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Abstract. Evaluating software development effort remains a complex issue drawing in extensive re-
search consideration. The success of software development depends very much on proper estimation of
effort required to develop the software. Hence, correctly assessing the effort needed to develop a soft-
ware product is a major concern in software industries. Random Forest (RF) technique is prevalently
utilized machine learning techniques that aides in getting enhanced evaluated values. The main research
work carried out in this paper is to accurately estimate the effort required in developing various software
projects by using the optimized class point approach (CPA). Then, optimization of the effort parameters
is achieved using the RF technique to obtain better prediction accuracy. Furthermore, performance com-
parisons of the models obtained using the RF technique with other machine learning techniques such
as the Multi-Layer Perceptron (MLP), Radial Basis Function Network (RBFN), Support Vector Regres-
sion (SVR) and Stochastic Gradient Boosting (SGB) techniques are presented in order to highlight the
performance achieved by each technique.

Keywords: Class Point Approach, Object Oriented Analysis and Design, Random Forest, Software
Effort Estimation.
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1 Introduction

Object-oriented (OO) technology is the accepted
methodology for software development in major indus-
tries. Various features are offered by object oriented
programming concepts, which play an important role
during software development process [3]. With the in-
crease in the complexities associated with modern day
software projects, the need for early and accurate ef-
fort estimation in the software development phase has
become pivotal. Currently used effort estimation tech-
niques like Function Point (FP) and COCOMO, fail to
consistently estimate the cost and effort required to de-

velop the software [20]. These techniques are not ca-
pable of measuring cost and effort because they are
tailored for procedural-oriented software development
paradigm [12, 21]. The procedural oriented paradigm
and object-oriented paradigm differ because the former
splits the data and procedure; while the latter combines
them.

As far as effort estimation is concerned, a num-
ber of unsolved problems and errors still exist. Accu-
rate estimation of a software project is always impor-
tant for determining the feasibility of the project [19].
In the present scenario, most software project planning
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depends upon accurate effort estimation. Since class
is the fundamental logical unit of an OO system, the
utilization of the class point methodology to compute
the project effort serves to get a improved result. Dur-
ing the calculation procedure of the final adjusted class
point, two measures, CP1 and CP2, are utilized. CP1
is figured utilizing two measures, Number of External
Methods (NEM) and Number of Services Requested
(NSR); whereas CP2 is ascertained by utilizing an al-
ternate metric as a part of expansion to NEM and NSR,
Number of Attributes (NOA). NEM figures the mea-
sure of the interface of a class and is directed by the
measure of local public methods, although NSR gives
a measure of the linkage of the components of the soft-
ware system. On the other hand, NOA helps in finding
out the number of attributes utilized in a class. In case
of function point approach (FPA) and CPA, the Techni-
cal Complexity Factor (TCF) is calculated based on the
impact of various general characteristics of a system.
However, in both these cases, the non-technical fac-
tors such as effectiveness of the management, technical
competence of developers, security of the system, sys-
tem’s reliability, system’s maintenance capability and
system’s portability are not looked into [25]. Hence in
this study, the optimized CPA is utilized to ascertain the
effort needed to create the software adopting these six
non-technical factors. The fuzzy logic approach is used
to optimize the complexity value of various types of
class which in-turn optimizes the final estimated class
point value. Likewise with a specific end goal to ac-
complish better prediction accuracy, a Random Forest
(RF)-based effort estimation model is applied over the
obtained optimized class point value. The results ob-
tained from the RF-based estimation model are then
compared with the results obtained from other machine
learning techniques i.e., MLP, RBFN, SVR and SGB-
based models in order to access their performance. Re-
sults proved that the RF technique-based software effort
estimation model outperforms other models.

2 Related Work

Costagliola et al. [5] observed that the prediction ac-
curacy of CP1 and CP2 under the class point approach
were 75% and 83% respectively. They drew this con-
clusion by conducting an experiment on a dataset with
forty projects. Zhou and Liu [25] extended this method-
ology by including an alternate measure CP3 and con-
sidered twenty four attributes rather than the eighteen
acknowledged by Gennaro Costagliola et al. By uti-
lizing this methodology, they watched that the perfor-
mance of CP1 and CP2 stay unaltered, although the
number of characteristics changed. Kanmani et al. [9]

utilized the same CPA with the ANN model for map-
ping CP1 and CP2 into the assessed software devel-
opment effort and observed that the prediction accu-
racy for CP1 was enhanced to 83% and CP2 to 87%.
Kim et al. [11] presented some new meanings of class
point to interpret system’s architectural complexity in
an improved way. They utilized various additional pa-
rameters along with NEM, NSR and NOA to compute
the total number of adjusted class point value. Kan-
mani et al. [10] introduced a novel technique to utilize
the CPA with fuzzy logic by embracing the subtrac-
tive clustering technique for computing effort and con-
trasted it with the result acquired from the ANN. They
observed that the fuzzy system focused around the sub-
tractive clustering technique outperforms ANN. Sheta
[23] used Takagi-Sugeno-Kang (TSK) fuzzy model to
develop fuzzy models for two different type of nonlin-
ear processes. The first one is NASA software projects
effort estimation process and the second one is the stock
market prediction process for S& P 500.

Satapathy et al. [22] proposed a novel SVR based
effort estimation technique-based class point approach
and obtain promising results. Satapathy et al. [19] also
proposed a novel SGB technique-based effort estima-
tion model using class point approach. From the anal-
ysis, it is observed that the SGB technique-based effort
estimation model provides improved prediction accu-
racy than MLP and RBFN technique. Elish [6] used
multiple additive regression trees as a novel advanced
data mining technique that broadens and enhances the
classification and regression trees (CART) model using
a treeboost technique. The predicted results obtained
were then compared with linear regression, RBFN, and
SVR models with the help of a NASA software project
data set and found an improved estimation accuracy.
Nassif et al. [17] presented a novel regression model for
software effort estimation focused around use case dia-
grams. By analyzing the outcome, they proved that the
the software effort estimation accuracy can be improved
by 16.5% using PRED(25) and 25% using PRED(35).
Elyassami et al. [7] investigate the utilization of Fuzzy
choice tree for software effort estimation. The proposed
model empower to handle questionable and loose in-
formation, which enhance the correctness of obtained
evaluations.

Nassif et al. [15] proposed a new regression model
for software effort estimation based on use case point.
Further, they applied a Sugeno fuzzy inference system
technique on this model and obtain an improvement of
11% in MMRE value. Nassif et al. [16] also proposed
an ANN model to anticipate effort required to develop
software from use case diagrams focused around the
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UCP model with the assistance of 240 data and ob-
tained an improved result than other regression models.
Pahariya et al. [18] proposed a new concurrent archi-
tecture for a genetic programming based feature selec-
tion algorithm for software effort estimation and com-
pared the predicted effort with other computational in-
telligence techniques. The results show that the new
recurrent architecture design for GA performs better
than the other models. Nassif et al. [14] also proposed
some other techniques using fuzzy logic and ANN to
enhance the correctness of the UCP model and achieved
up to 22% improvement in prediction accuracy result..
Huang et al. [8] proposed a neuro-fuzzy technique for
software effort estimation and obtained promising re-
sults. Baskeles et al. [1] proposed a model that uses
machine learning techniques and assess the model us-
ing the data collected from public data sets and the data
collected from software industries. From investigation,
it is discovered that the utilization of any one model
can’t create the best comes about for software effort es-
timation.

3 Methodologies Used

The following methodologies are used in this paper to
calculate the effort of a software product.

3.1 Class Point Approach (CPA)

The CPA was presented by Gennaro Costagliola et al.
in 1998 [4]. It was focused around the FPA methodol-
ogy to speak to the interior qualities of a software. The
essential thought of the CPA system is calculation of
classes in a project. It is determined from the percep-
tion that in the procedural model functions or methods
are the essential programming units; while, in the OO
model, classes are the coherent building pieces.

The block diagram, demonstrated in figure 1, states
the steps to compute the project development effort us-
ing class point approach.

Class Diagram

Identifying and
Classifying the

Classes

Assigning
Complexity Level

to Each Class

Calculating TUCP
and TCF

Evaluating Final
Adjusted Class

Point

Figure 1: Final Adjusted Class Point Calculation Steps

The system to acquire the amount of class points is
isolated into three principle stages [5].

• Estimating information processing size

– Identifying and classifying the classes

– Assigning complexity level for each classi-
fied class

– Calculating the Total Unadjusted Class
Points (TUCP) value

• Estimating the Technical Complexity Factor
(TCF) value

• Calculating the final value of Adjusted Class Point
(CP)

In this study, the above phases are followed to cal-
culate final optimized class points. Detailed descrip-
tions of all the phases were already provided by Gen-
naro Costagliola et al. [5]. Herein, the total number of
optimized class point value is then used as an input pa-
rameter to the random forest model to calculate the es-
timated effort.

3.1.1 Fuzzy Logic System

Fuzzy sets were presented by L. A. Zadeh (1965) as
a method for speaking to and controlling information
that was not exact, but instead fuzzy. Fuzzy logic
gives a derivation morphology that empowers rough
human thinking capacities to be connected to infor-
mation based frameworks [21]. Fuzzy system com-
prises of three principle segments: fuzzification process,
derivation from fuzzy rules and defuzzification process.
Among different fuzzy models, the model presented by
Takagi, Sugeno and Kang (TSK fuzzy) [24] is more ap-
plicable for sample data based fuzzy modeling, on the
grounds that it requires less rules. Each rule’s outcome
with linear function can portray the information yield
mapping in a vast reach, and the fuzzy implications uti-
lized within the model is likewise basic. In this study,
fuzzy modeling has been utilized to improve the com-
plexity of TUCP and fuzzy subtractive clustering to es-
timate the effort.

3.2 Random Forest Technique

Random forest (RF) is an troupe learning technique
used for classification and regression purposes [2]. It
builds a number of decision trees during training pe-
riod and chooses the final class by selecting the mode
of the classes generated by distinctive trees. To obtain
better results than the results from individual decision
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tree models, ensemble model combines the results from
different models of similar type or different types.

The concept behind it is that random forests grow
many classification trees. To generate many classifi-
cation trees, a random vector λ and an input vector x
is used. A random vector λk is produced for the kth
tree, which is autonomous of the previous random vec-
tors λ1, ..., λk−1, however with the equal distribution.
A tree is developed utilizing the training set and λk,
which generates a classifier h(x, λk) where x is an in-
put vector. To categorize new object from an input vec-
tor, the input vector x is put down each of the trees in
the forest. Each tree provides a classification by voting
for that class. Then, the classification having the max-
imum number of votes among over all the trees in the
forest is chosen. In case of regression, the prediction
accuracy of the forest is obtained by taking the average
of the individual tree predictions.

RF for regression purpose are created by developing
trees relying upon a random vector λ specified that the
tree predictor h(x, λ) undertakes numerical data instead
of class labels. The output produced by the predictor is
h(x) and the actual effort value is Y . For any numerical
predictor h(x), the generalized mean-squared error is
calculated as

Ex,Y (Y − h(x))2 (1)

By calculating the average value obtained over k trees
h(x, λk), the RF predictor is modeled.

4 Proposed Approach

The proposed approach is applied over forty data set
used in [5]. The utilization of such data set proposes to
assess software development effort and provides intro-
ductory test evidence of the viability of the CPA. The
utilization of this data set helps to evaluate the effort
required to develop software and validate the practica-
bility of improvement. In the data set, every row dis-
plays the details of one project developed in JAVA lan-
guage, indicating values of NEM, NSR and NOA for
that project. Apart from that, it also displays values of
CP1, CP2 and the actual effort (denoted by EFH) ex-
pressed in terms of person-hours required to success-
fully complete the project.These data are utilized to de-
velop the random forest technique based software effort
estimation model.

The diagram demonstrated in figure 2 displays the
proposed steps used to determine the predicted effort
using the random forest technique-based on optimized
class point approach.

To compute the software development effort, essen-
tially the accompanying steps are utilized.

Calculation of Class Points using
Fuzzy Logic

Normalization of Data Set

Selection of Arbitary Random
Vector

Division of Data Set

Selection of Final Random Vector

Performance Evaluation

Figure 2: Proposed Steps Used for Effort Estimation using Random
Forest Technique

Proposed Steps for Software Effort Estimation

1. Calculation of Class Points using Fuzzy Logic:
After collecting the data from other developed
projects, the CP2 value is calculated from the
UML diagram. This generated CP2 value is used
as an input argument. But in this study, fuzzy
modeling technique has been used to calculate the
weights of the various types of classes to get more
accurate TUCP value. Here a triangular member-
ship function is used to define their membership
and compute their weights.

2. Normalization of Dataset : Input parameter val-
ues are normalized within the range 0 to 1. Let S
represents the complete dataset and s represents a
record in the S. Then the normalized value of s is
obtained by using the following formula :

Normalized(s) =
s−min(S)

max(S)−min(S)
(2)

where
min(S) = min value in S.
max(S) = max value in S.
if min(S) is same as max(S), then Normalized(s)
value is assigned as 0.5.

3. Selection of Arbitrary Random Vector: Random
forest have randomness in input data and in split-
ting at nodes . Hence, initially an arbitrary random
vector is selected to provide randomness in input
data and to start the implementation process.

4. Division of dataset: Total no. of data are divided
into two subsets i.e., training set and test set using
the above arbitrary random vector.
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5. Selection of Final Random Vector: Prediction re-
sults vary according to random vector. So an eval-
uation function(1- MMRE + Prediction Accuracy)
is used to find a random vector. The random vec-
tor, which provides optimum value for the evalua-
tion function is considered as final random vector.

6. Performance Evaluation : In this study, the Mean
Magnitude of Relative Error (MMRE) and the Pre-
diction Accuracy (PRED) are the two measures
used to evaluate the performance of the model
for test samples. Results obtained from proposed
model are then compared with existing results to
access its performance accuracy.

The above steps are followed to implement the ran-
dom forest technique based effort estimation model.
Finally, a comparisons of results obtained using the
random forest technique based effort estimation model
with the results obtained from the MLP, RBFN, SVR
and SGB techniques-based models are presented to as-
sess their performances.

5 Experimental Details

In this study, for implementing the proposed approach,
dataset having forty data is being used which is also
used by G. Costagliola et al. [5]. The detail descrip-
tion about the data set has already been provided in
proposed approach section. After computing the no.
of class points, the dataset is then scaled. The scaled
dataset is split into two subsets i.e., training set and test
set. The training set is used for learning reason; though
the test set is used only for assessing the exactness of
prediction of the trained model.

5.1 Calculating Class Complexity Value Using
Fuzzy Logic

In the figuring of CP, Mamdani-type FIS is utilized in
light of the fact that Mamdani-type FIS technique is
broadly acknowledged for catching expert knowledge.
It permits us to depict the expertise in more natural and
human-like way. On the other hand, Mamdani-type FIS
involves a significant computational load. The model
has two inputs i.e. NEM and NOA; and one yield i.e.
CP as demonstrated in figure 3. The primary procedures
of this system incorporate four exercises: fuzzification,
fuzzy rule base, fuzzy inference engine and defuzzifica-
tion. All the input variables in this model are changed
to the fuzzy variables focused around the fuzzification
process. The complexity levels, for example, Low, Av-
erage, High, and Very High are characterized for NOA

and NEM variables, for diverse number of services re-
quested (NSR). The steps to compute the class point
utilizing FIS is given below.

1. Initially develop the UML diagrams of a project
and identify the number of classes in it.

2. This step deals with classification of each class
into various domain such as PDT/HIT/DMT/TMT.

3. In this step, various parameters such as no. of ex-
ternal methods (NEM), no. of services requested
(NSR) and no. of attributes (NOA) need to be ex-
tracted from UML diagram.

4. Then the complexity level such as Low, Average,
High and Very High is assigned to each class fo-
cusing around their obtained NEM, NSR and NOA
value.

5. During this step, the numeric value of complexity
level assigned to a class is found out using fuzzy
logic technique.

6. Then the Unadjusted Class Point (UACP) is calcu-
lated by multiplying the numeric value obtained in
Step-5.

7. Then the TUCP is calculated by adding the UACP
of all classes.

8. This step deals with calculating TCF value by us-
ing twenty four general system characteristics.

9. Finally, the adjusted CP count is calculated by
multiplying TUCP with TCF.

5.1.1 Results and Discussion

A fuzzy set is defined for each linguistic value with a
Triangular Membership Function (TRIMF), in figure 4.
The fuzzy sets corresponding to the various associated
linguistic values is defined for each type of inputs.

The proposed fuzzy guidelines hold the linguistic
variables identified with the project. It is vital to
note that these rules were balanced or adjusted, and
in addition all pertinence level functions, as per the
tests and the aspects of the project. The amount of
principles those have been utilized as a part of model
are 9, 16, and 9 for (0-2) NSR, (3-4) NSR and (≥ 5)
NSR separately for all input variables.

Fuzzy rules for (0-2)NSR:

If NEM is LOW and NOA is LOW THEN CP is LOW.
If NEM is LOW and NOA is AVERAGE THEN CP is
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System CP (NSR 0−2): 2 inputs, 1 outputs, 9 rules

NEM (3)

NOA (3)

CP (3)

CP (NSR 0−2)

(mamdani)

9 rules

System CP (NSR 3−4): 2 inputs, 1 outputs, 16 rules

NEM (4)

NOA (4)

CP (4)

CP (NSR 3−4)

(mamdani)

16 rules

System CP (NSR>=5): 2 inputs, 1 outputs, 9 rules

NEM (3)

NOA (3)

CP (3)

CP (NSR>=5)

(mamdani)

9 rules

Figure 3: FIS for Class Point Calculation

LOW.
If NEM is LOW and NOA is HIGH THEN CP is
AVERAGE.
If NEM is LOW and NOA is AVRERAGE THEN CP
is AVRERAGE.
.
.
.
If NEM is HIGH and NOA is HIGH THEN CP is
HIGH.

The MATLAB FIS was utilized as a part of the
fuzzy computations, notwithstanding the Max-Min
composition operator, the Mandani implication opera-
tor, and the Maximum operator for aggregation and af-
ter that the model is defuzzified.

Figure 5 shows the output surface of the FIS utilized
for CP estimation. The fuzzy rule viewer indicated in
figure 6 serves to ascertain the whole implication pro-
cess from starting to end.
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Figure 4: Triangular Graph Representation for Weight Matrix
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Figure 5: Surface View of Rules

5.2 Model Design Using Random Forest Technique
for Effort Estimation

The Brieman’s algorithm is popularly used to imple-
ment the random forest technique [2]. To design an
effort estimation model using the random forest tech-
nique, the following steps are used. These proposed
steps help in constructing each tree, while using ran-
dom forest technique.
Steps of Proposed Algorithm:

1. Let F be the number of trees in the forest. A
Dataset of D points (x1, y1)(x2, y2)....(xD, yD) is
considered.

2. Each tree of the forest should be grown as follows
.Steps from 3 to 9 should be repeated f times to
create F number of trees.

3. Let N be the no. of training cases, and M be the
no. of variables in the classifier.

4. To select training set for the tree, a random sample
of n cases - yet with substitution, from the original
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Figure 6: Fuzzy Rule View for Class Point Calculation
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data of all N accessible training cases is choosen.
Whatever is left of the cases are utilized to evaluate
the error of the tree, by foreseeing their classes.

5. A RF tree Tf is developed to the loaded data, by
repeatedly rehashing the accompanying steps for
every terminal node of the tree, till the minimum
node size nmin is arrived. Keeping in mind the end
goal to make more randomness, distinctive dataset
for each one trees is made.

6. The no. of input variables m is selected to ascer-
tain the choice at a tree node. The value ofm ought
to be substantially short of what M .

7. For each tree node, m number of variables should
be randomly chosen on which the decision at that
node is based.

8. The best split focused around these m variables in
the training set is calculated. The value ofm ought
to be held consistent throughout the development
of the forest. Each tree should be fully grown and
not pruned.

9. Then, the results of ensemble of trees
T1, T2, ..., Tf , ...., TF are collected.

10. The input vector should be put down for each of
the trees in the forest. In regression, it is the aver-
age of the individual tree predictions.

Y F (x) = 1/F

F∑
f=1

Tf (x) (3)

where
Y F (x) is the predicted value for the input

vector x.
T1(x), T2(x), ..., Tf (x) represents predic-

tion value of individual trees.

There are various data objects generated by random for-
est technique, which needs to be considered while im-
plementing random forest technique for software effort
estimation purpose. The results obtained from these
data objects need to be evaluated in order to assess the
performance achieved using random forest technique.

5.2.1 The Out-Of-Bag (OOB) Error Estimate

The training set for a tree is produced by testing with
substitution. During this process, something like one-
third of the cases are left out of the sample. These cases
are considered as out-of-bag (OOB) data. It helps in
getting an impartial evaluation of the regression error
value as the forest develops. OOB data also helps in
getting estimation of variable importance. In RF, as

the OOB is calculated internally during the run. Cross-
validation of data or a different test set to obtain an im-
partial evaluation of the test error is not required. The
computation procedure for OOB is explained below.

• During construction of each tree, an alternate boot-
strap sample from the original data is used. Some-
thing like one-third of the cases from the bootstrap
sample are left out and not used in the tree con-
struction process.

• These OOB samples are put down the kth tree to
obtain a regression. Using this process, a test set is
acquired for each one case.

• At the end, suppose j be the predicted value that
is acquired by computing the average prediction
value of forest, each time case n was oob. The ex-
tent of times j is not equivalent to the actual value
of n averaged over all cases is called as the out-of-
bag error estimate.

The RF prediction accuracy can be determined from
these OOB data by using the following formula.

OOB −MSE =
1

F

F∑
i=1

(yi − ȳiOOB)2 (4)

where ȳiOOB represents the average prediction value of
ith observation from all trees for which this observation
has been OOB. F denotes the no. of trees in the forest
and yi represents the actual value.
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Figure 7: OOB MSE Error Rate

Figure 7 displays the OOB error rate obtained for
different number of trees used in the forest. From the
figure, it is quite clearly visible that during initial phase
(while the number of trees used are less), the OOB er-
ror rate obtained is maximum. At the same time steadily
with the increment of the amount of trees utilized within
the forest, the OOB error rate converges to minimum
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value. After some period, OOB error rate remains con-
stant.
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Figure 8: Number of Times Out Of Bag Occurs

Figure 8 displays the number of times, cases are out
of bag for all training attributes. In this case, one hun-
dred twenty number of training attributes are used.

5.2.2 Proximities

Proximity is one of the important data objects while cal-
culating effort using RF technique. It measures the fre-
quency of ending up the unique pairs of training sam-
ples in the same terminal node. It also helps in filling up
the missing data in the dataset and calculating number
of outliers.
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Figure 9: Proximity

Figure 9 describes the proximity value generated
using random forest technique. A 120 × 120 matrix
used for generating the above figure. From the figure,
it is observed that, for diagonal elements, the proximity
value is maximum (equals to one). But for all other
elements, the proximity value is less than one. The
symmetric portion adjacent to diagonal area represents
other elements proximity values.

Originally, a NxN matrix is formed by the proxim-
ities. Once a tree is developed, all the data i.e., train-

ing data and out-of-bag data are put down the tree. Its
proximities should be increased by one, if it is found
that two cases are in the same terminal node. Finally,
the normalized values of the proximities are obtained
by dividing with the number of trees.

5.2.3 Complexity

In the proposed approach, 500 number of trees are taken
into consideration for implementing RF technique. In
the usual tree growing algorithm, all descriptors are
tested for their splitting performance at each node;
while Random Forest only tests m try of the descrip-
tors. Since m try is typically very small, the search is
very fast.

To get the right model complexity for optimal pre-
diction strength, some pruning is usually done via cross
validation for a single decision tree. This process can
take up a significant portion of the computations. RF,
on the other hand, does not perform any pruning at all.
It is observed that in cases where there are an exces-
sively large number of descriptors, RF can be trained
in less time than a single decision tree. Hence, the RF
algorithm can be very efficient.

5.2.4 Outlier

The cases that are expelled from the principle group of
data and whose proximities to all different cases in the
data mostly small are defined as Outliers. The concept
of outliers can be revised by defining outliers relative
to corresponding cases. In this way, an outlier is case
whose proximities to all different cases are little. The
average proximity is specified as:

P̄ (n) =

N∑
1

prox2(n, k) (5)

where n and k denote a training case in the regression
and N represents the total no. of training cases in the
forest. The raw outlier measure for case n is specified
as:

nsample/P̄ (n) (6)

The result of raw outlier measure inversely depends
on the average proximities. The average of these raw
measures and their deviations from the average are as-
certained for each one cases. The final outlier measure
is obtained by subtracting the average from every raw
measure, and afterwards dividing it by absolute devia-
tion.

Figure 10 describes the outlier value generated us-
ing random forest technique for 120 number of training
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Figure 10: Outlier

cases. The outlier value is dependent on the proxim-
ity value generated using RF technique, which means
that the outlier value is higher for lower proximity value
and vice versa. Figure 10 displays the deviation of out-
lier value from the mean outlier. The training cases
for which the outlier value is higher, will generate the
predicted effort value deviated more from actual effort
value.
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Figure 11: Random Forest Technique-based Effort Estimation Model
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Figure 12: Variation of Predicted Effort from Actual Obtained using
Random Forest Technique

This deviation is clearly visible from figure 11 and

12. Figure 11 and 12 displays the final effort estima-
tion model obtained using RF technique. These figures
show the variation of actual effort from the predicted
result obtained using RF technique.

5.3 Performance Measures

The performance of the various models might be as-
sessed by utilizing the accompanying criteria [13]:

• The Magnitude of Relative Error (MRE) is a
very common criterion used to evaluate software
cost estimation models. The MRE for each obser-
vation i can be obtained as:

MREi =
|xi − yi|

ȳ
(7)

where
xi = Actual Effort of ith test data.
yi = Predicted Effort of ith test data.
N = Total number of data in the test set.

• The Mean Magnitude of Relative Error
(MMRE) can be achieved through the summation
of MRE over N observations

MMRE =

N∑
1

MREi (8)

where
N = Total number of data in the test set.

• The Prediction Accuracy (PRED) is computed
as:

PRED = (1− (

∑N
i=1 |xi − yi|

N
)) ∗ 100 (9)

where
N = Total number of data in the test set.

6 Comparison

The SGB algorithm and Decision Tree Forests algo-
rithm exhibit functional similarity, because SGB cre-
ates a tree ensemble, and also uses randomization dur-
ing the creations of the trees. It creates a series of trees,
and the prediction accuracy is calculated by feeding the
result obtained from one tree to the next tree in the se-
ries. However, RF builds trees in parallel and also uses
voting method on the prediction.

Table 1 provides a comparative study of the results
obtained by some articles mentioned in the related work
section. The performance of techniques used in those
articles have been compared by measuring their pre-
diction accuracy (PRED) values. Result shows that, a
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Table 1: Comparison of Prediction Accuracy Values of Related
Works

Sl.
No. Related Papers Technique

Used
Prediction
Accuracy

1 Gennaro Costagliola et al. [5] Regression
Analysis 83%

2 Wei Zhou and Qiang Liu [25] Regression
Analysis 83%

3 S. Kanmani et al. [9] Neural
Network 87%

4 S. Kanmani et al. [10] Fuzzy Logic 92%

maximum of 92% prediction accuracy is achieved us-
ing fuzzy logic technique. Finally, the results obtained
in related work section is compared with results of pro-
posed approaches, which is shown in table 2. The
results obtained using proposed technique shows im-
provement in the prediction accuracy value.

Table 2: Comparison of MMRE and PRED Values between the MLP,
RBFN, SVR, SGB and Random Forest Techniques

MMRE PRED

Multi-Layer Perceptron [20] 0.5233 94.8185%

Radial Basis Function Network [20] 0.5252 94.7539%

Support Vector Regression [22] 0.4692 95.8088%

Stochastic Gradient Boosting [19] 0.4334 95.3261%

Random Forest 0.2730 96.4250%

At the point when utilizing the MMRE, and PRED
in assessment, good outcomes are entailed by lower es-
timations of MMRE and higher estimations of PRED.
Table 2 demonstrates the comparison of MMRE and
PRED values for the MLP, RBFN, SVR, SGB and RF
techniques. The MLP, RBFN, SVR and SGB tech-
niques are already been applied over class point ap-
proach with the help of same dataset as used while
applying RF technique. This comparative study helps
in accurately assessing the performance obtained using
RF technique and proves that the results obtained us-
ing RF technique-based effort estimation model outper-
forms the results obtained using other existing models.

7 Conclusion

Several approaches have been considered by re-
searchers and practitioners to calculate the effort re-
quired to develop a given software product. However,
the class point model is one of the effort estimation
models which is used because of its simplicity, fastness
and accurateness to a certain degree. In this paper, the
proposed optimized class point model has been imple-
mented using the RF technique and generated results
are compared with the results obtained from the MLP,

RBFN, SVR and SGB techniques. The results demon-
strate that the random forest technique provides lower
estimates of MMRE and higher estimates of prediction
accuracy. Consequently, it could be inferred that effort
estimation utilizing the random forest technique outper-
forms other machine learning techniques. The compu-
tations for above procedure were implemented, and the
outputs were generated using MATLAB. Extension to
this procedure might be made by applying other ma-
chine learning techniques on the class point approach.
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