Formalization of Web Security Patterns

ASHISH KUMAR DWIVEDI!
SANTANU KUMAR RATH?

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Odisha-769008, India
lashish.nitcs@gmail.com
“skrath@nitrkl.ac.in

Abstract. Security issues in software industries become more and more challenging due to malicious
attacks and as a result, it leads to exploration of various security holes in software system. In order to se-
cure the information assets associated with any software system, organizations plan to design the system
based on a number of security patterns, useful to build and test new security mechanisms. These patterns
are nothing but certain design guidelines. But they have certain limitations in terms of consistency and
usability. Hence, these security patterns may sometimes act as insecure. In this study, an attempt has
been made to compose security patterns for the web-based application. Subsequently, a formal modeling
approach for the composition of security patterns is presented. In order to maximize comprehensibility,
Unified Modeling Language (UML) notations are used to represent structural and behavioral aspects of
a web-based system. A formal modeling language i.e., Alloy has been taken into consideration for an-
alyzing web-based security pattens. For the demonstration of this approach, a case study i.e., an online
banking system is considered. A qualitative evaluation is performed for the identified security patterns
against the critical security properties. In this study a model-driven framework is presented, which helps

to automate the process of analyzing web security patterns.

Keywords: Alloy, Formal Modeling, Online Banking System, Security Patterns.

(Received March 3th, 2015 / Accepted May 4th, 2015)

1 Introduction

Developing a secure system is not an easy task as pro-
viding a protected login screen. Hence, an extra effort
is required to achieve security requirements. Various
security goals can be achieved by applying security pat-
terns during design phase. Software design patterns are
a set of techniques, applied during analysis and design
phases for emphasizing certain design issues to recur-
ring design problems. Each pattern emphasizes on a
problem occurring in a recurring manner and provides
a core solution to that problem, in such a way that one
can use this solution a number of times for a particular
domain [[1]].

In the past two decades, a number of software

patterns have been identified, documented, visualized,
classified, and analyzed [11[] [19] [20] [26]. A good
number of tools on design patterns have also been de-
veloped for detecting patterns, while instantiating of de-
sign patterns [[18] [25]]. These system patterns and tools
facilitate the understandability and construction of sys-
tems that provide predictable, uninterrupted use of the
services and resources they offer to users. Each pat-
tern is represented using a standard pattern template
that allows expressing a solution for solving recurring
problems. Pattern templates are used to capture all the
elements of a pattern and describe its issues, motiva-
tion, strategies, technologies, applicable scenarios, so-
lutions, and examples. Gamma et al. [L1] have pro-
posed standard templates for their twenty three num-

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

ashish.nitcs@gmail.com
skrath@nitrkl.ac.in

Dwivedi and Rath

Formalization of Web Security Patterns 15

ber of design patterns. Subsequently other authors have
proposed different patterns, based on the template pro-
posed by Gamma et al. [[11].

Security patterns are a set of suitable techniques for
analyzing, developing, and testing new security mech-
anisms. Security patterns document solution to resolve
the design level consequences for solving recurring se-
curity problems in a particular context. Yoder and
Barcalow presented seven security patterns, which are
applied to various software development issues [24]. A
number of other varieties of security patterns are also
available in the literature [[19] [20] [22].

In a pattern-oriented software development, a good
number of patterns are specified using informal and
semi-formal approaches, such as natural languages and
other graphical notations. These notations very often
lead to ambiguities and inconsistencies for the system
analyst. Checking the consistency and completeness
of composition of patterns using various formal meth-
ods allow detecting problems in early stages of soft-
ware development [23]]. Formal methods are nothing
but empirical techniques for the specification, develop-
ment, and verification of software and hardware sys-
tems. Formal models help to describe the software re-
quirements precisely and unambiguously using certain
tools and techniques which can capture the abstract fea-
tures of a system. A number of formal specification
languages are available in the literature. For analyzing
security patterns a language known as Alloy has been
taken into consideration, as it supports predicate logic
and its syntax is helpful to express any complex con-
straint [9] [15]. Alloy notation can be executed by an
automated tool i.e., Alloy Analyzer that performs a se-
mantic analysis [12]. This tool performs checking of
consequences, consistency, and simulated execution of
the Alloy specification.

In order to demonstrate the verification of security
patterns, a case study on online banking system has
been taken into consideration. Nowadays, customers
need more advocacy, more personal security, and more
control in their banking relationships. The major chal-
lenge with different banks is that they intend to provide
flexibility, shared services, easiness in use by align-
ing themselves to technology. These challenges are so
much mingled with security issues that their solutions
can be only thought by application of right security
patterns. This approach is not only limited to online
banking system, but it can be helpful to other systems
also that perform similar types of security-based online
operation. In this study, an attempt has been made to
perform a qualitative analysis of software security pat-
terns, based on a non-functional requirement i.e., secu-

rity. The requirement of security is based on parame-
ters, such as availability, confidentiality, and integrity.
At the end of this study, an evaluation has been per-
formed for the security properties and associated pat-
terns.

The basic overview of this study is that: in the next
section, related research works are presented. Third
section is further divided into five subsections. In its
first subsection, formal modeling framework is pre-
sented. In the second subsection, five security patterns
such as Single Sign On (14, Check Point |24, Authen-
ticator [4], Policy [4] and Secure Proxy [20]] have been
identified and it has been exhibited as to how online
banking application is influenced by these patterns. In
the third subsection, the structural and behavioral as-
pects of the composition of security patterns are pre-
sented using UML class diagram and sequence diagram
respectively. In the fourth subsection, formal analysis
of security requirements based on those security pat-
terns has been performed. Subsequently, an evaluation
has been performed for the identified security patterns
and security properties. In the fifth subsection, model
driven development of the proposed framework is high-
lighted. In the fifth section conclusion is presented.

2 Related Work

A good number of literatures are available for the for-
malization of software design patterns [17] [6] [21].
But security patterns need to formalize their notations.
Some of the related works are referred as below:

Konrad et al. [16] proposed an idea on templates
for security patterns. Authors considered a template of
Gamma et.al. [11] and added four other fields, such
as behavior, constraints, related security patterns, and
supported principles. They have composed patterns of
Yoder and Barcalow [24]] for e-commerce application.
They have proposed a technique for model checking of
these set of patterns. Dong et al. [7] proposed an ap-
proach to automate verification of the compositions of
security patterns by model checking. They have for-
mally described the behavioral aspect of security pat-
terns by using CCS (Calculus of Communicating Sys-
tems), and also proved the faithfulness of the transfor-
mation from a sequence diagram to its CCS representa-
tion.

Bayley and Zhu [3] have been proposed a meta-
modeling approach to the formalization of design pat-
terns. According to them, it enables formal reason-
ing about patterns and their composition, transforma-
tion, and facilitates automatic tool support for applying
patterns at the design stage. For the case study, au-
thors have formally specified all Gamma et al. [L1]

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 16

design patterns. Dwivedi and Rath [10] proposed an
approach to incorporate security features in service ori-
ented architecture with the help of security patterns.
They have presented an architectural model integrated
with security goals and security patterns. Dwivedi and
Rath [8] have further analyzed a complex architectural
style i.e., C2 (component and connector) using object
modeling language Alloy. They have performed con-
sistency checking for the interaction of component and
C2-connector, interaction between connector and C2-
connector, interaction between port and role etc.

Most of the above approaches are not based on
lightweight formal modeling. Our approach is based on
Alloy that is a lightweight formal modeling language.
Few related works do not support graphical tool, as
Alloy Analyzer generates graphical result to check the
consistency of the composition of security patterns. Our
approach can easily be reusable and extendable. From
the above mentioned analysis, it may be observed that
the application of security pattern is a research topic
and need exhaustive thrust in order to make the design
robust.

3 Proposed Work
3.1 Modeling Framework for Web Security Patterns

In this study, a modeling framework is presented for
the analysis of web security patterns, which is shown
in Figure [I] Model driven architecture supports an au-
tomated transformation of one model into another. The
transformation process can be specified by using a num-
ber of axioms, which support mapping of source meta-
model to target metamodel. The UML diagrams are
very often used to specify software patterns, which need
to be formalized. A tool i.e., UML2Alloy can be con-
sidered for the purpose, which helps in automatically
transforming UML class digram to Alloy specification
[S] [2]. In this study, a model driven framework has
been proposed for modeling of web security patterns,
which help to map web security problems to security
patterns and then transform to a formal model i.e., Al-
loy specification. This Alloy model can be verified us-
ing a tool i.e., Alloy Analyzer. If the proposed model
satisfies all predefined assertions then it helps in map-
ping the assertions to code.

3.2 Identification and Composition of Security Pat-
terns

A good number of security patterns have been pro-
posed to preserve the security properties such as au-
thentication, integrity, non-repudiation, confidentiality,

Web Security | Map Web | Specify | UMLClass
Requirements “1 security “] Diagram
Patterns
Model
Check fact, |Transformation
assertion,
predicate Alloy
Map to Code Specification

Figure 1: Model driven framework for the Web Security Patterns

availability, and authorization. Related to these secu-
rity properties, a number of security threats such as
spoofing, tampering, repudiation, information disclo-
sure, denial of service, elevation of privilege are avail-
able which can affect the system. These security threats
are dangerous for financial transactions, such as fund
transfer in online banking system, online bill payment,
loan application, and other online transactions. Hafiz
et al. [13] described a pattern language for security
aspects, having ninety six patterns. Although for any
application, all patterns may not be applied; but based
on security requirements for the case study on online
banking system, five software security patterns such as
Single Sign On, Check Point, Authenticator, Policy, and
Secure Proxy have been considered. Composition of
identified patterns is a difficult task in design patterns.
Composition of identified security patterns along with
external environment, rules, and resources is presented
in Figure

Figure 2| represents the composition of five security
patterns along with User, Resources, and Rules. Nowa-
days, each application needs a login procedure to access
the system. There is a context, when an user wants to
access a service through the Internet; it requires a Sin-
gle Sign On (SSO) pattern. This pattern is necessary
for consideration, otherwise the user may be forced to
authenticate prior to every web service call or cache the
client’s credentials within the application. Single Sign
On pattern solves this problem by entering user name,
password, and some other configuration setting which
are required. A Singleton pattern can also be used for
the login class, when only one user logs into the system.

Single Sign On is used to ensure that Check Point
gets initialized. Generally, Check Point can be imple-
mented by combining other patterns such as Strategy
and Observer. When a request arrives, the check point

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 17

User

Request for Access

z :
Single Sign On Ii

Forward Request

Authentication
Authenticator | Request Check Point |

Check Policies
For Authentication

@" Access through Proxy

Checkpolicyrules

Rules

External Environment

Secure Proxy

Allow Access

Resources

Figure 2: Composition of identified patterns

consults with the Authenticator to determine whether
the access is permissible or not. Authenticator authenti-
cates user by using Policy that takes decision to grant or
deny access to resources based on the user’s attributes,
rules, policies, and other security constraints. If policy
rules are not violated, user can access resource by using
Secure Proxy.

The design of Check Point depends on any system’s
security policy. According to the policy of the system,
the design might change as and when required. Hence,
the algorithm for Check Point should be very carefully
designed. Authentication can be performed by adopting
two policies, such as direct authentication and brokered
authentication. Authentication policy is based on two
elements such as identification and credential. Some-
times, during the process of authenticating, the user can
have a negative impact on performance due to authen-
tication process. Authenticator pattern is also known
as Pluggable Authentication Modules. Policy pattern is
known as Access Decision Function as well as Policy
Decision Point. Secure Proxy pattern is based on Policy
and associated with Rules. In terms of security context,
Rules are also called as guards. Secure Proxy is alterna-
tively known as Defense In Depth, Delegation, Nested
Protected System etc. It can be implemented with other
patterns such as Facade.

These selected security patterns have both advan-
tages and disadvantages. Check Point transfers system-
state to the safe-state when system fails. But, it diag-
noses faults when it is executed. Its implementation
may not be that much hard. The advantage of using Sin-
gle Sign On pattern is that it is easily implemented. But
it is less secure. The Authenticator pattern is used al-

most in all cases where security concept required. The
reliability and security of Authenticator are not much
higher. Policy is based on security rules. If rules ful-
fill all security requirements for an application, it will
be robust against threats. The reliability and security
of this pattern depend on security strategies and rules.
But it is very hard to implement. Secure Proxy has high
speed of operation. If security policy is not satisfied, it
cancels the resource request.

3.3 Structural and Behavioral aspects of patterns

In general, each pattern such as architectural pattern,
security pattern, analysis pattern etc. has four essen-
tial elements, such as context, problem, forces, and so-
lution. In this approach, context of identified patterns
can be defined as; when a user wants to access a re-
source from the Internet, it requires the user to present
essential information. So that, he can be accepted as
an authorized user for that resource. In this context,
the problem is that, how does the system verifies the
user’s information. A number of forces for the identi-
fied patterns may be taken into consideration. First, the
information presented by the user to the system may be
based on shared secrets, i.e., password. Second, it may
be possible that the access of the resource is so simple
that it does not require Single Sign On pattern. Third,
the user and online services are supported to trust one
another so as to manage security policy rules. One of
the solutions of the problem is that, the user’s informa-
tion should be verified on the basis of security rules.
If the user fulfills all the security requirements for the
particular resource, he may be allowed to access that re-
source. Apart from these pattern’s elements, there are
other elements which have the impact, such as moti-
vation, applicability, participants, collaborations, con-
sequences, implementation, related patterns etc. These
elements are called as pattern templates. Each pattern
is defined in terms of its requisite templates.

For the structural demonstration of the case study,
class diagram based on UML notation of online bank-
ing system is presented in Figure (3| In this diagram,
all identified patterns are considered as classes. The
Bank class is related to BankDataBase and BankServer,
using composition relationship. Customer class is as-
sociated with BankServer class through SecureProxy
class. Customer class is associated with SingleSignOn
class to access different online banking services such
as Fundtransfer, ChequeService, BillPayment, Utility,
and ViewTransaction. SingleSignOn takes decision to
allow or deny access based on user attributes, target at-
tributes, policy rules etc. The diagram has an Account
class which is associated with Bank class. Policy class

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 18

BillPayMent ChecqueService Fundtran sfer - - Customer
&pbalance Srstatus &sbalance SingleSignOn Ename
&slimit & balance Elimit &zauthinfo &paddr
: 1
®registerPayment() ®request() Stransfer() Byalidatelnfo() ®updateProfile()
®creditCardPayi) ®cancel() ®cancel() ®request()
= Authenticator Chec:kF'oir.ﬂ
ViewTransaction Utility &ssecConstraint
Estatus(] ‘authenticate(} @
&sbalance() Transaction |— | ®updateProfile() ‘aIIUWACCESS(} ‘Efo;}gt::m(}
I%date(} SN ®counterMeas ure()
view() BankDataBase _—
&sname SecureProxy Policy -
| _Account | &slocation
&pacctho ®request() %enforce()
SpacctDate ®addAccount() ®executeAction() ScheckP olicy()
®dslstaAccount() “respond() Sviolate()
P M 1
- 1 1.
BankServer Rule
Bank W
/& bankMName &slocation
& location
Sexecute()
®manage() Supdate()
®shutDown()
Figure 3: Class diagram of the composition of Security Patterns
% USEr.. E singleSignCnt... E checkPoint:.. Q authenticator.. E policy:P.. Q rule:R... E secureProxy.. E rescurce:Re...
1: request
1:|getCredential(id, pwd)
[0.1

1/1: sendCredential(id, pwd)
1.1.1: authenticate

2: allowdlccess

1.1.1.1: verify
1.111.1.1: checkPdlicy

1.1.1.1.1.1]matchRule

1.1.1.1.1.1.1} ruleMatched

1.1.1.1.0.11.1: poligMatch

1.1.1.1.1.1{1.1.1: authenticated
11.1.1.1.1.1.1.1.1: anséusth

2.1: getResource

2.2 provideResource

Figure 4: Sequence diagram of the composition of Security Patterns

2.1.1: allow

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 19

is associated with CheckPoint, SecureProxy, and Rule
class. Good number of components of a system are re-
quired to enforce the Policy. The enforcement policy
invokes enforce method when an access is attempted to
a resource. Hence, Policy class has a method known as
enforce.

Figure[d]shows the behavioral aspect of composition
of selected security patterns. It presents a typical sce-
nario when a user successfully plans to login a system.
Single Sign On could be the first step for the login pro-
cedure. Single Sign On initializes the system by using
Check Point. 1t checks for the authentication of user.
Authenticator checks policies. Each Policy is defined
by some rules. If user satisfies these rules, he will be
allowed for access. Finally, user gets access to resource
through a SecureProxy.

Single Sign On

uses

= Authenticator «—— Check Point
interact with

access control enforce| |uses

Rules <« ~Policy
uses \nforce

Secure Proxy

access control

Figure 5: Pattern language for the selected Security Pattens

The pattern language proposed by Alexander was
having 253 patterns [1]. In order to describe the flow
of usage of the patterns selected for online banking sys-
tem, a particular language is used as shown in Figure[5]
The pattern language depicts a small portion of security
patterns, which applies to a software system, that need
to be considered with its functional domain. This pat-
tern language describes, as to how all the patterns can
be fitted together. According to this language, selected
patterns collaborate as an application security module.
When a user wants to access a system, he has to enter
through single entry point i.e., Single Sign ON (SSO).
SSO uses Check Point, which interacts with Authenti-
cator to validate the user’s information. After validat-
ing user’s information, Check Point enforces Policy to
check the policy rules for accessing particular resource.
Policy uses rules to check the limitations of user access
and enforces Secure Proxy to provide secure access.

Very often, Check Point can be used by other applica-
tions, when they need to perform secure transaction that
cannot be performed at startup. Security checks can
also be accomplished by using access control. Policy
and Secure Proxy call Authenticator to perform access
control, if necessary.

3.4 Formal specification of patterns using Alloy

Analyzing system requirements using formal modeling
language Alloy has a number of advantages. Firstly, it
provides an executable notation, that ensures about the
functionality of Alloy model, having an unambiguous
and consistent semantics. Secondly, the Alloy Analyzer
translates high-level, declarative, relational expressions
of the Alloy notation into a SAT (Satisfiability) for-
mula. These SAT expressions can be executed by us-
ing a number of SAT solvers such as, SAT4J, Zchaff,
MiniSAT etc. Thirdly, it can visualize an Alloy nota-
tion of unbounded size and subsequently specifies it to
a bounded size. In order to make the pattern notations
more precise, Alloy is chosen as a correct methodology
for analyzing essential requirements of security design
patterns. Behavioral properties of these patterns can be
represented in the form of predicate logic, which can be
verified by using Alloy Analyzer tool.

module Security_Patterns
open util/ordering [SecurityPatterns) as SP
enum AccessScheme {allow, deny}
enum Rules {Valid, Invalid}
sig Account {}
abstract sig State {}
one sig WaitForAuth, Idle, Authenticated, Busy,
Reset extends Srate {}
abstract sig Operation {}
sig Fundtransfer, CheckService, BillPayment,
Request, CheckAuth, Login, RESET
extends Operation {}
sig SecurityPatterns { state : oneState, op :
Operation }

The Alloy specification of software security patterns
has a module of Security_Pattern to divide a model
into other submodules. An Alloy module supports con-
straints that can be reused in different situations. In
this specification, two enumerations, such as AccessS-
cheme and Rules are considered. Alloy enumeration
can also contain a number of atoms. During the simula-
tion process, Alloy Analyzer considers all instances for
the given problem size. Hence, the number of atoms be-
come much large; as a result an explicit enumeration ap-

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 20

pred reqSSO [sp, sp’ : SecurityPatterns] { sp.state = Idle && sp’.op = Login &&

sp’.state = WaitForAuth }

pred checkAuth [sp, sp’ : SecurityPatterns| { sp.state = WaitForAuth && sp’.op = CheckAuth

&& sp’.state = Authenticated }

pred reqResource [sp, sp’ : SecurityPatterns) { sp.state = Authenticated && sp’.op = Request

&& sp’ .state = Idle }
pred useResource [sp, sp’ : SecurityPatterns]

{ sp.state = Idle && sp’.op = (Fundtransfer + CheckService + BillPayment)

&& sp'.state = Busy }

pred reset [sp, sp’ : SecurityPaiterns| { sp.state = ldle && sp’.state = Reset }

pred init [sp, sp’ : SecurityPatterns| { sp.state = Idle }

pred traces { init[SP / first[]] && all sp : SecuriryPatterns — SP / last|] |

let sp’ = SP /next[sp] | ((reqSSO [sp, sp'] && sp’.op = Login) or

(checkAuth [sp, sp’]| && sp’.op = CheckAuth) or (reqResource [sp, sp'] && sp’.op = Request) or
(useResource [sp, sp'| && sp’.op = (Fundtransfer + CheckService + BillPayment))

or (reset[sp, sp'| && sp’.op = RESET))}

pred perfTrans { traces && (SP /last[]).op = RESET
&& RESET !in (SecurityPatterns — SP /last|]).op }

Analyzing behavioral aspects of Security Patterns

pear to be infeasible. Pruning techniques (analysis tech-
nique) are used by Alloy Analyzer tool to overcome this
type of problem. These techniques rule out whole sets
of atoms at once. In this model, large number of signa-
tures have been taken into consideration, such as State,
Operation, SecurityPatterns, USER, SingleSignOn, Au-
thenticator, CheckPoint, Policy, and SecureProxy. The
State and Operation signatures are an abstract type. For
the State signature, many other concrete states such as
WaitForAuth, Idle, Authenticated, Busy, and Reset have
been considered. Similarly, other concrete operations
such as Fundtransfer, CheckService, BillPayment, Re-
quest, CheckAuth, Login, and RESET have also been
considered. The signature SecurityPatterns contains
two fields, such as state and op.

3.4.1 Analyzing behavioral aspects of Security Pat-

terns

In the process of model checking, analysis can expose
defects that software architect may not have traced un-
til much later. Alloy specification supports a logical
constraint known as fact. In the process of rigorous
analysis a fact should always hold. Alloy supports fact,
assertion, and predicate for consistency checking of a
system requirement. If a designer/developer wants to
check the Alloy model with other axioms, and also to
analyze whether these axioms are related to some other
axioms or not, predicate is used to achieve all these re-

quirements. A predicate is a logical formula with decla-
ration parameters. It describes a set of states and transi-
tions, by using constraints among the Alloy atoms and
their fields. Without using a predicate, graphical results
may not be generated for the operations, except from
assertion’s counterexamples.

The goal of this subsection is to analyze dynamic
behavior of composition of selected security patterns.
In this approach, an attempt has been made to capture
the evolving states of the security patterns. Here, dif-
ferent operations are specified using predicates. First
predicate regSSO presents the user, who has just re-
quested for single sign on process. In this specification,
states of a system are presented in the form of pre-state
and post-state, which can be expressed as before (sp)
and after (sp’). Here sp is an instance of SecurityPat-
terns. Similarly, another operation is checkAuth, which
represents the states of a system during the authentica-
tion process. If the user is successfully authenticated,
he requests for the required resource. During this pro-
cess, system’s state might change, which is presented
by third predicate. If user’s request is accepted by the
system, user can use his resource which is represented
by the fourth predicate. In order to check the proper
sequence of these operations, predicate fraces are used.
This predicate demonstrates the valid traces in the sys-
tem. To further accomplish this process, two other pred-
icates such as init and reset are also being used.

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 21

The predicate traces indicates that the initial con-
dition holds for the initial time step, and then for all
subsequent times, system need to change in accordance
with one of the five predicates such as regSSO, check-
Auth, reqResource, useResource, and reset. The oper-
ations performed by the user is also presented here in
order to help in annotation. Five operations performed
by the user, which are: login to access a required re-
source (Login), check for authenticity of user (Check-
Auth), if user is authenticated then request for resource
(Request), if resource is available, it is provided to user
(Fundtransfer or CheckService or BillPayment), and af-
ter using the system’s service, it makes a logout (RE-
SET). Along with the traces of operations, post com-
pletion error checking is also an essential task. The post
completion error can be checked by using a sequence of
operations, which represent a single interaction of the
user with the system. Predicate perfTrans starts with
initial state (waiting for login) and finishes with the sys-
tem’s logout.

3.4.2 Modeling of individual Security Patterns

Each security pattern is specified in terms of signa-
tures, facts, predicates, and assertions. The signature
USER has a field sso, which is an instance of Single-
SignOn. For a SingleSignOn to be associated with a
system, its user field must point to itself and it needs
to have a CheckPoint. The signature SingleSignOn has
two fields such as has and user. Another signature
is CheckPoint which has also two fields such as ac-
cessType and checkk. The field checkk represents Au-
thenticator which maps to Policy. In this signature, for
all authenticator and policy, user is authenticated by us-
ing Authenticator, where rules are enforced by using
Policy, and access type should allow the valid rules.

The signature Authenticator has three fields such as
accessType, auth, and cp, which map to AccessScheme,
USER, and CheckPoint respectively. Policy signature
also has three fields such as accessType, enforce, and cp
which map to AccessScheme, Rules, and CheckPoint re-
spectively. The last pattern SecureProxy has two fields
such as accessType and make. The field make maps Ac-
count to Operation. All these security patterns extend
signature SecurityPatterns.

3.4.3 Formal verification of Security Patterns

For the process of formal verification, the chosen Al-
loy model supports a good number of templates such
as fact, predicate, and assertion. In order to check the
consistency of security provision, the following codes
indicate two predicates such as, supported and authPol-

icy. The first predicate supported ensures that on a par-
ticular account user can perform operation. The second
predicate authPolicy specifies that for an specified pol-
icy, authentication should be checked.

pred supported [acct : Account, op : Operation]
{ acct— > op in SecureProxy.make }

pred authPolicy [p : Policy, a : Authenticator]
{ a— > pin CheckPoint.checkk }

In this formal model, predicate authenticated spec-
ifies that to perform an operation on a particular ac-
count, the user should be authenticated through the pol-
icy rules. Whereas, the predicate unauthenticated spec-
ifies that, if policy rules are not satisfied, the user will
not be authenticated.

pred authenticated [acct : Account, user :
op : Operation)

{ allp : Policy | alla : Authenticator |

p— > a in CheckPoint.checkk &&

supported [acct, op] &&

user = Authenticator.auth && authPolicy [p,a] }

pred unauthenticated |acct : Account, user :
USER, op : Operation)

{ allp : Policy | alla : Authenticator |

authPolicy [p, a] && supported [acct, op] &&

user! = Authenticator.auth }

USER,

The predicate performed indicates that, if predicates
supported and authenticated are satisfied, then user can
perform operation. Whereas, predicate noPerformed in-
dicates that if predicates supported and unauthenticated
are satisfied then user can’t perform operation on a par-
ticular account.

In this study, a fact expression is specified for vali-
dating user’s authenticity. According to specified fact,
if the user starts an operation on an account, they must
be authorized to do so. This fact statement should be
valid through the specification. If any constraint in the
model is violated, the fact statement generates an error
message.

An assertion is a constraint, which can also be
used for generating instances. If assertion does not
hold, it generates counterexample. The assertion Oper-
ation_Performed is used to specify the different opera-
tions, such as transfer fund, check service, bill payment
etc. for the example of online banking system. This as-
sertion generates counterexamples, which are helpful to
explain the intricacies properties.

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 22

sig USER { sso : SingleSignOn } { all s : SingleSignOn | s in sso implies
s.user = this && s.has = CheckPoint && s.user = USER '}

sig SingleSignOn extends SecurityPatterns { has : one CheckPoint, user :

sig CheckPoint extends SecurityPatterns { accessType : AccessScheme,

checkk : Authenticator — > Policy }

{all a : Authenticator | all p : Policy | a.auth = USER && p.enforce = Rules &&
(a.cp.accessType = allow implies p.enforce = valid) }

sig Authenticator extends SecurityPatterns { accessType : AccessScheme,

auth : set User, cp : CheckPoint }
sig Policy extends SecurityPatterns { accessType : AccessScheme, enforce :
sig SecureProxy extends SecurityPatterns { accessType :

USER }

set Rules, cp :
AccessScheme, make

CheckPoint }
Account — > Operation }

Modeling of individual Security Patterns

pred performed [acct : Account, user :
op : Operation)]

{ supported [acct, op] &&

authenticated|acct, user, op] }

pred noPerformed [acct : Account, user :
op : Operation)

{ supported [acct, op] &&

unauthenticated[acct, user, op] }

USER,

fact { allaccr : Account |

allop : Operation | alluser : USER |

supportlacct, op] && authenticated|acct, user, op]

= performed|acct, user, op] }

3.4.4 Model checking using Alloy Analyzer

Alloy Analyzer is used for generating and visualizing
instances and their relationship. In this formal model,
operation perfTrans is executed for the scope value
three. The graphical representation of this operation is
shown in Figure @ where it shows different instances,
such as enumerations, signatures, and connections be-
tween these signatures. The graphical result shows the
different types of relationships, such as Authenticator
has a state i.e., busy, Secure Proxy has an accessType
i.e., allow, check Point has an operation i.e., Request,
etc. As researcher says, if the number of instances are
greater than seven, Alloy Analyzer can generate all pos-
sible types of relations among given instances [[15].

USER,

assert Operation_Performed
{alla : Authenticator | allsso :
alluser : USER | allp : Policy |
allsp : SecureProxy | a.auth == user &&
p-enforce = valid && sp.op =

(Fundtransfer + CheckService + BillPayment)
&& sso.has.accessType = allow &&
supported|acct,op] = performed|acct, user, op| }

SingleSignOn |

3.4.5 Experimental results generated by Alloy An-
alyzer

Alloy Analyzer also helps for the generation of test
cases. It does not generate test cases directly. By us-
ing Alloy Analyzer, user can find large number of re-
lationships among the instances, which are helpful for
checking the consistency of a particular method. In Ta-
ble[l] first column represents the problem size (number
of instances), second column indicates simulation time
taken by Alloy Analyzer, third column is for the number
of test cases, and fourth column represents the number
of variables generated by Alloy Analyzer.

Table 1: Test cases generated by Alloy Analyzer

Instances | Time in ms | # Test cases | # Variables
2. 161 3 1561
4, 230 17 9880
6. 600 235 58495
8. 3065 1614 95026
10. 9826 14062 2138052

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 23

accessType: 1
accessType: 1

Authenticator

|
/
I.'auth
accesgType
/

accessType: 1
auth: 1

cp:1

op: 1

enforce: 2

/"

T - o

BillPayment

USER
($perfTrans_user)

op: 6
sso: 1
state: 6
user: 1

SingleSignon

: Login ; e :
WaitForAuth (SperTrans_op) Invalid] CheckPaint | | SecurityPatterns
8 o
Request CheckAuth RESET Authenticated Reset
Figure 6: Graphical result generated by Alloy Analyzer
Table 2: Evaluation of Security Patterns
S. No. Properties Threats Patterns

1. Confidentiality | Information disclosure Check Point

2. Integrity Tampering Authenticator, Policy, Secure Proxy

3. Availability Denial of Service SSO

4. Authentication Spoofing Authenticator

5. Authorization Elevation of Privilege Authenticator

6. Non-repudiation Repudiation Secure Proxy

3.4.6 Evaluation of Security Patterns with security
properties

The evaluation of these security properties, such as con-
fidentiality, integrity, availability, authentication, au-
thorization, and non-repudiation against the identified
patterns, such as Single Sign On (SSO), Check Point,
Authenticator, Policy, Secure Proxy are presented in Ta-
ble[2} SSO provides a single login screen to all external
entities of the system, which helps the system to trace
the unusual requests by maintaining the availability of
the system for other entities. Check Point ensures the
confidentiality of system by authenticating the user and
it also enforces certain security policies. Even it tries
to penalize the user for violating security policies. Au-
thenticator, Policy, and Secure Proxy maintain the in-

tegrity of a system. Authenticator is helpful to preserve
the Authentication and Authorization properties. Non-
repudiation can be maintained with the help of Secure
Proxy.

3.5 Mapping Web Security Patterns into Formal no-
tation: An MDA based Approach

A model driven architecture (MDA) uses the concept of
metamodel that represents its elements and their rela-
tionships. The MDA approach is mainly used to per-
form model transformation. UML class diagram of the
composition of web security patterns needs to be trans-
formed into Alloy notation for making an automated
analysis. UML class diagram can be formalized us-
ing OCL (Object Constraint Language) notation. But

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 24

OCL is not a lightweight notation and it can not gen-
erate graphical result. Hence, a UML class diagram
incorporated with OCL expression needs to be trans-
formed into Alloy expression. Table 3] represents the
correspondence between UML elements and Alloy el-
ements. The translation rules for the modeling frame-
work are described as follows:

e Web security requirements into security patterns
need to be represented.

e Security patterns using UML class diagram need
composition.

e UML class diagram may be transformed into Al-
loy notation by using UML2Alloy.

e The axioms (fact, assertion, and predicate) using
Alloy Analyzer may be checked.

o If predicate becomes inconsistent, Alloy specifica-
tion need to be changed.

Table 3: Correspondence between Alloy elements and UML ele-
ments

S.No. | UML Elements Alloy Element
1. Package Module
2. Class Signature
3. Attributes Relation
4. Association Relations
5. OCL Expr Assertion & Fact
Expr
6. Void Operation Predicate
7. Return Operation Function
8. Multiplicity Cardinality

In this study web security requirements are verified
using assertion, fact, and predicates that provide a secu-
rity verification framework for the other similar types
of system. The behavioral aspect of security patterns
are also analyzed that support run time verification of a
system.

4 Conclusion

Security design patterns reuse effective software design
experience on solving critical security related problems.
Patterns, with good error detection and correction abil-
ity, lower data redundancy, and easy implementation are
useful for the system. In this study, an attempt has been
made to systematically present a modeling approach to
the formalization of security design patterns. This ap-
proach captures both structural and behavioral aspects
that specify variants using formal modeling language

Alloy. It consists of modeling of the composition of
security patterns using UML notations. A formal ap-
proach is considered for analyzing critical security re-
quirements in order to analyze it. For the automated
verification (model checking) process, Alloy Analyzer
is considered. In the process of model checking, analy-
sis is a form of constraint solving. Analysis can disclose
subtle flaws that software architect might not have dis-
covered until much later. Alloy is considered for mod-
eling security patterns, because it provides a compact
model that allows the verification of structural and be-
havioral properties of a system. Alloy makes it more
logical for checking security problems in software de-
sign and provides security assurance. In this study, a
model driven approach is considered, that helps to map
security patterns specified in UML notation into a for-
mal notation. Some guidelines are presented to spec-
ify the behavior of security patterns. These guidelines
are useful to check the inconsistencies and ambigui-
ties among these security patterns. The advantage of
this study lies in its simple demonstration of security
requirements, formal specification of these security re-
quirements, and evaluation of security properties along
with necessary security patterns. This methodology can
further be extended by analyzing security patterns using
ontology based modeling technique.

5 Bibliography References
References

[1] Alexander, C., Ishikawa, S., Silverstein, M., Ja-
cobson, M., Fiksdahl-King, I., and Angel, S. A
Pattern Language. Oxford University Press, New
York, 1977.

[2] Anastasakis, K., Bordbar, B., Georg, G., and Ray,
I. On challenges of model transformation from
UML to Alloy. Software & Systems Modeling,
9(1):69-86, 2010.

[3] Bayley, I. and Zhu, H. Formal specification
of the variants and behavioral features of de-
sign patterns. Journal of Systems and Software,
83(2):209-221, 2010.

[4] Blakley, B. and Heath, C. Security design pat-
terns. Technical Report G031, The Open Group,
Apex Plaza, Forbury Road, Reading Berkshire,
RGI1 1AX, UK, 2004.

[5] Bordbar, B. and Anastasakis, K. UML2ALLOY:
A tool for lightweight modelling of discrete event
systems. In IADIS AC, pages 209-216, 2005.

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

Dwivedi and Rath

Formalization of Web Security Patterns 25

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Dong, J., Alencar, P. S., Cowan, D. D., and Yang,
S. Composing pattern-based components and ver-
ifying correctness. Journal of Systems and Soft-
ware, 80(11):1755-1769, 2007.

Dong, J., Peng, T., and Zhao, Y. Automated ver-
ification of security pattern compositions. Infor-
mation and Software Technology, 52(3):274-295,
2010.

Dwivedi, A. K. and Rath, S. K. Analysis of a com-
plex architectural style C2 using modeling lan-
guage Alloy. Computer Science and Information
Technology Journal, 2(3):152-164, 2014.

Dwivedi, A. K. and Rath, S. K. Selecting and
formalizing an architectural style: A comparative
study. In Contemporary Computing (IC3), 2014
Seventh International Conference on, pages 364—
369. IEEE, 2014.

Dwivedi, A. K. and Rath, S. K. Incorporating
security features in Service-Oriented Architecture
using security patterns. ACM SIGSOFT Software
Engineering Notes, 40(1):1-6, 2015.

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. Design patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

Group, S. D. Alloy analyzer 4.
alloy.mit.edu/alloy4/, 2010.

http://

Hafiz, M., Adamczyk, P, and Johnson, R. E.
Growing a pattern language (for security). In Pro-
ceedings of the ACM international symposium on
New ideas, new paradigms, and reflections on pro-
gramming and software, pages 139-158. ACM,
2012.

Hogg, J., Smith, D., Chong, F., Taylor, D., Wall,
L., and Slater, P. Web Service Security: Scenar-
ios, Patterns, and Implementation Guidance for
Web Services Enhancements (WSE) 3.0. Microsoft
Press, Redmond, WA, USA, 2006.

Jackson, D. Alloy: A lightweight object modeling
notation. ACM Transactions on Software Engi-
neering and Methodology, 11(2):256-290, April
2002.

Konrad, S., H. C. Cheng, B., A. Campbell, L.,
and Wassermann, R. Using security patterns to
model and analyze security. In In 2nd Interna-
tional Workshop on Requirements Engineering for
High Assurance Systems (RHAS’03), pages 13—
22. IEEE, 2003.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Mikkonen, T. Formalizing design patterns. In
Proceedings of the 20th international conference
on Software engineering, pages 115-124. IEEE
Computer Society, 1998.

Niere, J., Schifer, W., Wadsack, J. P., Wendehals,
L., and Welsh, J. Towards pattern-based design
recovery. In Proceedings of the 24th international
conference on Software engineering, pages 338—
348. ACM, 2002.

Schumacher, M., Fernandez-Buglioni, E., Hybert-
son, D., Buschmann, F., and Sommerlad, P. Se-
curity Patterns: Integrating security and systems
engineering. John Wiley & Sons, West Sussex,
England, 2005.

Steel, C., Nagappan, R., and Lai, R. Core Security
Patterns: Best Practices and Strategies for J2EE,
Web Services, and Identity Management. Prentice
Hall PTR, 2005.

Taibi, T. and Ngo, D. C. L. Formal specification
of design pattern combination using BPSL. Infor-
mation and Software Technology, 45(3):157-170,
2003.

Uzunov, A. V., Falkner, K., and Fernandez, E. B.
A comprehensive pattern-oriented approach to en-
gineering security methodologies. Information
and Software Technology, 57:217-247, 2015.

Woodcock, J., Larsen, P. G., Bicarregui, J., and
Fitzgerald, J. Formal methods: Practice and
experience. ACM Computing Surveys (CSUR),
41(4):19, 2009.

Yoder, J. and Barcalow, J. Architectural patterns
for enabling application security. In In proceed-
ing of the 4th Conference on Patterns Language
of Programming (PLoP’97), 1997.

Zanoni, M., Fontana, F. A., and Stella, F. On
applying machine learning techniques for design
pattern detection. Journal of Systems and Soft-
ware, 103(1):102-117, 2015.

Zhu, H. and Bayley, I. An algebra of design pat-
terns. ACM Transactions on Software Engineering
and Methodology (TOSEM), 22(3):23, 2013.

INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

http://alloy.mit.edu/alloy4/
http://alloy.mit.edu/alloy4/

	Introduction
	Related Work
	Proposed Work
	Modeling Framework for Web Security Patterns
	Identification and Composition of Security Patterns
	Structural and Behavioral aspects of patterns
	Formal specification of patterns using Alloy
	Analyzing behavioral aspects of Security Patterns
	Modeling of individual Security Patterns
	Formal verification of Security Patterns
	Model checking using Alloy Analyzer
	Experimental results generated by Alloy Analyzer
	Evaluation of Security Patterns with security properties

	Mapping Web Security Patterns into Formal notation: An MDA based Approach

	Conclusion
	Bibliography References

