
Task Petri Nets for Agent based computing

PRAJNA DEVI UPADHYAY1 SUDIPTA ACHARYA2 ANIMESH DUTTA3

1 Indian Institute of Technology, Delhi,
Department of Computer Science and Engineering,

New Delhi-110016, India
kirtu26@gmail.com

2 Indian Institute of Technology, Patna,
Department of Computer Science and Engineering,

Patna-800005, India
sudiptaacharya.2012@gmail.com

3 National Institute of Technology,
Department of Information Technology,

Durgapur-713209, India
animeshrec@gmail.com

Abstract. Agent Based Computing is an emerging area of research for thelast couple of decades. The
agents must be capable of maintaining the inherent dependencies between different tasks or handling
resource constraints while working together. There is a need of a formal tool that can represent this
autonomous behavior and task delegation property of agents. This paper proposes a new formal tool
called Task Petri Nets to represent the collaboration of agents in Multi agent system (MAS). A Task
Petri Nets is an extended Petri Nets tool which can representthe autonomous behavior of agents while
executing any task maintaining the happened before relationships and handling resource constraints.
It can also evaluate the performance of the system using three metrics- Total Execution Time, Agent
Utilization and Resource Utilization.

Keywords: Agent; Multi Agent System; Petri Nets; Task Assignment; Resource Constraint.

(Received February 23rd, 2013December 8th, 2010 / AcceptedJuly 30th, 2013July 16th, 2011)

1 Introduction

The history of computing has been marked by various
ongoing trends [25]. Computing has become ubiquitous
due to availability and interconnection of large num-
ber of processors. The aim of many theoretical works
has been to portray computing as a process of interac-
tion between humans and machines. The complexity
of tasks that we are capable of automating and delegat-
ing to computers has grown steadily. We are moving
away from machine-oriented views of programming to
ideas that more closely reflect the way we understand
the world. The advancement from assembly level pro-
gramming to procedures and functions and finally to ob-
jects has taken place to model computing in a way we
interpret the world. But there are some inherent limita-
tions in an object which makes it incapable of modeling
a real world entity. Therefore we move to agents, which

models the real world problem in a better way.
An agent is a computer system or a software entity

which can act autonomously in an environment. Agent
autonomy relates to an agent’s ability to make its own
decisions about what activities to do, when to do, what
type of information should be communicated and to
whom, and how to assimilate the information received.
Thus, an intelligent agent inhabits an environment and
is capable of conducting autonomous actions in order
to satisfy its design objective [14], [18], [19], [24], [25].
The environment is the aggregate of surrounding things,
conditions, or influences with which the agent is inter-
acting. Information is percepted by the agent and so this
information is also called ’percepts’. The agent works
on the percepts in some way and produces ’actions’ that
affect the environment.

Multi agent systems are computational systems in
which two or more agents interact or work together to

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 25

perform a set of tasks or to satisfy a set of goals [15],
[23], [25]. Agents of a multi agent system need to in-
teract with each other to fulfill their common or individ-
ual objectives. A multi-agent system can be studied as
a computer system which is concurrent, asynchronous,
stochastic and distributed. A multi agent system allows
coordinating the behavior of agents which are interact-
ing and communicating in an environment. It allows the
decomposition of complex task into simple sub-tasks so
that the problem can be addressed at a more granular
level.

Petri Nets and Color Petri Nets [5] are graphical
tools for the formal description of systems whose dy-
namics are characterized by concurrency, synchroniza-
tion, and mutual exclusion, which are typical features
of distributed environment. A Basic Petri Net structure
is a tuple,PN = (P, T, I, O, TOK) where

• P ={p1, p2, . . . ,px}, where x≥ 1, is a finite set of
places.

• T ={ t1, t2, . . . , ty}, where y≥ 1, is a finite set of
transitions,P ∩ T = ∅ i.e., the set of places and
transitions are disjoint.

• I: P → T is the Input Arc, a mapping from places
to bags of transitions.

• O: T → P is the Output Arc, a mapping from
transitions to bags of places.

• TOK = {TOK1, TOK2, . . . ,TOKz }, where z≥
1 is a finite set of dynamic markings on places.

Our work proposes a new formal tool called Task
Petri Nets which represents the autonomous behavior
of the agents in a Multi Agent System. The MAS con-
sists of a number of agents with different capabilities
and according to the requirement, each task should be
assigned to some capable agent. Initially, a user query
is submitted to the MAS. This query is mapped to a task
by an interface agent. The interface agent also decom-
poses this task into a number of sub-tasks and deter-
mines the happened before relationships and resource
requirements of the sub-tasks. But, all the sub-tasks
cannot be executed concurrently because of the exis-
tence of some inherent dependencies and some resource
constraints. Thus, the paper addresses the problem of
task assignment with a set of constraints and suggests a
formal solution for the same in the form of Task Petri
Nets. The Task Petri Nets model helps to analyze the
performance of the system with the help of three met-
rics. A case study has been modeled with Task Petri
Nets, the scenario has been simulated and measured
performance with the help of MATLAB tool.

2 Related Work

There has been a wide spectrum of research work in the
area of Multi Agent Based Computing. Most of these
are concerned with the task assignment problems, de-
termining the assignment of tasks to agents keeping in
mind the constraints associated with them. In [27] au-
thors consider a problem where only a specific num-
ber of agents can perform a certain task. This means
the problem is agnostic to the actual coalition serving
a given task and that their algorithm considers a much
smaller search space. Also, they assume a central plan-
ner that allocates tasks to agents i.e they follow a cen-
tralized method. Similarly, in [4] authors use a cen-
tralized mechanism based on random neural networks
to allocate responders to perform a number of rescue
tasks. The drawback of using centralized method in pa-
per [27] and [4] is overcomed in [10], where authors
consider completely decentralized solutions to an al-
location problem which considers teams of agents but
ignores the spatial constraints and show how differ-
ent DCOP formulations of the problem result in differ-
ent degrees of computational and communication effi-
ciency when used with typical DCOP algorithms such
as ADOPT [12] or DPOP [16]. Authors of paper [20]
and [3] have applied DCOP and other decentralized
heuristics to the general assignment problem (GAP).
Now, while these approaches consider heterogeneous
agents (i.e., agents with different capabilities) and ex-
ecution constraints for tasks (e.g., two tasks that must
be executed at the same time), they ignore the bene-
fit of forming coalitions of agents (i.e., with synergistic
capabilities) to work on the same task. Problems of ne-
glecting spatial constraints in [10] and benefit of form-
ing coalitions of agents in [20] and [3] are overcomed
in [17], where authors model the RoboCupRescue do-
main in terms of a Coalition Formation with Spatial and
Temporal constraints. Here a set of agents, such as res-
cue agents in search and rescue, must work together to
perform a set of tasks, often within a set amount of
time. Authors provide a Distributed Constraint Opti-
mization Problem formulation of the problem and show
how to solve it using the Max-Sum algorithm. Based
on this, they develop the novel F-Max-Sum algorithm
that improves upon Max-Sum in order to deal with dis-
ruptions in its underlying factor graph more effectively.
This paper lacks of expressing the fact that how task
allocation can be done such in a way where agent will
complete all tasks in minimum time which is shown in
[8]. In this paper authors propose a distributed algo-
rithm to get efficient distribution of tasks across hetero-
geneous agents. Each task has an execution time which
is different if different agents execute them. Here it is

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 26

assumed that run time to perform a task by an agent
is known initially. Authors have shown how to assign
tasks to agents to finish all tasks in minimum time. But
it is not realistic to know the execution time taken by
different agents in different environments to complete
a task before their actual execution. Also, the inher-
ent dependencies between the tasks are not considered
which may not allow the tasks to be executed concur-
rently. The paper lacks to evaluate the performance
of the system. Methodology described in [7] presents
scheduling algorithms on unrelated parallel machines.
A novel distributed algorithm for multi agent task al-
location problems is proposed in [9] where the sets of
tasks and agents constantly change over time. But both
in paper [7] and [9] the inherent dependencies between
tasks are not considered which is considered in paper
[21]. Here authors have considered dependencies be-
tween tasks and defined a dynamic ontology for coor-
dination among agents in the MAS. They have defined
different types of dependencies between tasks based on
happened before relationship and resource constraints.
But, the task delegation and autonomous properties of
agents are not shown explicitly to solve the problem.

There are many forms of Petri Nets proposed over
the years which serve specific purposes of a Multi
Agent System. A Color Petri Net is a high level
Petri Net which provides a graphical oriented lan-
guage for design, specification, simulation and verifi-
cation of systems. It is in particular well-suited for
systems consisting of a number of processes which
communicate and synchronize. It is a combination of
Petri Nets and programming language where Petri Nets
control the structures, synchronization, communication
while functional programming language describes the
resource sharing and data manipulation. It allows the
definition of different data types for the tokens describ-
ing data manipulation, and for creating compact and pa-
rameterizable models. Petri Nets and Color Petri Nets
have been widely used to describe the Multi Agent Sys-
tems for a long time. Color Petri Nets have been used
in [1] to achieve agent scheduling in open dynamic en-
vironments. The representation of composite behaviors
through Color Petri Nets have been done in [6]. In [2]
Petri Nets have been used to model the abstract archi-
tecture for intelligent agents and structural analysis of
the net provides an assessment of the interaction prop-
erties of Multi Agent Systems. Deadlock Avoidance in
Multi Agent System is considered and is evaluated us-
ing the liveness and boundedness property of the Petri
Net Model. Color Petri Net model is introduced to rep-
resent flexible agent interactions in [1] Agent Petri Nets
[11] provides more importance to the internal state and

behaviour of an agent in a Multi Agent System. Here,
each token of a place represents an agent and the tran-
sition is capable of a set of functions that describes, in
particular, the condition of its firings and relations be-
tween the agents. There are Predicate Transition Nets
[26], [13] which are a high level formalism of Petri Nets
for modeling and analyzing Multi Agent behaviors. In
Multi Agent Systems, plans are built to specify how a
set of agents accomplish their individual or common
goal. Predicate Transition Nets allow us to make sure
that the plans are reliable.

3 Scope of Work

The work done so far is concerned with task assign-
ment problems i.e. assigning a set of tasks to a set
of agents in MAS considering the constraints associ-
ated with each agent. But few authors have consid-
ered the dependencies between the tasks and resource
constraints together for task assignment in MAS. Petri
Nets are chosen to model this scenario because they are
best suited to model the features of a distributed system.
But, the existing Petri Net tools are incapable of doing
so, so there is a need to extend its features. In this paper,
we propose Task Graph to represent the dependencies
between the tasks and Task Petri Nets to model the task
assignment problem. A Task Petri Nets is an extended
Petri Nets capable of representing agent autonomy and
task delegation property. It can also evaluate the perfor-
mance of the system using some metrics whose values
can be obtained from the tool itself.

4 System Model

A Multi Agent System can be formally stated
set of tuplesMAS = (S, t, A, inst_A,Q, T,G,R,

inst_R, gen_task, gen_goal, req_res, able) where
each tuples are described in detail below,

• S = {si | 1≤ i ≤ u }, wheresi is a state of the sys-
tem. ThereforeS is a set of states of environment.

• t = { t1, t2, . . . ,tn}, eachti, 1≤ i ≤ n, is an atomic
task which the agents in the system are capable of
performing.

• A = {a1, a2, . . . , ap}, be the set of agents in the
system. Eachai, 1≤ i ≤ p, is a type of agent in
the system.

• inst_A is a function defined as:inst_A: A →
N , A = set of agents,N = set of natural numbers
inst_A defines the number of instances of each
agent available in the system.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 27

• Q = {Q1, Q2, . . . , Qm}, where eachQi, 1≤ i ≤
m, is a query which the user may submit to the
system.

• T = {T 1, T 2, . . . ,Tm}, where eachT i, 1≤ i ≤ m,
is a task, which is generated from a specific user
query,T i ∈ ϕ(t)

• G = {g1, g2, . . . , gm}, where eachgi, 1≤ i ≤ m,
is a goal which is generated for each task require-
ment in the system. A goal is some set of states
achieved after successful completion ofT i. gi ∈ ρ

(S)

• R = {r1, r2, . . . ,rq}, where eachri, 1≤ i ≤ q, is a
type of resource in the system.

• inst_R is a function defined as:inst_R : R → N ,
R = set of resources,N = set of natural numbers.
inst_R defines the number of instances of each
resource type available in the system.

• gen_task is a function which maps each query to
a task and is defined as:gen_task : Q → T

• gen_goal is a function which maps each task to a
goal and is defined as:gen_goal : T → G

• req_res is a function which maps each taskT i ∈
T to a subset of(RXI), whereI is the set of non-
negative integers.

req_res :T → ρ (RXI), each task is mapped to a
set of tuples indicating the resource and its number
of requirement.

• able is a function which maps each agentai ∈ A

to a subset oft, Soable : A → ϕ(t)

5 Task Graph

A Task Graph is a formal representation of the
happened-before relationships between tasks. The hap-
pened before relationship is described in the following
sub-section.

5.1 Lamport Happened Before Relationship

If a andb are two events taking place in a system, the
expressiona → b is read as ’a happened beforeb’,
which means all processes agree that before occuring
event b, eventa should occur [22]. The happened-
before relation can be observed directly in two situa-
tions:

• If eventsa andb occur on the same process and the
occurrence of eventa preceded the occurrence of
eventb thena → b = TRUE

• If a is the event of sending a message m in a pro-
cess andb is the event of receipt of the same mes-
sage m by another process thena → b is also true.
A message cannot be received before it is sent or
even at the same time it is sent, since it takes a
finite, nonzero amount of time to arrive.

• Happened-before is a transitive relation i.e. Ifa →
b andb → c thena → c .

5.2 Formal Definition of a Task Graph

A task graphGT=(V t, Et) is an ordered pair consisting
of:

• A setV t={V t1, . . . ,V ta}, where eachV ti, 1≤ i ≤
a, is a vertex which represents a taskti ∈ T which
should be performed.

• A setEt={E1, . . . ,Eb}, where eachEi, 1≤ i ≤ b,
is an edge identified with an ordered pair of ver-
tices (V tm, V tn), which represents the happened-
before relationship between two tasks identified by
those vertices.

Given a set of happened before relationships be-
tween tasks, we can form the task graph by listing all
the vertices representing the tasks and drawing a di-
rected edge fromV ti to V tj if the happened before re-
lationshipti → tj exists in the set of happened before
relationships. Given two tasksti andtj represented by
the verticesV ti andV tj respectively in the task graph,
we can infer the following about them:

• If there exists a directed path from vertexV ti to
V tj in GT , i.e. there exists a sequence of vertices
and edges starting fromV ti and ending atV ti, we
can sayti → tj.

• Two tasksti and tj are concurrent if there is no
directed path either fromV ti to V tj or fromV tj to
V ti.

• There are no circuits and self loops in a task graph.

6 Petri Nets model of the problem

The existing Petri Net tool lacks for modeling this sce-
nario. So, a new tool called Task Petri Nets is proposed
which is described in following sections,

6.1 Task Petri Nets

Task Petri Nets is an extended Petri Net tool which can
model a problem. It can be defined by set of tuples,
TPN = (P, TR, I,O, TOK, F n)

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 28

• P = P is a finite set of places. It can be defined
by union of 8 number of places. So we can write
P = (P t ∪ P h ∪ P c ∪ P e ∪ P f ∪ P r ∪ P a ∪
P d). PlacesP h, P c, P e, P f ∈ P exist for each
task already identified by the interface agent. The
description of the different types of places are fol-
lows:

– P h: Here the presence of a token indicates
that the task represented by this place can
run, i.e. all predecessor tasks that are re-
quired to be completed before this task are
completed.

– P c: Here the presence of a token indicates
that an agent has been assigned for the task
represented by the token of corrosponding
placeP h.

– P e: Here the presence of a token indicates
agent and resources have been allocated for
the task represented by the token of cor-
rosponding placeP h and the task is under
execution by the allocated agent.

– P f: Here the presence of a token indicates
that the task represented by the token of cor-
rosponding placeP h has finished it’s execu-
tion.

– P r: This place exists for each type of a re-
source in the system. i.e.∀ ri ∃ P ri where,
ri ∈ R and 1≤ i ≤ q.

– P a: This place exists for each instance of an
agent in the system. i.e.∀ ai ∃ P ai whereai

∈ R and 1≤ i ≤ p.

– P t: Here the presence of a token represents
initially identified task by the interface agent
.

– P d: This place is created dynamically after
the agent has been assigned for the task(in
placeP c) and the agent decides to divide the
tasks into subtasks. For each subtask, a new
place is created.

• TR is the set of 5 transitions which can be repre-
sented as,TR = (th ∪ tc ∪ te ∪ tf ∪ td). where
th , te , tf exist for every task identified by the in-
terface agent. The description of different types of
transition is as below,

– th: This transition fires if a task represented
by the token of placeP t is enabled i.e. all the
preceeding tasks which should be completed
for the task to start are completed.

– tc: This transition fires if the task represented
by the token of corrosponding placeP h is as-
signed with an agent which is capable of per-
forming it.

– te: This transition fires if all the resources re-
quired by the task represented by the token
of corrosponding placeP c are allocated to it.

– tf: This transition fires if the task represented
by the token of corrosponding placeP e is
completed.

– td: This transition is dynamically created
when the agent assigned for the task repre-
sented by the token of corrosponding place
P d decides to split the task further into sub-
tasks. The subnet that is formed dynamically
consists of places and transitions all of which
are categorized asP d or td respectively.

• I is the set of input arcs, which are of the following
types,

– I1=P t X th : task checked for dependency.

– I2=P r X te : request for resources.

– I3=P e X tf : task completed.

– I4=P f X th : interrupt to successor task.

– I5=P c X td ∪ I1=P a X td ∪ I1=P r X td

∪ I1=P d X tf are input arcs of the subnet
formed dynamically.

• O is the set of output arcs, which are of the follow-
ing types:

– O1=thXP h: task not dependent on any other
task.

– O2=tcXP c: agent assigned.

– O3=teXP e: resource allocated.

– O4=tfXP r: resource released.

– O5=tfXP f: Task completed by agent.

– O6=tfXP a: agent released.

– O7=tdXP d: output arcs of the subnet formed
dynamically.

• TOK is the set of color tokens present in the
places of Petri net. So we can write,TOK =
{TOK1, TOK2, . . . ,TOKX}, where eachTOKi

where 1≤ i ≤ X, is associated with a function
assi_tok defined as:

assi_tok: TOK → (CategoryXTypeXN),
where, Category = set of all categories of to-
kens in the system= {T,R,A }, Type = set of all

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 29

types of eachcategoryi ∈ Category i.e. Type=
{T ∪R ∪A },
N is the set of natural numbers.

Let assi_tok(TOKi) = (categoryi, typei, ni).
The functionassi_tok satisfies the following con-
straints:

– ∀TOKi (categoryi = R)→{(typei∈ R) ∧
(1 ≤ ni≤ inst_R(typei))}

– ∀TOKi (categoryi = A)→{(typei∈ R) ∧
(1 ≤ ni≤ inst_A(typei))}

– ∀ TOKi (categoryi = T) → {(typei ∃ T) ∧
(ni = 1) }.

assi_tok defines the category, type and number of
instances of each token.

• F n is a function associated with each place and
token. It is defined as:

F n: PXTOK → (TIME X TIME).

For a tokenTOKk ∈ TOK, 1≤ k ≤ x,

and placeP i ∈ P , F n(P i, TOKk) = {(ai, aj)},
ai is the entry time ofTOKk to placeP i andaj

is the exit time ofTOKk from placeP l. For a
token entering and exiting a place multiple times,|
F n(P i, TOKk)| = number of timesTOKk entered
the placeP i.

6.2 Rules to construct Task Petri Nets

A Task Petri Nets can be created if the following infor-
mation is provided:

• An initial set of tasks, identified by the interface
agent, calledTASK.

• The happened before relationships between the
tasks, described in the form of Task Graph.

• The resource requirements of each task,taski ∈
TASK.

• The capabilities of the agents present in the sys-
tem.

Given this information, we can construct the Task Petri
Nets by following rules:

• Construct placeP t. It will represent the user’s
query mapped to a single task.

• Construct placesP hi, P ci, P ei, P fi and transitions
thi, tci, tei, tfi for eachtaski ∈ TASK identified
by the interface agent.

• Construct placesP ai for each type of agentaj, 1≤
j ≤ p, aj ∈ A. The number of tokens inP aj place
is inst_A(aj).

• Construct places for each type of resourcerk, 1≤
j ≤ p, rk ∈ R. The number of tokens inP rk place
is inst_R(rk). For eachtaski ∈ TASK, add an
arc from,

– placeP t to transitionthi andthi to placeP hi.

– placeP ci to transitiontei andtei to placeP ei.

– placeP ei to transitiontfi andtfi to placeP fi.

• For eachtaski, if there are ’n’ number of differ-
ent type agents (aj1, . . . ,ajn) capable of perform-
ing it, construct ’n’ number oftci transitions (tci1,
tci2, . . . , tcin) and add arcs fromP hi to all of them
and from the places (P aj1, . . . ,P ajn) to transitions
(tci1, . . . , tcin) respectively. Add arcs from alltci
transitions (tci1, tci2, . . . , tcin) to placeP ci.

• For all (rk, nk), where (rk, nk) ∈ req_res(taski),
add an arc(P r X te) from P rk to tei. The weight
of the arc is equal tonk. Add an output arc(tf X
P r) from eachtfi to allP rk. The weight of the arc
is equal tonk.

• From the task graph, iftaski → taskj, then add an
arc (P f X th) from placeP fi to transitionthj.

• Create ’m’ number oftdi transitions (tdi1, tdi2, . . . ,
tdim) and add an arc (P c X td) from P ci to each
tdij, 1≤ j ≤ m, if the agent assigned totaski

wishes to dividetaski into âmâ sub-tasks. Create
a place for each of âmâ subtasks. These places will
be categorized asP d. Add arcs from each transi-
tion (tdi1, tdi2, . . . , tdim) to places (P di1, P di2, . . . ,
P dim) respectively.

• From eachP dij place, the subnet is created in a
similar way as the subnet is created fromP ci place
for taski. The subnet consists ofP e, P f places
andte, tf transitions all categorized asP d andtd
respectively. The resource requirements and the
happened before relationships between the newly
created tasks are determined by the agent dividing
the task. The petri nets is modified by adding such
places and transitions dynamically. The arcs are
added according to the rules described for ataski.

6.3 Metrics for Performance Analysis

We define the following three metrics for performance
analysis of the system. These are:

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 30

6.3.1 Total Execution Time

This metric gives the total execution time of the system.
∀ TOKi, assi_tok(TOKi) = (T , typei, ni),
F n(P h, (T , typei, ni)) = {(ap, aq) | ap is the time at
which token entered placeP h and aq is the time at
which token left the place.}.

The start time of execution is the time at which the
first task started, i.e. the minimum of the entry times to
P h place of all tokens. So,
St(Starting Time) =
min{ap |(ap, aq) ∈ F n(P h,(T ,typei, ni))},
∀ TOKi, assi_tok(TOKi) = (T , typei, ni).

The finish time of execution is the finishing time of
the last task of the system. So,

F t(Finish time)=
max {ap | (ap, aq) ∈ F n(P h, (T , typei, ni))},
where∀ TOKi, assi_tok(TOKi) = (T , typei, ni).

So, total execution time
(T et) = max {ap | (ap, aq) ∈ F n(P h, (T , typei, ni))}-
min{ap | (ap, aq) ∈ F n(P h, (T , typei, ni))}, ∀ TOKi,
assi_tok(TOKi) = (T , typei, ni)}.

6.3.2 Resource Utilization

This metric determines to what extent each resource in
the system has been utilized. For each resource token
TOKi, assi_tok(TOKi)=(R, typei, ni),
F n(P r, (R, typei, ni))={(ap, aq) | ap

is the entry time of this token to placeP r, aq is the exit
time of this token from placeP r},
Total time for which a token resided at placeP r is given
by:
T pr= Σ (ap - aq), ∀(ap,aq) ∀ F n(P r, (R, typei, ni))
Total amount of time the resource was utilized
= (T et - T pr)/T et

= [1-(T pr/T et)]

6.3.3 Agent Utilization

This metric determines to what extent each agent in the
system has been utilized. For each agent tokenTOKi,
assi_tok(TOKi)=(A, typei, ni),
F n(P a, (A, typei, ni))={(ap, aq) | ap is the entry time
of this token to place
P a, aq is the exit time of this token from placeP a},
Total time for which a token resided at placeP r is given
by:
T ar= Σ (ap - aq), ∀(ap,aq) ∀ F n(P r, (A, typei, ni))
Total amount of time the agent was utilized
= (T et - T ar)/T et

=[1-(T ar/T et)]

7 Comparison of Task Petri Nets with other
forms of Petri Nets

There are other forms of Petri nets avaialble but they
have been found inefficient to model the task assign-
ment process. A comparison of some of these with Task
Petri Nets is given in Table 1. Task Petri Nets have been
compared with Color Petri Nets, Agent Petri Nets and
Predicate Transition Nets on the following areas

• Supports MAS

• Deals with Task Assignment

• Evaluates Performance

• Capacity to model interactions between agents

Table 1: Comparison of Task Petri Nets with other forms of Petri
Nets

Type of Petri Nets
Supports

MAS
Deals with Task

Assignment
Evaluates

performance
Capacity to model

interactions between agents
Color Petri Nets/
Object Petri Nets

No No No No

Agent Petri Nets Yes Yes No Yes
Predicate

Transition Nets
Yes Yes No No

Task Petri Nets Yes Yes Yes Yes

8 Case Study

8.1 Problem

Consider the scenario where the user submits a queryQ

to the system. The interface agent mapsQ to a set of
tasks. Let this set beTASK = {a, b, c, d, e}. There
are two types of resourcesR = {r1, r2 }and three types
of agentsA= {a1, a2, a3}. There are 2 instances ofr1

andr2 each and 3 instances ofa1, a2, anda3 each. The
capabilities of the agents and the resource requirements
of the tasks are defined as:

able(a1)={a };
able(a2)={b, d}; able(a3)={e}.
req_res(a)={(r2, 2)};
req_res(b)={(r1, 2)};
req_res(c)={(r1, 2), (r2,2)};
req_res(d)={(r2, 2)};
req_res(e)= {(r1, 1), (r2, 1)}The happened before re-
lationships between these tasks identified by interface
agent are: a→ b; a→ c; b→d; b→ e; c→ d

8.2 Model of the problem

8.2.1 Task Graph

Figure 1 given below represents the task graph for the
problem described in previous sub-section. Given a set
of happened before relationships, we construct the task
graph as defined in the section 5.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 31

b c

d e

a

Figure 1: Task Graph for the problem

a b c d e

a b c d e

TASK a1 a2 a3

a b c d e

a b c d e

r1 r2

Pt

th

Pa

tc

te

Pc

Pr

Pe

tf

Pf

2 2 2

2 2 2

22

2
2

Ph

Figure 2: Task Petri Nets Model for the problem

8.2.2 Task Petri Nets

According to the rules described in section 6.2, we can
draw the Task Petri Nets based on the given set of tasks
identified by the interface agent, their requirement of
resources and the capabilities of agent. Figure 2 shows
the Task Petri Nets for the problem described above.

8.3 Simulation Results and Discussion

The above scenario is simulated in MATLAB. The
value of one metric, total execution time has been cal-
culated and its variation studied over three parameters
1) number of tasks, 2) number of resources and 3) num-
ber of agents. The duration of each task is assumed to
be 10 sec. The following graphs show the change of

2 2.5 3 3.5 4 4.5 5
40

45

50

55

60

65

70

to
ta

l e
xe

cu
tio

n
tim

e
no. of agents

Figure 3: Graph showing total execution time against no. of agents

execution time against the three parameters.
Figure 3 shows the change of total execution time

against number of agents for a fixed number of tasks
and resources. 7 tasks are taken and random happened
before relationships are generated between them. There
are 10 types of resources each having 4 instances. The
resource requirements of the tasks are also generated
randomly. There are 5 types of agents each having
2 instances initially. Their abilities are generated ran-
domly. Keeping the number of tasks and the number of
resources fixed, the number of instances of each agent
type is increased by 1 along the X-axis. The total ex-
ecution time for 2, 3, 4 and 5 number of instances of
agents is plotted in Figure 3. The number of agents
available in the system is a bottleneck as it determines
the number of tasks executing concurrently. If a task is
not dependent on any other task/tasks for execution, it
should be assigned to an agent. But, if all the agents
capable to perform that task are busy executing other
tasks, the task cannot execute. So, the task has to wait
until a capable agent is free. From the graph, it is ob-
served that as the number of agents in the system in-
creases, the execution time decreases or remains same.
It is because as the number of agents in the system in-
creases, the tasks which could not be assigned to agents
due to their unavailability earlier are assigned due to
an increase in their number. So, number of tasks exe-
cuting concurrently increases which decreases the total
execution time. The total execution time remains same
when the system achieves the maximum possible con-
currency or the concurrency depends on the availability
of resources.

Figure 4 shows the change of execution time against

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 32

3 3.5 4 4.5 5 5.5 6
50

51

52

53

54

55

56

57

58

59

60

no. of resources

to
ta

l e
xe

cu
tio

n
tim

e

Figure 4: Graph showing total execution time against no. of re-
sources

number of resources for a fixed number of tasks and
agents. 7 tasks are taken and random happened before
relationships are generated between them. There are 5
types of agents each having 3 instances. Their abili-
ties are generated randomly. There are 10 types of re-
sources each having 3 instances initially. The resource
requirements of the tasks are also generated randomly.
Keeping the number of tasks and the number of agents
fixed, we increase the number of instances of each re-
source type by 1 along the X-axis. The total execution
time for 3, 4, 5 and 6 number of instances of resource
types is plotted in Figure 4. The number of resources
available in the system is also a bottleneck as it deter-
mines the number of tasks executing concurrently. If a
task is not dependent on any other tasks for execution
and it is assigned an agent, it should get the required
resources to start execution. But, if all the resources re-
quired are not available, the task cannot execute. It has
to wait until the requested resources are available. As
we increase the number of resource instances in the sys-
tem, the execution time decreases or remains same. The
reason is that as we increase the number of resources in
the system, the tasks which could not execute due to
unavailability of resources can now execute due to their
increased availability. So, number of tasks executing
concurrently increases which decreases the total execu-
tion time. The execution time remains the same when
the added resources are not utilized, i.e. the system al-
ready achieves maximum possible parallelism.

Figure 5 shows the change of execution time against
number of tasks for a fixed number of resources and
agents. 5 tasks are taken initially and random happened

5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

no. of tasks

to
ta

l e
xe

cu
tio

n
tim

e
Figure 5: Graph showing total execution time against no. of tasks

before relationships are generated between them. There
are 5 types of agents each having 2 instances. Their
abilities are generated randomly. There are 10 types
of resources each having 2 instances. The resource re-
quirements of the tasks are also generated randomly.
Keeping the number of resources and the number of
agents fixed, we increase the number of tasks by 1 along
X-axis. When a new task is added to the system, it is
either made independent or dependent on some other
task/tasks randomly. The total execution time for 5,
6, 7, 8, 9 and 10 tasks is plotted in Figure 5. If the
new task is dependent on previous task/tasks, then the
execution time increases or remains same, otherwise it
executes concurrently provided the agents and required
resources are allocated. So, we get an increasing graph
when we plot the total execution time against the num-
ber of tasks.

Figure 6 shows the change in total execution time
against two parameters 1) number of tasks, 2) number
of resources. There are 10 types of resources each hav-
ing 5 instances initially. The resource requirements of
the tasks are generated randomly. There are 5 types of
agents each having 4 instances. Their abilities are gen-
erated randomly. The number of resources is increased
by 1 along Y axis i.e. 5, 6, 7 and 8 and number of tasks
is increased by 1 along X axis i.e. 5, 6, 7, 8, 9 and
10. The total execution time is plotted in Figure 6. It is
clear from the graph that the execution time increases
or remains same when the number of tasks increases
while decreases or remains same when the number of
resources increased.

Figure 7 shows the change in total execution time
against two parameters 1) number of tasks, 2) number

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 33

0
2

4
6

8

0

5

10
0

10

20

30

40

50

no. of resourcesno. of tasks

to
ta

l e
xe

cu
tio

n
tim

e

Figure 6: Graph showing total execution time against no. of tasks
and no. of resources

of agents. There are 10 types of resources each having
3 instances. The resource requirements of the tasks are
generated randomly. There are 5 types of agents each
having 2 instances initially. Their abilities are gener-
ated randomly. The number of agents is increased by
1 along Y axis i.e. 2, 3, 4 and 5 and number of tasks
is increased by 1 along X axis i.e. 5, 6, 7, 8, 9 and 10.
The total execution time is plotted in Figure 7. Simi-
lar to the previous case, execution time increases or re-
mains same when the number of tasks increases while
decreases or remains same when the number of agents
increases.

1
2

3
4

5

0

5

10
0

20

40

60

80

100

no. of agentsno. of tasks

to
ta

l e
xe

cu
tio

n
tim

e

Figure 7: Graph showing total execution time against no. of tasks
and no. of agents

Figure 8 shows the change in total execution time
against two parameters 1) number of agents, 2) number
of resources. There are 10 types of resources each hav-
ing 2 instances initially. The resource requirements of
the tasks are generated randomly. There are 5 types of
agents each having 3 instances initially. Their abilities
are generated randomly. The number of tasks is fixed
at 5. The number of agents is increased by 1 along Y
axis i.e. 3, 4, 5 and 6 and number of resources is in-
creased by 1 along X axis i.e. 2, 3, 4 and 5. The total
execution time is calculated and plotted in Figure 8. It
is clear from the graph that the execution time decreases
or remains same along both axes, when the number of
agents and resources increases.

1
2

3
4

5
6

0

2

4

6
0

10

20

30

40

50

60

no. of agentsno. of resources

to
ta

l e
xe

cu
tio

n
tim

e

Figure 8: Graph showing total execution time against no. of agents
and no. of resources

9 Conclusion

In this paper, a Task Petri Nets tool to address the task
assignment problem in MAS is developed. It can rep-
resent agent autonomy and task delegation property. It
can also evaluate the performance of the system using
three metrics. This tool proves better than the existing
tools on grounds as described in Table 1 to model such
scenario. A scenario is simulated in MATLAB and the
value of one of the three metrics is measured. From
the results and discussion, we conclude that to reduce
the total execution time, we have to increase the num-
ber of tasks executing concurrently. This can be done
by increasing the number of agents or resources avail-
able in the system. Thus, the overall impact on the sys-
tem can be analysed with the help of this tool. The
future work is to develop a co-ordination mechanism

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 34

between agents to resolve resource conflicts to increase
concurrency of tasks. It may so happen that some of
the agents will crash while executing some tasks. So,
the future work can also be to develop a fault tolerant
system which will continue to work even if some of the
agents crash while execution.

References

[1] Bai, Q., Zhang, M., and Zhang, H. A coloured
petri net based strategy for multi-agent schedul-
ing. In Proceedings of the Rational, Robust, and
Secure Negotiation Mechanisms in Multi-Agent
Systems, 2005.

[2] Celaya, J. R., Desrochers, A. A., and Graves, R. J.
Modeling and analysis of multi-agent systems us-
ing petri nets.Journal of Computers, 4:981–996,
2009.

[3] Ferreira, P. R. and et. al et. al, F. S. Robocup res-
cue as multiagent task allocation among teams:
experiments with task interdependencies. InAu-
tonomous Agents and Multiagent Systems, 2009.

[4] Gelenbe, E. and Timotheou, S. Random neural
networks with synchronized interactions.Neural
Computation, 20, pages 2308–2324, 2008.

[5] Jensen, K. Colored petri nets – basic concepts,
analysis methods and practical use.Software en-
gineering, Springer-Verlag, Berlin, 1992.

[6] Jindian, S., Heqing, G., and Shanshan, Y. A
coloured petri net model for composite behaviors
in multi-agent system. InProceedings of the IEEE
Conference on Cybernetics and Intelligent Sys-
tem, 2008.

[7] Lenstra, J. K. and Tardos, D. B. S. E. Approxima-
tion algorithms for scheduling unrelated parallel
machines. InProceedings of 28th Annual Sympo-
sium on Foundations of Computer Science, 1987.

[8] Macarthur, K. S. and et. al et. al, M. V. De-
centralised parallel machine scheduling for multi-
agent task allocation. InProceedings of Fourth
International Workshop on Optimisation in Multi-
Agent Systems, 2011.

[9] Macarthur, K. S. and et. al et. al, R. S. A dis-
tributed anytime algorithm for dynamic task allo-
cation in multi-agent systems. InProceedings of
Twenty-Fifth Conference on Artificial Intelligence
(AAAI), 2011.

[10] Maheswaran, R. J., Pearce, J., and Tambe,
M. A family of graphical-game-based al-
gorithms for distributed constraint optimization
problems. InCoordination of Large-Scale Multi-
agent Systems, Springer-Verlag, Heidelberg Ger-
many, pages 127–146, 2005.

[11] Marzougui, B., Hassine, K., and Barkaoui, K. A
new formalism for modeling a multi agent sys-
tems: Agent petri nets.J. Software Engineering
and Applications, 3:1118–1124, 2010.

[12] Modi, P. J. and et. al et. al, W. S. Adopt: Asyn-
chronous distributed constraint optimization with
quality guarantees.Artificial Intelligence Journal,
161, pages 127–146, 2005.

[13] Murata, T. and Nelson, P. C. A predicate - transi-
tion net model for multiple agent planning.Infor-
mation Sciences, pages 57–58, 361–384, 1991.

[14] Nilsson, N. J. Artificial intelligence: a new syn-
thesis. InMorgan Kaufmann Publishers Ltd.,
1998.

[15] Padgham, L. and Winikoff, M. Developing intelli-
gent agent systems- a practical guide.John Wiley
& Sons, Ltd., 2002.

[16] Petcu, A. and Faltings, B. Dpop: A scalable
method for multiagent constraint optimization. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 266–
271, 2005.

[17] Ramchurn, S. D. and et. al et. al, A. F. Decen-
tralised coordination in robocuprescue. InThe
Computer Journal 53(9), pages 1447–1461, 2010.

[18] Rouff, C. and et. al et. al, M. H. Agent technol-
ogy from a formal perspective.Springer-Verlag
London Limited., 2006.

[19] Russell, S. J. and Norvig, P. Artificial intelligence:
A modern approach. InPearson Education., 2003.

[20] Scerri, P. and et. al et. al, A. F. Allocating tasks in
extreme teams. InProceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents
and Multi-Agent Systems, ACM New York, NY,
USA, pages 727–734, 2005.

[21] Tamma, V., Aart, C., and et. al. et. al., T. M. An
ontological framework for dynamic coordination.
In Proceedings of 4th International Semantic Web
Conference. (ISWC 2005), 2005.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

Upadhyay et al. Task Petri Nets for Agent based computing 35

[22] Tanenbaum, A. Distributed operating systems. In
Pearson Education., 1995.

[23] Vidal, J. M. Fundamentals of multi agent systems,
2007.

[24] Weiss, G. Multi agent systems: a modern ap-
proach to distributed artificial intelligence. InMIT
Press, 1999.

[25] Wooldridge, M. J. Introduction to multi agent sys-
tems, 2001.

[26] Xu, D., Volz, R. A., Ioerger, T. R., and Yen, J.
Modeling and verifying multi-agent behaviors us-
ing predicate transition nets. InProc. of the 14th
International Conference on Software Engineer-
ing and Knowledge Engineering, pages 193–200.
ACM Press, 2002.

[27] Zheng, X. and Koenig, S. Reaction functions
for task allocation to cooperative agents. InPro-
ceedings of the International Joint Conference on
Autonomous Agents and Multi-agent Systems AA-
MAS 08, pages 559–566, 2008.

INFOCOMP, v. 12, no. 1, p. 24-35, June 2013.

	Introduction
	Related Work
	Scope of Work
	System Model
	Task Graph
	Lamport Happened Before Relationship
	Formal Definition of a Task Graph

	Petri Nets model of the problem
	Task Petri Nets
	Rules to construct Task Petri Nets
	Metrics for Performance Analysis
	Total Execution Time
	Resource Utilization
	Agent Utilization

	Comparison of Task Petri Nets with other forms of Petri Nets
	Case Study
	Problem
	Model of the problem
	Task Graph
	Task Petri Nets

	Simulation Results and Discussion

	Conclusion

