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Abstract. In the last years, Distributed Visualization over Personal Computer (PC) clusters has become
important for research and industrial communities. They have made large-scale visualizations practical
and more accessible. In this work we survey Distributed Visualization techniques aiming at compiling
last decade’s literature on the use of PC clusters as suitable alternatives to high-end workstations. We
review the topic by defining basic concepts, enumerating system requirements and implementation chal-
lenges, and presenting up-to-date methodologies. Our work fulfills the needs of newcomers and seasoned
professionals as an introductory compilation at the same time that it can help experienced personnel by
organizing ideas.
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1 Introduction

Visualizing huge datasets demands processing power
that surpasses commonplace workstations. To cope
with this need, high-end systems using Symmetrical
Multi-Processors technology (SMP) [2] have been com-
mercialized. Alternatively, during the last decade, a
great number of works have discussed matters of de-
sign and implementation of visualization over computer
clusters. These works constitute the Distributed Visual-
ization discipline and range from complete systems to
prototypes and theories to better utilize distributed com-
putation.

According to the Top 500 Supercomputer list [9],
currently more than 40 percent of the fastest comput-
ers in the world are clusters of networked computers.
Among these clusters are the Quake project [8] at the
Pittsburgh Supercomputing Center, which is composed
of hundreds of proprietary systems in a cluster of work-
stations reaching top generation performance.

Concomitant to this process, the PC commodity in-
dustry has furiously evolved in the last years tending to
continue at this pace, see figure 1. Advances in stor-

age devices, processing power, memory speed, graphi-
cal buses and frame buffers have doubled every period
around two years or less. These resources lead to a
graphical power that was formerly infeasible. Today,
a commodity U$1500 workstation has graphics capa-
bilities that exceed those of a late 1990s U$500K su-
percomputer. These advances, together with network
improvements, made it possible to build PC clusters to
rival high-end machines.

An up-to-date benchmark [18] from the National
Aeronautics and Space Administration agency (NASA)
demonstrates not only that commodity computer clus-
ters rival to SGI workstations, but also that the mainte-
nance cost of these workstations is sufficient to build a
new PC cluster every year. Thus, in this work, we com-
pile the progresses in Distributed Visualization focus-
ing on clusters of PCs. We build a condensed document
aiming at organizing ideas and discussing unsolved is-
sues.

In this text we review the complexities to consider
when designing and implementing Distributed Visual-
ization over clusters of PCs. At the same time, we



Figure 1: Various aspects of commodity hardware
evolution and tendency for a single processing node
equipped with a top generation Graphics Processing
Unit. Except for the network speed data, all the data
were extracted from Fernando’s seminar [19].

present the advantages of this platform, including low
costs for supercomputing, the ability to track technolo-
gies, systems that can be incrementally upgraded, open
source software and vendor autonomy.

The organization of the text is as follows. Section 2
introduces the Distributed Visualization topic and sec-
tion 3 presents a set of issues related to implementing
clusters of PCs. Section 4 presents libraries that intend
to abstract the assembling of such systems and section
5 concludes the paper.

2 The Visualization Pipeline

Visualization is organized according to the model cast
by two works, Upson et al [48] and Haber and McNabb
[25]. Their model, presented in figure 2, describes three
stages to achieve a visualization. In a pipeline structure,
each stage executes a distinct processing whose output
feeds the next stage.

After an initial data collecting stage, the pipeline
proceeds with the raw data volume that is processed ac-
cording to the purposes of the intended visualization. In
this stage, named filter (preprocessing or traversal), the
dataset is selected, filtered, cleaned, enriched, summa-
rized, normalized, and/or submitted to any useful pro-
cessing to optimize the rendering process, e.g., culling
operations. Then, as illustrated in figure 3, the pre-
pared data (object space primitives) are submitted to
a mapping procedure (geometry transformation) to de-
termine how the data will be displayed in the form of
geometrical entities (screen-space primitives), e.g., tes-

Figure 2: Three stages named filter, mapper and ras-
terizer compose the complete visualization pipeline.
The first of them may be omitted, executed before or
along the visualization process. In such case, only the
mapper and the rasterizer stages compose the process.
These two stages determine the core of the visualization
pipeline, which is called rendering pipeline (dashed
rectangle).

selation data, an isosurface or a contour map. The last
stage, named rasterizer (or renderer), applies operations
like projection, lightening and/or shading to the screen-
space primitives in order to finally generate the image
(pixels). The whole process is known as visualization
pipeline, while the last two stages are known as ren-
dering pipeline. We widely refer to the above concepts
along the text.

Figure 3: Illustration of data that may take part of a vi-
sualization pipeline. Two objects, a cube and a sphere,
their correspondent volumes and tesselation data fol-
lowed by renderization.

In the Distributed Visualization domain, the stages
of the visualization pipeline are not restricted to a single
machine or location. Each step may take place locally
or remotely, at the client that will analyze the data or at
the server that owns the processing power. Accordingly,
we define Distributed Visualization as the use of dis-
tributed resources to drive visual analysis. It is expected
that such systems present the possibility of disjoining
data and exploration sites, the possibility of combining
autonomous processing resources and the possibility of
collaborative work.



Advances in commodity hardware have led to the
use of PC clusters as an attractive option for Distributed
Visualization. To explore these prospects, algorithms
have been proposed to deal with memory and commu-
nication constraints in distributed environments. This
approach increases the limits of a single PC, but it has
to tackle with load balancing and inter-process commu-
nication, among other problems, that we discuss in this
text.

3 Design and Implementation Issues for Dis-
tributed Parallel Rendering Systems

Distributed Visualization systems have been oriented
to PC clusters (distributed memory) architectures that
concern parallel rendering in distributed systems. Mo-
tivations include: the low cost of commodity PC hard-
ware is far smaller than that of high-end visualization
systems; PCs are all-purpose machinery and can also
be used for non-graphical applications; it is possible to
benefit from the standards of the PC market, which al-
lows for a continuous upgrade with reduced effort; the
open-source movement provides high quality software
at low costs; and, it is possible to add more PCs to the
system in order to bear with power increase demands.

The main consideration for Distributed Visualiza-
tion over PC clusters is the algorithm that binds the
distributed resources into the visualization pipeline de-
fined in section 2. Such algorithms fall into one of three
categories: sort-first, sort-middle and sort-last (sub-
section 3.1), having as their design goal concerns on
load balancing and communication constrains among
the nodes of the cluster (subsection 3.2). Supporting
this structure lies network technology (subsection
3.3), techniques for data management (subsectoin 3.4)
and techniques for parallel storage (subsection 3.5).
Another concern is the operating system over which
the distributed visualization ensemble will execute
(subsection 3.6). Alternatively, distributed parallel
rendering libraries offer high-level implementation, as
reviewed in the next section.

3.1 Algorithms for parallel tiled Distributed Visual-
ization

In reference to the foundational visualization pipeline
described in seciton 2, Molnar et al [36] formulate
the most accepted classification for distributed paral-
lel rendering algorithms. Their analysis determines
how the visualization pipeline (geometric transforma-
tion followed by rasterization) maps onto a general par-
allel algorithm. According to the theory, the paral-

lelism is achieved through the assigning of transforma-
tion tasks (on object-space primitives) and rasterization
tasks (on image-space primitives) to the distributed pro-
cessing units.

Figure 4: Algorithms for distributed rendering rely on
the decision of where/when the parallel tasks will be
designated for the processing units. This is considered
a sorting/classification problem. There are three possi-
bilities for this sorting operation, each of which deeply
characterizes the correspondent algorithms.

The idea is that the complex modeling of visual-
ization scenes, geometrical entities (object-space prim-
itives and screen-space primitives) and rendered pixels
can be distributed in different ways across the process-
ing resources. The design task, thus, worries about how
to assign the data portions of the pipeline so that the in-
tended image can be achieved at the end. At the same
time, processing load and network communication con-
straints must be satisfied. Sutherland et al [44] consider
it a sorting (or classification) problem. This sorting can
occur in one of three moments, as presented in figure
4. After the sorting is complete, the data need to be
redistributed among the nodes to reflect the new-sorted
arrangement.

The classes defined when considering the render-
ing pipeline and the sorting problem are named sort-
first, sort-middle and sort-last. They differ by terms
of bandwidth requirements, amount of duplicated work
and load balance.

Sort-first (image (or pixel) space parallelism)
In sort-first, the screen is divided into disjoint regions
(tiles) that are assigned to the processing nodes, as il-
lustrated in figure 5. To do so, the objects primitives
are submitted to a minimum geometry transformation
(screen-space bounding box calculation) necessary to
determine which tile of the screen they overlap. Then,
the objects primitives are transmitted to the process-
ing nodes (renderers) that correspond to the tiles of the



Figure 5: Classical sort-first configuration. Based on
tiled partitioning information, the data is distributed
among the processing nodes. After transformation and
rasterization, a final step assemblies the tiles to form the
image.

screen, where both transformation and rasterization are
performed. Finally, the rendered tiles are reassembled
to form the final scene.

The initial geometry transformation phase of
sort-first is called pre-transformation. Due to this extra
processing, sort-first is the most expensive design for
distributed visualization, but also the least bandwidth
consumer. Examples include the work by Zhu et
al [50] and the work by Mueller [39]. The later
presents a study about sort-first implementation and its
advantages, mainly the frame-to-frame coherence (high
for interaction sequences) and the lower bandwidth
demand.

Sort-middle
It is the natural approach for distributed parallel ren-
dering because transformation and rendering are per-
formed at different levels of the cluster, see figure 6.
Initially, the algorithm distributes object space prim-
itives among the nodes according to some load bal-
ance method, e.g, round robin. Then, after geome-
try processing, the resultant screen space primitives are
distributed to the rasterization nodes. Similar to sort-
first, the algorithm assigns tiles of the screen to spe-
cific processing nodes but, differently, there is no pre-
transformation step.

The disadvantages occur when the tessellation ratio
is high. Tessellation refers to the decomposing of larger
primitives into smaller ones. It determines that the sys-
tem must redistribute several display primitives instead
of just one object primitive. For sort-middle, high tes-
sellation ratios imply in higher communication costs.

Another disadvantage of sort-middle is the load
imbalance on the rasterization units if the primitives

Figure 6: Sort-middle configuration with two levels of
processing nodes. The screen-space data communica-
tion may also occur in between nodes at the same level,
determining a one-level-only structure, where transfor-
mation nodes also act as rasterization nodes.

are unevenly distributed over the screen, what also
may occur to sort-first algorithms. Also, according to
Mueller [39], the loose coupling in the middle of the
pipeline can limit feedback from the rasterization stage
back to the transformation stage, what makes certain
visibility culling algorithms either less efficient or in-
feasible. Montrym et al [37] present a custom-designed
implementation of this parallelism and Ellsworth [16]
makes an extensive review of sort-middle systems.

Sort-last (object-space parallelism)
In this case, the sorting occurs after the end of the ren-
dering pipeline, that is, the pixels are ready to compose
the image, as presented in figure 7. In a load-balanced
manner, the processing nodes (renderers) receive arbi-
trary subsets of the object-space primitives. After trans-
formation and rasterization, the resultant pixels are sub-
mitted to a composition procedure. At this final step,
sort-last will have produced a set of full-screen images
(sort-last-full) or a set of screen-space primitives (sort-
last-sparse). These images are recomposed by hard-
ware or software that compute every sample at each
pixel to define the primitives’ visibility. This is called
(depth) sorting and, according to Foley et al [20], it
relies on the use of Z-buffering. Thus, the processing
nodes must send, along with the pixels, the correspon-
dent Z-buffers. This need highly increases the required
bandwidth to the order of gigabytes per second.

The advantages of sort-last are the better control of
load balance concerned to the object-space primitives
and the simplicity of the approach because the process-



ing nodes perform the full pipeline independently. Im-
plementation examples include the works by Lombeyda
et al [33] and by Morel et al [38].

Figure 7: Sort-last-full configuration. The initial dis-
tribution of tasks considers only load-balancing direc-
tives. In a second step, each processing node is respon-
sible for the complete rendering of a full screen image
with only a subset of the objects that compose the visu-
alization. At the final step, each screen is superimposed
following depth information in order to have the correct
visibility of the visual entities.

In the literature, each author advocates for her/his
choice considering the most suitable features for sort-
first, sort-middle or sort-last. More recent works point
to sort-first and sort-last to be used with PC cluster
implementations. Sort-middle is used with high-end
shared-memory systems as SGI’s hardware, probably
because fast memory buses are less influenced by the
overheads of sort-middle. For comparison, in table 1
we present an overview of the three possibilities.

Hybrid approaches are also possible, as done by
Samanta et al [43] and Garcia and Shen [21]. The
former work tries to minimize the sort-last composi-
tion overhead by means of a dynamic sort-first parti-
tion. Their approach benefits from a view-dependent
partitioning of both the 3D model and the 2D screen.
The later work leverages the advantages of both sort-
first and sort-last approaches with a hybrid-sorting of
both image and data partitioning for load balance.

3.2 Load balancing

Load balance applies distinctly for image parallelism
(sort-first, sort-middle) and object parallelism (sort-
last). In object parallelism, object distribution-rules de-
fine how to reach nearly equal loads among the process-
ing nodes. In image parallelism, load balance is based
on screen partitioning methods.

Ellsworth [16] points that, for object parallelism,
random or round robin approaches are used to distribute
objects among the processing nodes. These techniques
work fairly well for objects with homogeneous size and
complexity. For objects with great differences, the time
to process them may vary by a large factor. Further pos-
sibilities for load balancing consider the geometry as hi-
erarchical structures or as sets of primitives (flat struc-
tures), this topic is reviewed by Ellsworth et al [17].

For image parallelism, if not equal portions of the
image are assigned to the processing nodes, some of
them will remain idle while waiting for others to finish
their task. This problem is treated by screen dividing
methods, as exemplified in figure 8, which can be static
or dynamic.

Figure 8: Screen-partitioning with 9 tiles. By means
of frame coherence, only the primitive highlighted in
tile 7 must be sent in order to draw tile 8 in frame 2,
which was formerly empty. The other primitives remain
in memory via retained mode operation.

Static screen dividing methods divide the screen
into more regions than the number of processing nodes
and assign the regions in an interlaced fashion to these
nodes. The number of regions per node is called gran-
ularity ratio. For low granularity the workload may not
be balanced. For high granularity, we may have a high
overlap factor (the average number of regions over-
lapped by the primitives), what leads to network over-
load in image parallelism. If a primitive lies over three
regions, the entire primitive must be transmitted three
times for transformation and rasterization because, even
if just a small piece overlaps a tile, its computation de-
pends on the entire primitive. According to Molnar et
al [36], if we assume equal sized primitives and equal
probability for the positioning of these primitives on the
screen, the overlap factor is given by:

Overlap = ((Rweight + Pweight)/Rweigth) ∗ (1)
((Rheight + Pheight)/Rheight)

Where Rweight, Rheight, Pweight and Pheight are,
respectively, the weight and the height of a given screen
region and the weight and the height of a given primitive
bounding box.



Table 1: Overview of the main algorithm possibilities for Distributed Visualization.
Feature Sort-first Sort-middle Sort-last
Parallelism image object / image object
Sorted data object space primit. screen space primit. pixels (z-buffer)
Bandwidth demand low medium high
Overhead factor pre-transform./overlap high overlap image composition
Frame coherence yes no no

Dynamic (adaptive) screen dividing methods work
by computing statistics from on-screen primitives dis-
tribution in order to intelligently determine and assign
the tiles. These algorithms add overhead to the visu-
alization process first due to the gathering of statistics
and decision making they implement; and second due
to the more elaborated screen division. Two common
approaches for adaptive screen division are: first to stat-
ically partition the screen and then dynamically allocate
them to the processing nodes; another method is to first
settle a constant number and assignment of regions and
then dynamically vary their shape, as done by Roble
[42]. Also, dynamic partitioning combined with dy-
namic assignment is possible, as proposed by Mueller
[39]. Finally, a comparison of algorithms for space di-
vision is available in the work by Kurc et al [30].

3.3 Network issues

The great disadvantage of PC clusters if compared to
shared bus (SMP) systems is that data sharing does
not occur over a high speed direct access memory bus,
but over a much slower network. Thus, network fac-
tors demand special attention in order to reach effective
bandwidth and network latency performances. Band-
width corresponds to the available data/time transmis-
sion. Network latency is the time to prepare and trans-
mit the data between two nodes.

Bandwidth constraints are affected by the network
speed, the data-network adapter speed, the bus interface
and the memory. That is, the bandwidth is a function of
the data traveling time, receiving time, in-node transfer
time and memory storage time.

Meanwhile, the network latency varies with the net-
work interface that sends/receives the data, the bus in-
terface to in-node read/transfer the data, the memory
architecture to access/store the data and the processing
power available to decide and perform the whole pro-
cess. High network latency times barely affects scarce
long message communication, e.g. Internet browsing,
but it is decisive for communication characterized by
plentiful short messages, as required by computer clus-
ters.

These factors must be designed to maximize the
bandwidth at the same time that the latency be mini-
mized. Together with high quality hardware and system
architecture, an appropriate network must be settled. A
suitable practice is to isolate the cluster in a network in
which traffic is limited to the cluster communication.
This setting constitutes a System Area Network (SAN).
In such systems, the hubs must have minimal retransfer
latency and the interconnection of different networks
must be avoided due to higher latency. For optimiza-
tion, a switch device, instead of a hub, can serve the
network so that intelligent directional ports permit
parallel communication. Following we review major
factors to come up with a suitable network structure for
distributed parallel rendering.

The Message-Passing Interface (MPI) standard
The MPI standard [24], is a message-passing library
being developed since 1992. A message passing li-
brary is a high-level abstraction that permits inter-
communication within a collection of autonomous pro-
cesses each of which with its own local memory. It
eases the implementation of shared memory and dis-
tributed shared memory systems, which are the founda-
tion of computer clusters parallelism. There are several
message-passing libraries, but the MPI standard is the
de facto convention for clusters.

MPI ranges from supercomputing to PC clusters. It
is a standard and not a product, implementations of it
are available for several operating systems and network
technologies. Liu et al [32] present a performance
comparison of MPI implementations over InfiniBand,
Myrinet and Quadrics technologies (detailed further in
this section). Gropp et al [23] describe the MPICH,
a portable implementation of MPI (“CH” stands
for “Chameleon”). MPICH is the most used free
distribution of MPI and its design goal is to combine
performance with high portability within a single
implementation. Another popular implementation of
MPI is Romio [45], with broad portability and free
on-line support.



Via technology
In stacked-based communication protocols, as TCP/IP,
great part of the latency is caused by the in-node oper-
ation. When a process in a cluster node wants to trans-
mit, it prepares the data and makes a high-level call to
some network API that access the network hardware.
Then, when the respective interruption request (IRQ)
is issued, the OS copies the data to some other mem-
ory space used as buffer. This buffer, finally, is read by
the network hardware that transmits it via the physical
layer. This process consumes a large amount of time per
data transmission, lowering the process by up to orders
of magnitude.

To lessen this problem, it was conceived the Vir-
tual Interface Architecture (VIA) [13]. VIA, created
by Intel, Compaq and Microsoft, describes an alterna-
tive interface between network hardware and user soft-
ware. This interface provides direct access to the net-
work hardware (user level communication protocol),
what lowers the transmission latency by avoiding the
OS intermediation (zero-copy protocol). VIA is accom-
plished by hardware integration on the Network Inter-
face Card (native implementation), or by software em-
ulation. The former achieves the best performance, the
later consumes extra processing, but even though its la-
tency performance surpass that of regular network us-
age, according to a IEEE report [1].

Cameron and Regnier [13] present complete infor-
mation about VIA. Baker et al [10] describe a study
on VIA performance gains over Gigabit Ethernet. In
[29] it can be found information about the MVICH
(MPICH for Virtual Interface Architecture), a popular
implementation of MPI on top of VIA technology.
Also in [29] it is described the Modular VIA (M-VIA)
a high performance implementation of VIA for Linux
systems. The use of VIA is a straight method to
diminish the effects of network latency, which is the
main limitation in computer clusters.

Network technologies
Transmitting 3D objects over the network, as for sort-
middle algorithms, can compromise the available band-
width. Thus, research is performed to devise geom-
etry compression algorithms, as done by Touma [47].
These algorithms reduce bandwidth requirements to up
to 10 bits per vertex, including connectivity. How-
ever, the required bandwidth and network latency still
can overscale commodity Ethernet networks. To cope
with that, high-performance interconnection technolo-
gies are used. We list them on the next paragraph.

Myrinet [12] is a packet-communication and
switching technology used to interconnect clusters of

workstations, it offers up to 2 Gigabit/second full du-
plex links and it is based on the ANSI (American Na-
tional Standards Institute) Standard ANSI/VITA 26-
1998. The Quadrics technology [41] reaches up to
8.5 Gigabit/second full duplex rates on top hardware
systems provided with the QsNet II network. Infini-
Band [5] is steered by an association of member com-
panies involved in performance computing, data center
and storage implementations. It offers up to 30 Giga-
bit/second channels. The Scalable Coherent Interface
(SCI) network, which is an ANSI/ISO/IEEE Standard
(1596-1992), has been specifically designed to com-
puter clusters. With reduced network latency time, SCI
behaves like a bus or a network using point-to-point
links to achieve higher speed. It implements a cache
scheme as a coherent virtual shared memory. Its Dol-
phin [4] release reaches up to 2.6 Gigabit/second rates.

In table 2 we present an overview of these tech-
nologies together with the Gigabit Ethernet commodity
technology. The data are only for rough comparison be-
cause a number of other factors may influence the per-
formance and costs.

All these technologies have support for VIA (native
or emulated) and for implementations of MPI. The
choice for one of them depends on other factors such as
compatibility with the cluster equipment and operating
system, performance and price. Latency is decisive
for massive short message communication, thus, the
ill latency performance of Ethernet makes it the worst
choice. Quadrics and Infiniband present superior band-
width coupled with very attractive latency times. The
drawback is the elevated price of these options. More
adequate alternatives are Myrinet and SCI networks.
Myrinet has already been widely used for clustering,
while SCI presents the best latency performance. In [1]
it is presented a wide description of these technologies
and Yeo et al [49] present a benchmark-oriented study
about the topic.

3.4 Data management

Distributed Visualization deals with terabyte order
datasets over heterogeneous platforms. The storage
and utilization of this information have specific im-
plications, specially the required physical space, the
I/O tasks to be performed in suitable time and the
applications’ expected data format. Therefore, three
efforts have emerged as leading initiatives to determine
standards in scientific large volume data management:
HDF [7], CDF [6] and netCDF [31].



Table 2: Network technologies overview.
Network technology Bandwidth (MB/s) Latency (µs) Avg. Price/Port (U$) [40]
Gigabit Ethernet < 125 < 100 ∼ 300.00
10 Gigabit Ethernet < 1250 < 60 ∼ 7000.00
Myrinet [12] < 250 < 10 ∼ 400.00
Quadrics QsNet II [41] < 1064 < 3 ∼ 2000.00
Infiniband [5] < 3750 < 7 ∼ 800.00
SCI [4] < 326 1-2 ∼ 800.00

HDF, CDF and netCDF provide a platform-
independent library via a high-level API. The stored
data can be of any dimensionality and of several forms
(numerical, string, images), it can be randomly read
or written, unitarily or in blocks. HDF employs a
more flexible data model (hierarchical) than netCDF
and CDF (multidimensional array) and, according to Li
et al [31], this flexibility comes at the cost of higher pro-
cessing loads. The three formats are nearly equal refer-
enced in the literature, they present equivalent features
and performance. The choice for one of them should
consider compatibility with the target system in hard-
ware, software and development language.

3.5 Parallel File Systems

In Distributed Visualization, it is possible to have tens
of machines simultaneously accessing the same tera
byte dataset. A single disk device cannot cope with
these needs. Parallel file systems were designed to deal
with this problematic. These systems are designed on a
client-server basis with multiple servers running a sort
of I/O daemon. The parallel file system strips the files
and store them across these servers. To retrieve infor-
mation, the system reassembles a desired file and trans-
mits it to the client. The whole process occurs automat-
ically via calls to a user level library. Other function-
alities like permission checking for file creation, open,
close and removal are supported by an auxiliary man-
ager process that handles meta data during the system
operation.

Parallel file systems have to be robust and scalable,
conform to existing I/O APIs for backward compatibil-
ity, maintain addressing file semantics, provide transac-
tion support and be easy to use and install. Among the
most popular implementations of parallel file systems
for commodity PCs are the Lustre system [28], from
Cluster File Systems Inc., released as open-source soft-
ware, and the Parallel Virtual File System (PVFS) [14],
also open-source, both for the Linux platform. The later
is in its second release, which presents a number of im-
proved features and a new design.

Real parallel file systems are very complex. Maybe
that is the reason why there is just a few implemen-
tations available for PC clusters. Comparing the op-
tions is not simple, as their complexity confer them
a great number of features that are difficult to bench-
mark. Margo et al [35] perform an extensive analy-
sis of PVFS, Lustre and GPFS, however no categorical
conclusions are drawn being up to the analyst to de-
cide which one to choose. With the release of Lustre as
open-source and with the emergence of PVFS version
2, these systems tend to evolve providing regular new
features.

3.6 Operating System

A report from Silicon Graphics observes [3] that the
operating system (OS) is replicated at each machine
of a PC cluster leading to costs increase for each new
node. License expenses, memory and processing re-
quirements of each operating system instance sum up
to a great burden. According to Yeo et al [49], be-
sides these factors, the choice for the operating system
in a cluster must consider: manageability, management
and administration of local and remote resources; sta-
bility, robustness against system failures with system
recovery; performance, optimized efficiency for OS
tasks; extensibility, ability to easily integrate cluster-
specific extensions; scalability, scale without perfor-
mance degradation; support, user and system admin-
istrator support; and heterogeneity, support to multiple
architectures to define a cluster consisting of heteroge-
neous hardware.

Another consideration is the OS configuring like-
ness to enable variable configurations and customized
optimizations. Choices in the market point to Unix pro-
prietary solutions, to expensive Windows easy-to-set
systems and to low-cost flexible (open-source) Linux
systems. According to the worldwide top 500 hundred
supercomputers list, reported by the Forbes magazine
[34], the Linux platform has beaten competitors as the
main choice for supercomputing.



3.7 Technologies Summarization

To link much of the information provided so far, in fig-
ure 9 we present the I/O structure of a cluster of com-
puters with optimized data access. At the top layer is the
parallel execution which is responsible for the data pro-
cessing according to one of the parallelisms described
in section 3.1. These algorithms are load-balanced ac-
cording to the discussion carried out in section 3.2.

Figure 9: The layers of a Distributed Visualization sys-
tem. Storage devices are at the lowest layer abstracted
by parallel file system access. The MPI standard, along
with VIA technology, provides easy multi-point com-
munication for data management libraries, such as HDF
and netCDF, that feed the application with the data to be
processed. At the highest layer, the parallel execution
is performed to produce visualization images.

This model illustrates the state-of-the-art implemen-
tation strategy for Distributed Visualization concerning
large datasets. The methodologies and technologies to
be used at each layer depend on several factors as dis-
cussed along the text. Currently, works in the litera-
ture deal about finding the better settings for this model
and/or to simplify it with more abstracting layers. This
last issue is introduced in the next section in the form of
distributed parallel rendering libraries.

The layers in figure 9 are assisted by optimized net-
work technologies, as presented in section 3.3. Among
these technologies, the MPI standard, combined with
VIA technology, is present at each layer of the model
by providing simplified optimum access to remote data.
To efficiently promote data access, it is necessary to
use data management libraries, like those presented in
section 3.4. These libraries access the information at
the lowest layer, where lies the storage hardware pro-
viding voluminous data access. To abstract the storage
hardware, parallel file systems, like the ones described

in section 3.5, provide parallel high-performance trans-
parent access.

4 Distributed parallel rendering libraries

Attempts have been carried out to abstract Distributed
Visualization through graphical libraries. The goal
is to allow ordinary graphical library calls and have
simplified management of distributed processing units
as a visualization cluster. Earlier works met this goal
but are not based on commodity hardware. Later
proposals address commodity PCs.

WireGL
The WireGL library [26] replaces the OpenGL driver to
enable OpenGL in Distributed Visualization environ-
ments. By preserving the OpenGL API, applications
can run on top of WireGL without recompilation and
be provided with performance speedups, according
to Humphreys et al [26]. WireGL supports one or
multiple clients simultaneously sending commands and
data to one or multiple servers in sort-first parallelism.
It intercepts regular OpenGL commands and send
them to servers over the network. It also implements
a network protocol for geometry communication
and performs final image reassembly in software or
hardware.

Chromium
Chromium [27] is an advanced derivation from WireGL
that similarly overlays OpenGL for compatibility. It
supports the use of stream processing units, or SPUs,
that perform specific rendering tasks. The SPUs can
be chained to achieve a complex rendering execution.
Chromium’s architecture primes for its general orienta-
tion and flexibility. The SPU chain can be configured
arbitrarily and both sort-first and sort-last parallelisms
have been achieved, according to Humphreys et al
[27]. The drawback of Chromium’s architecture is that
its performance is influenced by its stream orientation,
which cannot efficiently exploit frame coherence.

OpenSG
OpenSG [46] is a scene graph multi-threaded API,
specially designed for Virtual Reality applications.
The scene graph metaphor (or hierarchical graphics
database) organizes a graphical model as a graph that
can manage visual entities hierarchically. By main-
taining a copy of the scene graph for each thread,
the threading system copes with distributed rendering
because various servers can simultaneously respond
to interaction (graph changes). To do so, OpenSG
bears a client-server setup to replicate data on multi-



Figure 10: Example of a scenegraph defined with the
Generalized Scene Graph API [15]. The hierarchical
structure of the graph provides eased handling of com-
plex scenes via propagated operations along the paths
of the graph. Reproduced with permission granted by
Jürgen Döllner and Klaus Hinrichs.

ple machines that receive broadcasts informing of graph
changes every frame. The library is flexible and can be
used for implementing sort-first, sort-middle and sort-
last algorithms. A similar library, also scene graph ori-
ented, is the OpenRM project [11].

The general orientation and high-level style of these
libraries cause them to be less scalable than specific
optimized implementations. This limitation is clearly
demonstrated by Gribble et al [22] who ported their
Simian project both to a customized cluster implemen-
tation and to the top of the Chromium framework for
performance comparison. Other issues are flexibility
and compatibility.

5 Conclusions

We have surveyed basic concepts on Distributed Visual-
ization. The presented content aims at elucidating what
a Distributed Visualization system is, how it is charac-
terized and what issues involve its design and imple-
mentation. We provide to beginners an introductory di-
rection both for research and development and, for more
experienced readers, we provide an analytical view of
such systems. We have focused on distributed parallel
rendering architectures, a cluster-based systematization
that has popped up in the literature as works that ex-
plore flexible commodity low-cost PCs. These imple-

mentations have reached great performance levels and
scalable architectures that evolve to the pace of market
innovations.

Many challenges still have to be bypassed in
Distributed Visualization. Although the higher per-
formance of PC clusters, their power is far from
workstations as Silicon Graphics’s InfiniteReality4 en-
abled systems, which scales up to 20.6 Gpixel textured
antialiased pixels filled per second, or further. Robust
real-time rendering for dynamic datasets is also an
open challenge. Of-the-shelf Distributed Visualization
software to amplify collaborative analytical work
has not been accomplished either. We expect that
this work can stimulate the quest for these goals by
providing a source of information about the Distributed
Visualization expertise.
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