23rd, 2013December 8th, 2010 / AccejilydB0th, 2013July 16th, 2011)

1 Introduction models the real world problem in a better way.

An agent is a computer system or a software entity
The history of computing has been marked by variougrhich can act autonomously in an environment. Agent
ongoing trend€[25]. Computing has become ubiquitougutonomy relates to an agent's ability to make its own
due to availability and interconnection of large num-decisions about what activities to do, when to do, what
ber of processors. The aim of many theoretical worktype of information should be communicated and to
has been to portray computing as a process of interaghom, and how to assimilate the information received.
tion between humans and machines. The complexitfhus, an intelligent agent inhabits an environment and
of tasks that we are capable of automating and delegas- capable of conducting autonomous actions in order
ing to computers has grown steadily. We are movingp satisfy its design objective [14], [1L8], [19], [24]. [25]
away from machine-oriented views of programming tol'he environment is the aggregate of surrounding things,
ideas that more closely reflect the way we understargbnditions, or influences with which the agent is inter-
the world. The advancement from assembly level proacting. Information is percepted by the agent and so this
gramming to procedures and functions and finally to obinformation is also called 'percepts’. The agent works
jects has taken place to model computing in a way wen the percepts in some way and produces "actions’ that
interpret the world. But there are some inherent limitaaffect the environment.
tions in an object which makes it incapable of modeling Multi agent systems are computational systems in
a real world entity. Therefore we move to agents, whiclvhich two or more agents interact or work together to

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 25

perform a set of tasks or to satisfy a set of goals [15R Related Work

[23], [25]. Agents of a multi agent system need to in-) .
teract with each other to fulfill their common or individ- There has been a wide spectrum of research work in the

ual objectives. A multi-agent system can be studied €@ of Multi Agent Based Computing. Most of these
a computer system which is concurrent, asynchronoudl® concerned with the task assignment problems, de-
stochastic and distributed. A multi agent system allowermining the assignment of tasks to agents keeping in
coordinating the behavior of agents which are interacthind the constraints associated with them.[In [27] au-
ing and communicating in an environment. It allows théhors consider a problem where only a specific num-
decomposition of complex task into simple sub-tasks ser of agents can perform a certain task. This means

that the problem can be addressed at a more granuff€ Problem is agnostic to the actual coalition serving
level. a given task and that their algorithm considers a much

Petri Nets and Color Petri Net5|[5] are graphicapmaller search space. Also, they assume a central plan
tools for the formal description of Systems whose dyner that allocates tasks to agents i.e they follow a cen-
namics are characterized by concurrency, synchroniz#2lized method. Similarly, in(}4] authors use a cen-
tion, and mutual exclusion, which are typical featuredralized mechanism based on random neural networks
of distributed environment. A Basic Petri Net structurd© allocate responders to perform a number of rescue
is a tuple,PN = (P, T,1,0,TOK) where tasks. The drawback of using centralized method in pa-

per [27] and [[4] is overcomed in_[10], where authors
o P ={pi, ps, ...,p-}, where x> 1, is a finite set of consider completely decentralized solutions to an al-
places. location problem which considers teams of agents but
ignores the spatial constraints and show how differ-
ent DCOP formulations of the problem result in differ-
ent degrees of computational and communication effi-
ciency when used with typical DCOP algorithms such
e I: P — T is the Input Arc, a mapping from places as ADOPT [12] or DPOP_[16]. Authors of paper [20]
to bags of transitions. and [3] have applied DCOP and other decentralized
heuristics to the general assignment problem (GAP).
e O: T — P is the Output Arc, a mapping from Now, while these approaches consider heterogeneous
transitions to bags of places. agents (i.e., agents with different capabilities) and ex-
e TOK ={TOK:, TOK>, ..., TOK-}, where z> ecution constraints for task; (e.g., two tasks that must
1 is a finite set of dynamic markings on places. '?e execu_ted at th_e same time), t_hey \ghore the _be_ne-
fit of forming coalitions of agents (i.e., with synergistic

Our work proposes a new formal tool called Taskcapabilities) to work on the same task. Problems of ne-
Petri Nets which represents the autonomous behavigtecting spatial constraints in [10] and benefit of form-
of the agents in a Multi Agent System. The MAS con-ng coalitions of agents in_[20] andl[3] are overcomed
sists of a number of agents with different capabilitiesn [17], where authors model the RoboCupRescue do-
and according to the requirement, each task should lmeain in terms of a Coalition Formation with Spatial and
assigned to some capable agent. Initially, a user quefmporal constraints. Here a set of agents, such as res-
is submitted to the MAS. This query is mapped to a taskue agents in search and rescue, must work together to
by an interface agent. The interface agent also decomerform a set of tasks, often within a set amount of
poses this task into a number of sub-tasks and detdime. Authors provide a Distributed Constraint Opti-
mines the happened before relationships and resouncgzation Problem formulation of the problem and show
requirements of the sub-tasks. But, all the sub-task®ow to solve it using the Max-Sum algorithm. Based
cannot be executed concurrently because of the exign this, they develop the novel F-Max-Sum algorithm
tence of some inherent dependencies and some resoutitat improves upon Max-Sum in order to deal with dis-
constraints. Thus, the paper addresses the problemrafptions in its underlying factor graph more effectively.
task assignment with a set of constraints and suggest3his paper lacks of expressing the fact that how task
formal solution for the same in the form of Task Petriallocation can be done such in a way where agent will
Nets. The Task Petri Nets model helps to analyze theomplete all tasks in minimum time which is shown in
performance of the system with the help of three mef8]. In this paper authors propose a distributed algo-
rics. A case study has been modeled with Task Petfithm to get efficient distribution of tasks across hetero-
Nets, the scenario has been simulated and measumgeheous agents. Each task has an execution time which
performance with the help of MATLAB tool. is different if different agents execute them. Here it is

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

o T ={t, t2, ..., ty}, Where y> 1, is a finite set of
transitions,P N T = () i.e., the set of places and
transitions are disjoint.

Upadhyay et al. Task Petri Nets for Agent based computing 26

assumed that run time to perform a task by an agebehaviour of an agent in a Multi Agent System. Here,
is known initially. Authors have shown how to assigneach token of a place represents an agent and the tran-
tasks to agents to finish all tasks in minimum time. Busition is capable of a set of functions that describes, in
it is not realistic to know the execution time taken byparticular, the condition of its firings and relations be-
different agents in different environments to completéween the agents. There are Predicate Transition Nets
a task before their actual execution. Also, the inherf26], [13] which are a high level formalism of Petri Nets
ent dependencies between the tasks are not considefedmodeling and analyzing Multi Agent behaviors. In
which may not allow the tasks to be executed concuMulti Agent Systems, plans are built to specify how a
rently. The paper lacks to evaluate the performanceget of agents accomplish their individual or common
of the system. Methodology described [ini [7] presentgoal. Predicate Transition Nets allow us to make sure
scheduling algorithms on unrelated parallel machineshat the plans are reliable.

A novel distributed algorithm for multi agent task al-
location problems is proposed inl [9] where the sets
tasks and agents constantly change over time. But both
in paper [7] and([9] the inherent dependencies betweele Work done so far is concerned with task assign-
tasks are not considered which is considered in papBtent problems i.e. assigning a set of tasks to a set
[21]. Here authors have considered dependencies H-agents in MAS considering the constraints associ-
tween tasks and defined a dynamic ontology for cooRted with each agent. But few authors have consid-
dination among agents in the MAS. They have definefred the dependencies between the tasks and resource
different types of dependencies between tasks based gpnstraints together for task assignment in MAS. Petri
happened before relationship and resource constraindets are chosen to model this scenario because they are
But, the task delegation and autonomous properties pest suited to model the features of a distributed system.

agents are not shown explicitly to solve the problem. But, the existing Petri Net tools are incapable of doing
S0, so there is a need to extend its features. In this paper,

There are many forms of Petri Nets proposed ovewe propose Task Graph to represent the dependencies
the years which serve specific purposes of a Multbetween the tasks and Task Petri Nets to model the task
Agent System. A Color Petri Net is a high levelassignment problem. A Task Petri Nets is an extended
Petri Net which provides a graphical oriented lanPetri Nets capable of representing agent autonomy and
guage for design, specification, simulation and verifitask delegation property. It can also evaluate the perfor-
cation of systems. It is in particular well-suited formance of the system using some metrics whose values
systems consisting of a number of processes whiatan be obtained from the tool itself.
communicate and synchronize. It is a combination of
Petri Nets and programming Ian_gque where Pefcri I\!e&s System Model
control the structures, synchronization, communication
while functional programming language describes th& Multi Agent System can be formally stated
resource sharing and data manipulation. It allows th&et of tuplesMAS = (5.1, A,inst_A,Q,T,G, R,
definition of different data types for the tokens describinst_R, gen_task, gen_goal,req_res,able) where
ing data manipulation, and for creating compact and p&2ach tuples are described in detail below,
rameterizable models. Petri Nets and Color Petri Nets]
have been widely used to describe the Multi Agent Sys- ® ¥ ={s:|1 <4 <u} wheres: is a state of the sys-
tems for a long time. Color Petri Nets have been used (€M Therefores' is a set of states of environment.
in [1] to achieve agent scheduling in open dynamic en-
vironments. The representation of composite behaviors
through Color Petri Nets have been donelin [6].[1Ih [2]
Petri Nets have been used to model the abstract archi-
tecture for intelligent agents and structural analysis of o 4 = {4, a2, ..., a,}, be the set of agents in the
the net provides an assessment of the interaction prop- system. Eachu, 1< i < p, is a type of agent in
erties of Multi Agent Systems. Deadlock Avoidance in the system.

Multi Agent System is considered and is evaluated us-

ing the liveness and boundedness property of the Petrie inst_A is a function defined asinst_ A: A —
Net Model. Color Petri Net model is introduced to rep- N, A = set of agents)V = set of natural numbers
resent flexible agent interactions fin [1] Agent Petri Nets inst_A defines the number of instances of each
[11] provides more importance to the internal state and agent available in the system.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Scope of Work

o t={t1,t2 ...,tx}, €acht:, 1< i < m, is an atomic
task which the agents in the system are capable of
performing.

Upadhyay et al. Task Petri Nets for Agent based computing 27

e Q={Q1, Q- ...,Qn}, where each));, 1< i < e If a is the event of sending a message m in a pro-
m, IS a query which the user may submit to the cess and is the event of receipt of the same mes-
system. sage m by another process thers b is also true.

A message cannot be received before it is sent or
even at the same time it is sent, since it takes a
finite, nonzero amount of time to arrive.

o T'={T1, T, ..., Tm}, where eachl’;, 1< i < m,
is a task, which is generated from a specific user
query, T € ¢(t)

e Happened-before is a transitive relation i.ea H>

= ey gm i, 1< 1 <
° G {91' gz 9 }' where eacry s i< m, bandb — cthena — c.

is a goal which is generated for each task require-

ment in the system. A goal is some set of states o

achieved after successful completiorifof g: € p 2-2 Formal Definition of a Task Graph

(S) A task graphGr=(V+, E:) is an ordered pair consisting

o R={ri,re ...,rq}, where each:;, 1< i <gq,isa
type of resource in the system. o AsetV.={Vu,...,Vi}, where each/.;, 1< i <
a, is a vertex which represents a task 7" which

e inst_Risafunction defined agnst R: R — N,
should be performed.

R = set of resourcedy = set of natural numbers.
inst_R defines the number of instances of each o Asetp.={E, ..., E:}, where eachB:, 1< i < b,

resource type available in the system. is an edge identified with an ordered pair of ver-
tices (V+m, V:n), which represents the happened-
before relationship between two tasks identified by
those vertices.

e gen_task is a function which maps each query to
atask and is defined agen_task : Q — T

e gen_goal is a function which maps each task to a))]
goal and is defined agen_goal : T — G Given a set of happened before relationships be-

tween tasks, we can form the task graph by listing all
e req_res is a function which maps each tagk € the vertices representing the tasks and drawing a di-
T to a subset of RX), wherel is the set of non- rected edge fron¥ .. to V., if the happened before re-
negative integers. lationshipt; — t; exists in the set of happened before
req_res T — p (RX1I), each task is mapped to arelationships. Given two tasksandt¢; represented by
set of tuples indicating the resource and its numbédhe vertices/.. andV'; respectively in the task graph,

of requirement. we can infer the following about them:
e able is a function which maps each agente A e If there exists a directed path from vert&x: to
to a subset of, Soable : A — o(t) V. in Gr, i.e. there exists a sequence of vertices
and edges starting frofvi.: and ending at/«;, we
5 Task Graph can sayt: — t;.

A Task Graph is a formal representation of the o Two taskst: andt; are concurrent if there is no

happened-before relationships between tasks. The hap- irected path either froriy: to V+; or from V., to
pened before relationship is described in the following v/, ..

sub-section.
e There are no circuits and self loops in a task graph.

5.1 Lamport Happened Before Relationship

If a andb are two events taking place in a system, th& Petri Nets model of the problem

expressiorn — b is read asd happened befor&, The existing Petri Net tool lacks for modeling this sce-
which means all processes agree that before occurimgrio. So, a new tool called Task Petri Nets is proposed
eventb, eventa should occurl[22]. The happened-which is described in following sections,

before relation can be observed directly in two situa-

tions: 6.1 Task Petri Nets
o If eventsa andb occur on the same process and th@ask Petri Nets is an extended Petri Net tool which can

occurrence of event preceded the occurrence ofmodel a problem. It can be defined by set of tuples,
eventb thena — b = TRUE TPN =(P,TR,I,0,TOK, F.)

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al.

Task Petri Nets for Agent based computing 28

e P = P is a finite set of places. It can be defined
by union of 8 number of places. So we can write
P=(P:UP.UP.UP-UP;sUP,UP.U
P.). PlacesP», P., P., Py € P exist for each
task already identified by the interface agent. The
description of the different types of places are fol-
lows:

— P»: Here the presence of a token indicates
that the task represented by this place can
run, i.e. all predecessor tasks that are re-
quired to be completed before this task are
completed.

— P.: Here the presence of a token indicates

that an agent has been assigned for the task

represented by the token of corrosponding
placePs.

— P.: Here the presence of a token indicates

— t.: This transition fires if the task represented
by the token of corrosponding plagg. is as-
signed with an agent which is capable of per-
forming it.

— t.: This transition fires if all the resources re-

quired by the task represented by the token
of corrosponding plac®. are allocated to it.

— ts: This transition fires if the task represented
by the token of corrosponding plade. is
completed.

— ta: This transition is dynamically created
when the agent assigned for the task repre-
sented by the token of corrosponding place
P. decides to split the task further into sub-
tasks. The subnet that is formed dynamically
consists of places and transitions all of which
are categorized aB. or t respectively.

agent and resources have been allocated for e 7 is the set of input arcs, which are of the following

the task represented by the token of cor-
rosponding place”. and the task is under
execution by the allocated agent.

— Pjy: Here the presence of a token indicates
that the task represented by the token of cor-
rosponding placé. has finished it's execu-
tion.

— P.: This place exists for each type of a re-
source in the system. i.&/ r: 3 P.. where,
rieRand K i <q.

— P.: This place exists for each instance of an
agent in the system. i.&. a: 3 P.. wherea:
cRand Ki<p.

types,
— IL=P: X tx : task checked for dependency.
— I.=P. X t.: request for resources.
— I:=P. X t; : task completed.
— I.=Py X tx : interrupt to successor task.

— Is=Pc X ta U I[1=Pa X ta U [L1=P» X ta
U IL1=Pa4 X t; are input arcs of the subnet
formed dynamically.

e O isthe set of output arcs, which are of the follow-

ing types:

— O:1=tnX Px: task not dependent on any other

— P:: Here the presence of a token represents task.
initially identified task by the interface agent — 0.=t.XP.: agent assigned.
his ol dd I — Os=t.XP.: resource allocated.
— Pa: This place is created dynamically after _)
the agent has been assigned for the task(in — Os=t,XPr: resource released.
placeP.) and the agent decides to divide the — Os=t;XP;: Task completed by agent.
tasks into subtasks. For each subtask, a new — Os=t;XP.: agent released.
place s created. — Os=taX Pa: output arcs of the subnet formed
e TR is the set of 5 transitions which can be repre- dynamically.

sented as7'R = (t» U t. U t. U tr U ta). Where

tn , te , ty exist for every task identified by the in-
terface agent. The description of different types of
transition is as below,

e TOK is the set of color tokens present in the
places of Petri net. So we can writé OK =
{TOK., TOK:, ... TOKx}, where eacflOK:
where K ¢ < X, is associated with a function
assi_tok defined as:

assi_tok: TOK — (CategoryXTypeXN),
where, Category = set of all categories of to-
kens in the system=K, R, A }, Type = set of all

— t»: This transition fires if a task represented
by the token of plac#: is enabled i.e. all the
preceeding tasks which should be completed
for the task to start are completed.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al.

Task Petri Nets for Agent based computing 29

types of eachvategory: € Category i.e. Type=
{TURUA},
N is the set of natural numbers.

Let assi_tok(TOK:) = (categoryi, typei, ni).
The functionassi_tok satisfies the following con-
straints:

— VTOK: (category: = R)—{(typeic R) A
(1 < ni<inst_R(type:))}

— VTOK: (category. = A)—{(typeic R) A
(1 < ni<inst_A(type:))}

— VTOK: (category: =T) — {(type: 3T) A
(ni=1)}

assi_tok defines the category, type and number of
instances of each token.

e F'. is a function associated with each place and
token. Itis defined as:

F.. PXTOK — (TIME XTIME).
ForatokenlOK» € TOK, 1< k < z,

and placeP: € P, F.(Pi, TOK+®) = {(a:, aj)},

a: is the entry time ofTOK« to placeP: anda;

is the exit time of TOK« from placeP.. For a
token entering and exiting a place multiple timks,
F.(P:, TOK+)| =number of time§ O K » entered
the placeP..

6.2 Rules to construct Task Petri Nets

A Task Petri Nets can be created if the following infor-
mation is provided:

e An initial set of tasks, identified by the interface
agent, called’ASK.

e The happened before relationships between the

tasks, described in the form of Task Graph.

e The resource requirements of each taslsk: €
TASK.

e The capabilities of the agents present in the sys-
tem.

Given this information, we can construct the Task Petri

Nets by following rules:

e Construct placeP.. It will represent the user’s
query mapped to a single task.

e Construct place®r:, P.i, P.i, Ps: and transitions

e Construct place® .. for each type of agent;, 1<

Jj < p,a; € A. The number of tokens i¥.; place
is inst_A(ay).

Construct places for each type of resoureel<

j < p, rx € R. The number of tokens iR« place
is inst_R(rx). For eachtask: € TASK, add an
arc from,

— placeP: to transitiont,»: andt.: to placePn..

— placeP.: to transitiont.: andt.: to placeP...

— placeP.: to transitionts: andt . to placeP..
For eachtask:, if there are 'n’ number of differ-

ent type agentsafs, ..., a;») capable of perform-
ing it, construct 'n’ number of.: transitions {1,

teiz, ..., ten) @and add arcs fronk.: to all of them
and from the places{.;1, ..., Pa;») t0 transitions
(tei, ..., tein) respectively. Add arcs from atl:

transitions {ci1, teiz, ..., tein) to placePe..

For all (rx, nx), where ¢x, nx) € req_resfask:),
add an arcP- X t.) from P.x to t... The weight
of the arc is equal tax. Add an output are¢ X
P.) from eacht;: to all P-«. The weight of the arc
is equal tonx.

From the task graph, thisk: — task;, then add an
arc (P X t») from placeP;: to transitiont.;.

Create 'm’ number of.: transitions {a:1, tai, ...,
taim) and add an arcK. X ts) from P.; to each
taij, 1< j < m, if the agent assigned ttusk:
wishes to dividegask: into &ma sub-tasks. Create
a place for each of &ma subtasks. These places will
be categorized aB.. Add arcs from each transi-
tion (tdil, taiz, ... ,tdim,) to places Pdil, Paiz, ...,
Pain) respectively.

From eachP.:; place, the subnet is created in a
similar way as the subnet is created frétn place

for task:. The subnet consists dP., P; places
andt., t; transitions all categorized &3. andta
respectively. The resource requirements and the
happened before relationships between the newly
created tasks are determined by the agent dividing
the task. The petri nets is modified by adding such
places and transitions dynamically. The arcs are
added according to the rules described fod &:.

6.3 Metrics for Performance Analysis

thi, teiy tei, tsi fOr eachtask: € TASK identified We define the following three metrics for performance

by the interface agent.

analysis of the system. These are:

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al.

Task Petri Nets for Agent based computing 30

6.3.1 Total Execution Time

This metric gives the total execution time of the system.

VTOK:, assi_tok(TOK:) = (T, typei, ni),

Fo(Pr, (T, type:, ni)) = {(a», aq) | a» is the time at
which token entered plac®. and a, is the time at
which token left the placé.

7 Comparison of Task Petri Nets with other
forms of Petri Nets

There are other forms of Petri nets avaialble but they
have been found inefficient to model the task assign-
ment process. A comparison of some of these with Task
Petri Nets is given in Tablg 1. Task Petri Nets have been
compared with Color Petri Nets, Agent Petri Nets and

The start time of execution is the time at which thePredicate Transition Nets on the following areas
first task started, i.e. the minimum of the entry times to

P place of all tokens. So,

S«(Starting Time) =

min{ay |(a», aqs) € Fn(Pnr,(T typei, ni))},
VTOK:, assi_tok(TOK:) = (T, type:, ns).

The finish time of execution is the finishing time of

the last task of the system. So,

F(Finish time)=
max {as | (a», aq) € Fn(Phr, (T, type:, n:))},
whereV TOK, assi_tok(TOK:) = (T, types, ni).

So, total execution time
(Tet) = max {a» | (as, as) € Fu(Pr, (T, typei, ni))}-
min{a, | (a», aq) € Fn(Pr, (T, types:, n:))}, ¥V TOKS,
assi_tok(TOK.) = (T, type:, ni)}.

6.3.2 Resource Utilization

e Supports MAS
e Deals with Task Assignment
e Evaluates Performance

e Capacity to model interactions between agents

Table 1: Comparison of Task Petri Nets with other forms of Petri
Nets

Type of Petri Nets Supports Deals with Task Evaluates Capacity to model

MAS Assignment performance interactions between agents
Color Petri Nets/
Object Petri Nets No No No No
Agent Petri Nets Yes Yes No Yes
Predicate
Transition Nets Yes Yes No No
Task Petri Nets Yes Yes Yes Yes

8 Case Study

This metric determines to what extent each resource g]
o .1 Problem
the system has been utilized. For each resource tokein

TOK:, assi_tok(TOK:)=(R, type:, n:),

Fn(Pr, (R, type:, n:))={(ap, aq) | a»

is the entry time of this token to plade., a. is the exit
time of this token from placé-},

Total time for which a token resided at plaeis given
by:

Tor=3 (ap - aq), Y(ap,aq) ¥V Fn(Pr, (R, typei, n:))
Total amount of time the resource was utilized

= (Tct - Tpr)/Tct

= [1-(TprlTer)]

6.3.3 Agent Utilization

Consider the scenario where the user submits a query
to the system. The interface agent mé&p$o a set of
tasks. Let this set bEASK = {a, b, c, d, €}. There
are two types of resourcds = {r1, r» }and three types
of agentsA= {a., a2, as}. There are 2 instances of
andr: each and 3 instances @f, a2, andas each. The
capabilities of the agents and the resource requirements
of the tasks are defined as:

able(ar)={a};
able(az2)={b, d}; able(as)={e}.
req_res(@)={(rz, 2)};
req_res(b)={(r1, 2)};
req_res(c)={(r1, 2), (r=,2)};

This metric determines to what extent each agentin the.; ¢ s(d)={(r-, 2)};

system has been utilized. For each agent tékéx;,
assi_tok(TOK:)=(A, typei, ni),

F.o(Pa, (A, type:, n:))={(a», ad) | a» is the entry time
of this token to place

P., aq is the exit time of this token from plac@.},
Total time for which a token resided at plaBeis given
by:

Tor=% (ap - aq), Y(ap,aq) ¥ Fn(Pr, (A, typei, n:))
Total amount of time the agent was utilized

= (Tef, - Tar)/Tet

Z[1-(TarlTer)]

req_res(e€)={(r1, 1), (2, 1)}The happened before re-
lationships between these tasks identified by interface
agentare: & b; a— c; b—d; b— e;c—~d

8.2 Model of the problem
8.2.1 Task Graph

Figure[1 given below represents the task graph for the
problem described in previous sub-section. Given a set
of happened before relationships, we construct the task
graph as defined in the section 5.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 31

70

65

60

55

2N
N

Figure 1: Task Graph for the problem

50

total execution time

a5t

40
2 25 3 35 4 4.5 5

no. of agents

Figure 3: Graph showing total execution time against no. of agents

execution time against the three parameters.

Figure[3 shows the change of total execution time
against number of agents for a fixed humber of tasks
and resources. 7 tasks are taken and random happened
before relationships are generated between them. There
are 10 types of resources each having 4 instances. The
resource requirements of the tasks are also generated
randomly. There are 5 types of agents each having
2 instances initially. Their abilities are generated ran-
domly. Keeping the number of tasks and the number of
resources fixed, the number of instances of each agent
type is increased by 1 along the X-axis. The total ex-
ecution time for 2, 3, 4 and 5 number of instances of
agents is plotted in Figure 3. The number of agents

Figure 2: Task Petri Nets Model for the problem available in the system is a bottleneck as it determines
the number of tasks executing concurrently. If a task is
not dependent on any other task/tasks for execution, it
should be assigned to an agent. But, if all the agents

8.2.2 Task Petri Nets capable to perform that task are busy executing other
According to the rules described in section 6.2, we cafSks, the task cannot execute. So, the task has to wait
draw the Task Petri Nets based on the given set of taskétil & capable agent is free. From the graph, it is ob-
identified by the interface agent, their requirement o$erved that as the number of agents in the system in-
resources and the capabilities of agent. Figilire 2 shoW§eases, the execution time decreases or remains same.

the Task Petri Nets for the problem described above. It is because as the number of agents in the system in-
creases, the tasks which could not be assigned to agents

due to their unavailability earlier are assigned due to
an increase in their number. So, number of tasks exe-
The above scenario is simulated in MATLAB. Thecuting concurrently increases which decreases the total
value of one metric, total execution time has been cakxecution time. The total execution time remains same
culated and its variation studied over three parametevghen the system achieves the maximum possible con-
1) number of tasks, 2) number of resources and 3) nunsurrency or the concurrency depends on the availability
ber of agents. The duration of each task is assumed ¢ resources.

be 10 sec. The following graphs show the change of Figure4 shows the change of execution time against

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

8.3 Simulation Results and Discussion

Upadhyay et al. Task Petri Nets for Agent based computing 32

60

©
o

59

[+
a1

58

@
o
T

57

]
ol
T

56 -

551

54

total execution time
total execution time
~
o

)}
al
T

531

[}
o
T

52

[4)]
3
T

51r

50 50
3

35 4 45 5 5.5 6 5 6 7 8 9 10
no. of resources no. of tasks

Figure 4: Graph showing total execution time against no. of re- Figure 5: Graph showing total execution time against no. of tasks
sources

before relationships are generated between them. There
number of resources for a fixed number of tasks andre 5 types of agents each having 2 instances. Their
agents. 7 tasks are taken and random happened befatslities are generated randomly. There are 10 types
relationships are generated between them. There ar@fresources each having 2 instances. The resource re-
types of agents each having 3 instances. Their abilguirements of the tasks are also generated randomly.
ties are generated randomly. There are 10 types of r&eeping the number of resources and the number of
sources each having 3 instances initially. The resouregents fixed, we increase the number of tasks by 1 along
requirements of the tasks are also generated randomKtaxis. When a new task is added to the system, it is
Keeping the number of tasks and the number of agengsther made independent or dependent on some other
fixed, we increase the number of instances of each reask/tasks randomly. The total execution time for 5,
source type by 1 along the X-axis. The total executio®, 7, 8, 9 and 10 tasks is plotted in Figure 5. If the
time for 3, 4, 5 and 6 number of instances of resourceew task is dependent on previous task/tasks, then the
types is plotted in Figure 4. The number of resourcesxecution time increases or remains same, otherwise it
available in the system is also a bottleneck as it deteexecutes concurrently provided the agents and required
mines the number of tasks executing concurrently. If gesources are allocated. So, we get an increasing graph
task is not dependent on any other tasks for executiomhen we plot the total execution time against the num-
and it is assigned an agent, it should get the requirgskr of tasks.
resources to start execution. But, if all the resources re- Figure[6 shows the change in total execution time
quired are not available, the task cannot execute. It hagainst two parameters 1) number of tasks, 2) number
to wait until the requested resources are available. Asf resources. There are 10 types of resources each hav-
we increase the number of resource instances in the sysg 5 instances initially. The resource requirements of
tem, the execution time decreases or remains same. Tine tasks are generated randomly. There are 5 types of
reason is that as we increase the number of resourcesagents each having 4 instances. Their abilities are gen-
the system, the tasks which could not execute due trated randomly. The number of resources is increased
unavailability of resources can now execute due to theby 1 along Y axis i.e. 5, 6, 7 and 8 and number of tasks
increased availability. So, number of tasks executing increased by 1 along X axis i.e. 5, 6, 7, 8, 9 and
concurrently increases which decreases the total execlB. The total execution time is plotted in Figure 6. It is
tion time. The execution time remains the same wheglear from the graph that the execution time increases
the added resources are not utilized, i.e. the system @ remains same when the number of tasks increases
ready achieves maximum possible parallelism. while decreases or remains same when the number of

Figurel® shows the change of execution time againsésources increased.

number of tasks for a fixed nhumber of resources and Figure[T shows the change in total execution time
agents. 5 tasks are taken initially and random happenegdainst two parameters 1) number of tasks, 2) number

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al.

Task Petri Nets for Agent based computing 33

total execution time

4

0 o
no. of tasks no. of resources

Figure 6: Graph showing total execution time against no. of tasks
and no. of resources

of agents. There are 10 types of resources each havi
3 instances. The resource requirements of the tasks ¢
generated randomly. There are 5 types of agents ea
having 2 instances initially. Their abilities are gener-
ated randomly. The number of agents is increased
1 along Y axis i.e. 2, 3, 4 and 5 and number of task
is increased by 1 along X axis i.e. 5, 6, 7, 8, 9 and 1(
The total execution time is plotted in Figure 7. Simi-
lar to the previous case, execution time increases or r
mains same when the number of tasks increases wh
decreases or remains same when the number of age
increases.

total execution time

3

no. of tasks no. of agents

Figure[8 shows the change in total execution time
against two parameters 1) number of agents, 2) number
of resources. There are 10 types of resources each hav-
ing 2 instances initially. The resource requirements of
the tasks are generated randomly. There are 5 types of
agents each having 3 instances initially. Their abilities
are generated randomly. The number of tasks is fixed
at 5. The number of agents is increased by 1 along Y
axis i.e. 3, 4, 5 and 6 and number of resources is in-
creased by 1 along X axis i.e. 2, 3, 4 and 5. The total
execution time is calculated and plotted in Figure 8. It
is clear from the graph that the execution time decreases
or remains same along both axes, when the number of

agents and resources increases.

60

total execution time

no. of resources

no. of agents

{S . S .
,—Jlgure 8: Graph showing total execution time against no. of agents
and no. of resources

9 Conclusion

In this paper, a Task Petri Nets tool to address the task
assignment problem in MAS is developed. It can rep-
resent agent autonomy and task delegation property. It
can also evaluate the performance of the system using
three metrics. This tool proves better than the existing
tools on grounds as described in Tdble 1 to model such
scenario. A scenario is simulated in MATLAB and the
value of one of the three metrics is measured. From
the results and discussion, we conclude that to reduce
the total execution time, we have to increase the num-
ber of tasks executing concurrently. This can be done
by increasing the number of agents or resources avail-

Figure 7: Graph showing total execution time against no. of task@ble in the system. Thus, the overall impact on the sys-

and no. of agents

tem can be analysed with the help of this tool. The
future work is to develop a co-ordination mechanism

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al.

Task Petri Nets for Agent based computing 34

between agents to resolve resource conflicts to increadd)] Maheswaran,
concurrency of tasks. It may so happen that some of
the agents will crash while executing some tasks. So,

the future work can also be to develop a fault tolerant
system which will continue to work even if some of the
agents crash while execution.

References

[1]

(2]

3]

[4]

5]

[6]

[7]

(8]

[9]

Bai, Q., Zhang, M., and Zhang, H. A coloured
petri net based strategy for multi-agent schedul-
ing. In Proceedings of the Rational, Robust, and
Secure Negotiation Mechanisms in Multi-Agen{
Systems2005.

Celaya, J. R., Desrochers, A. A., and Graves, R. J.
Modeling and analysis of multi-agent systems us-
ing petri nets.Journal of Computers4:981-996, [
20009.

Ferreira, P. R. and et. al et. al, F. S. Robocup re

[11]

13]

cue as multiagent task allocation among teami.ld']

experiments with task interdependencies.Aln
tonomous Agents and Multiagent Systep@99.

Gelenbe, E. and Timotheou, S. Random neura{fLS]

networks with synchronized interactionbleural
Computation, 20pages 2308-2324, 2008.

. . 1
Jensen, K. Colored petri nets — basic concepté, 6

analysis methods and practical usgoftware en-
gineering, Springer-Verlag, Berljri992.

Jindian, S., Heqing, G., and Shanshan, Y. A

]

coloured petri net model for composite behaviorﬁ?]

in multi-agent system. IRroceedings of the IEEE
Conference on Cybernetics and Intelligent Sys-
tem 2008.

Lenstra, J. K. and Tardos, D. B. S. E. Approxima—[
tion algorithms for scheduling unrelated parallel
machines. IProceedings of 28th Annual Sympo-
sium on Foundations of Computer Scient@87.

Macarthur, K. S. and et. al et. al, M. V. De-

18]

[19]

centralised parallel machine scheduling for multi{20]

agent task allocation. IRroceedings of Fourth
International Workshop on Optimisation in Multi-
Agent System2011.

Macarthur, K. S. and et. al et. al, R. S. A dis-

tributed anytime algorithm for dynamic task allo-[21]

cation in multi-agent systems. Proceedings of
Twenty-Fifth Conference on Artificial Intelligence
(AAAI), 2011.

R. J., Pearce, J., and Tambe,
M. A family of graphical-game-based al-
gorithms for distributed constraint optimization
problems. InCoordination of Large-Scale Multi-
agent Systems, Springer-Verlag, Heidelberg Ger-
many pages 127-146, 2005.

Marzougui, B., Hassine, K., and Barkaoui, K. A
new formalism for modeling a multi agent sys-
tems: Agent petri netsJ. Software Engineering

and Applications3:1118-1124, 2010.

12] Modi, P. J. and et. al et. al, W. S. Adopt: Asyn-

chronous distributed constraint optimization with
quality guaranteedtrtificial Intelligence Journal,
161, pages 127-146, 2005.

Murata, T. and Nelson, P. C. A predicate - transi-
tion net model for multiple agent plannintnfor-
mation Sciencepages 57-58, 361-384, 1991.

Nilsson, N. J. Artificial intelligence: a new syn-
thesis. InMorgan Kaufmann Publishers Ltd.
1998.

Padgham, L. and Winikoff, M. Developing intelli-
gent agent systems- a practical guidehn Wiley
& Sons, Ltd.2002.

Petcu, A. and Faltings, B. Dpop: A scalable
method for multiagent constraint optimization. In
Proceedings of the Nineteenth International Joint
Conference on Atrtificial Intelligencgages 266—
271, 2005.

Ramchurn, S. D. and et. al et. al, A. F. Decen-
tralised coordination in robocuprescue. The
Computer Journal 53(9pages 1447-1461, 2010.

Rouff, C. and et. al et. al, M. H. Agent technol-
ogy from a formal perspectiveSpringer-Verlag
London Limited.2006.

Russell, S. J. and Norvig, P. Atrtificial intelligence:
A modern approach. IRearson Education2003.

Scerri, P. and et. al et. al, A. F. Allocating tasks in
extreme teams. IRroceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents
and Multi-Agent Systems, ACM New York, NY,
USA pages 727—734, 2005.

Tamma, V., Aart, C., and et. al. et. al., T. M. An
ontological framework for dynamic coordination.
In Proceedings of 4th International Semantic Web
Conference. (ISWC 2005)005.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al.

Task Petri Nets for Agent based computing 35

[22]

(23]

(24]

[25]

(26]

[27]

Tanenbaum, A. Distributed operating systems. In
Pearson Education1995.

Vidal, J. M. Fundamentals of multi agent systems,
2007.

Weiss, G. Multi agent systems: a modern ap-
proach to distributed artificial intelligence. MIT
Press 1999.

Wooldridge, M. J. Introduction to multi agent sys-
tems, 2001.

Xu, D., Wolz, R. A,, loerger, T. R., and Yen, J.
Modeling and verifying multi-agent behaviors us-
ing predicate transition nets. Proc. of the 14th
International Conference on Software Engineer-
ing and Knowledge Engineeringages 193-200.
ACM Press, 2002.

Zheng, X. and Koenig, S. Reaction functions
for task allocation to cooperative agents. Aro-
ceedings of the International Joint Conference on
Autonomous Agents and Multi-agent Systems AA-
MAS 08 pages 559-566, 2008.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

	Introduction
	Related Work
	Scope of Work
	System Model
	Task Graph
	Lamport Happened Before Relationship
	Formal Definition of a Task Graph

	Petri Nets model of the problem
	Task Petri Nets
	Rules to construct Task Petri Nets
	Metrics for Performance Analysis
	Total Execution Time
	Resource Utilization
	Agent Utilization

	Comparison of Task Petri Nets with other forms of Petri Nets
	Case Study
	Problem
	Model of the problem
	Task Graph
	Task Petri Nets

	Simulation Results and Discussion

	Conclusion

