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Abstract— In the last few years text summarization has gained widespread attention across industries, especially in media and 

publications, research, business intelligence etc where it helps exploiting large documents to generate a new one with 

summarized inferences without losing the aspects. However, majority of the conventional approaches either employs extractive 

summarization or the abstractive summarization for single-document settings. On contrary, above stated application 

environments demand abstractive summarization in multiple document settings. Though, amongst the major efforts developed 

so far the attention based neural network methods have performed potentially; however their efficacy under multiple-

documents setting and aspect-sensitive summarization has remained confined. Considering it as motive, in this research a novel 

and robust Improved Attention Layer assisted Recurrent Convolutional Neural Network (IA-RCNN) model is developed for 

Abstractive Text Summarization in multiple document settings. Unlike conventional efforts we have employed state-of-art 

techniques such as Sequence-to-Sequence (S2S) paradigm where the inclusion of RCNN, which is modified as Recurrent 

Neural Network (RNN) encoder technique for text summarization. Our proposed abstractive text summarization model 

encompasses semantic feature extraction, dependency parsing, semantic role labeling, semantic information etc where it 

exploits the structural, syntactic, and semantic information of the input text data to generate the summary. Unlike conventional 

Attention based Summarization, in our proposed model at first performs Clustering and Sentence Merging, which is followed 

by Transition-based Abstract Meaning Representation (TAMR) parsing, whose output is encoded by means of an improved 

Tree-LSTM RCNN model, which eventually generates single summarized sentence as output.  The overall proposed model is 

tested with multiple text documents where simulation results affirm satisfactory performance for real-time applications. 

 

Keywords: Abstractive Text Summarization; Multiple Document Summarization; Recurrent Neural Network;, Sequence-to-

Sequence Paradigm; Abstractive Mean Representation.   
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1.  INTRODUCTION  

Understanding intend of the different users and their opinion 

and finding out a cumulative (agreeable to all) statement can 

be vital for making an optimal decision. Undeniably, these 

days a firm, an agency, or an individual exploits opinions of 

others to make optimal decision in daily-activities. 

Gathering different opinions from the geographically or 

demographically independent users has become an 

inevitable practice for industries to understand audience’s 

key perception and concerns. Undeniably, such explorative 

efforts have been playing decisive role in navigating a firm, 

allied associates, stakeholders etc. Additionally, it has been 

assisting non-commercial activities such as social issues 

assessment and problem identification, ideology formulation 

etc. On the other hand, the exponential rise in software 

computing environment and allied technologies have 

revitalized socio-industrial stakeholders to make optimal 

decision by processing raw information and the reducing the 

redundant one to assist computationally efficient 

communication. In the last few years, technologies like 

Internet, World Wide Web (WWW) has broadened the 
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horizon for online communication where users can make 

their independent views, commends, feedback etc on certain 

web platforms. The reviews can be made by significantly 

large number of users where each participant can have its 

own perception, review and/or opinion. Under such 

gigantically huge data presence identifying the concluding 

statement turns out to be of great significance. However, 

obtaining the summarized inference (of opinion) from a 

gigantically huge or multiple independent reviews is highly 

tedious task. On contrary, absorbing the gigantically huge 

data and creating the opinionated information is of utmost 

significance. This overall process is referred as Text 

Summarization. In the contemporary web based applications 

such as social media platforms, E-commerce platforms, 

internet-blog spots, review platforms have exploiting 

independent opinion(s) of the different users (say, multiple 

users) and identifying a single inference or fluent opinion by 

text summarization is a complex task.   

 Numerous researches done towards text-summarization 

are focused for either single text document summarization or 

extractive measure based summarization. Noticeably, text 

summarization is broadly classified as extractive and 

abstractive methods. In extractive text summarization, 

sentences or phrases from the input text are included for 

summary formation [1, 2]. The key limitation of such 

approaches is that it undergoes unavoidable inclusion of 

redundant information that makes computation too complex 

and cost-consuming. Moreover, the primitive intend of 

summarization can’t be achieved efficiently by means of 

extractive summarization method. Extractive method selects 

salient sentences from the input data or source text document 

without making any modification, so as to generate the 

summary as output. On contrary, abstractive summarization 

techniques can generate (summary) text beyond the original 

one without including texts from the input data. In other 

words, abstractive methods can generate more concise and 

coherent summaries [3-7]. Typically, abstractive text 

summarization method generates a short summary 

comprising a few sentences that captures the salient ideas of 

an article or a passage (say, opinion). Abstraction text 

summarization methods are often applied for sentence 

compression, syntactic reorganization and lexical 

paraphrasing purposes. However, based on application 

environment and source of input, summarization is 

categorized as single-document or multiple-document 

summarization. In practice, the information overlap amongst 

the multiple documents pertaining to the same topic or 

aspect makes the multi-document summarization highly 

complicate and more challenging task in comparison to the 

single document’s summarization. Furthermore, in multiple-

document summarization the input or the source documents 

often comprise similar information, the extractive methods 

might generate biased or the redundant summary and hence 

can’t be an effective solution [8]. Stating aforesaid 

application environments which embody multiple source 

document or opinion to be transferred into single coherent 

one, the development of a multiple-documents 

summarization method can be vital [9]. It can be considered 

as the motivation behind the at hand study, where the 

emphasis is made on developing a robust and efficient 

multiple-document text summarization model. Though, 

abstractive text summarization methods have better 

significance towards summarization, it requires efficient and 

robust natural language processing (NLP) technique to 

generate the optimally coherent and concise summary [10]. 

Though, a number of researches have been done towards 

text summarization, the majority of the conventional efforts 

either employ extractive summarization or are primarily 

developed for single document compression or 

summarization. Considering multiple documents 

summarization, absorbing the different distinct or 

independent documents and their aspects, and generating a 

new “abstracted” paragraph is a tedious task, which requires 

better NLP solutions. To achieve it, though a few efforts like 

deep learning based methods have been proposed that maps 

the input data sequence into another output sequence. This 

process is terms as “sequence-to-Sequence (S2S)” method. 

In the last few years S2S has gained widespread attention 

across industries to solve problems like machine translation 

[11], speech recognition [12] and video captioning [13].  

Unlike major conventional S2S based summarization 

models, in this paper we have implemented Modified 

Attention Layer based Recurrent Conventional Neural 

Network (R-CNN). Here, R-CNN model encompasses 

encoder and decoder models as recommended by [11], 

which have performed better for different machine 

translation (MT) purposes. However, realizing the fact that 

MT is different from the abstractive summarization, where 

abstractive summarization intends to generate very short 

summary without depending on the size of input texts. 

Unlike conventional RNN or R-CNN based encoder-decoder 

techniques for NLP generation (NLG), in this paper the 

focus is made on enhancing it by incorporating the key 

features such as POS tagging, semantic feature extraction, 

dependency parsing, semantic role labeling, semantic 

information based summarization. To augment the 

coherence and conciseness of the summarized “abstracted” 

text output, our proposed Improved Attention based R-CNN 

(IA-RCNN) model exploits the structural, syntactic, and 

semantic information of the input text data. Since, not much 

significant effort is made so far to assess whether the 

semantic information or allied syntactic features can 

optimize encoder-decoder performance, in this paper we 

have exploited these features to enhance overall RNN 

encoder-decoder for NLG purposes. Our proposed model 

can be stated as an enhancement of Attention Based 

Summarization (ABS) model proposed by [14]. Unlike 

conventional approaches our proposed model can be stated 

as an enhancement of Attention Based Summarization 

(ABS) model proposed by [14]. Unlike conventional 

approaches our proposed IA-RCNN model encodes the 

results retrieved from Transition based Abstract Mean 

Representation (TAMR) parser by attention based Improved 

R-CNN model with Long and Short Term Memory (LSTM) 
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encoder. Our proposed Tree-LSTM model encompasses 

augmented information than the classical one [15] that make 

NLG more efficient, accurate and concise. 

2. RELATED WORK  

This section discusses some of the key literatures pertaining 

to multiple text summarizations.  

Considering the significance of minimal redundancy and 

higher relevance, authors [16, 17] applied extractive text 

summarization concept. Authors [18, 19] formulated text 

summarization as the maximum coverage problem with 

knapsack constraint (MCKP). Additionally, it has been 

formulated as the problem of sub modular function 

maximization [20-22] where authors recommended using 

greedy algorithms to achieve concise and coherent summary 

as output. Authors [1] at first made effort to retrieve the 

frequent product features based on which the summary 

extraction method was derived from opinion sentences and 

allied features.  However, these conventional approaches, 

which are of extractive text summarization type are unable 

to avoid any significant inclusion of less-significant 

information or intends to perform eventual summarization 

task [17, 23-29]. Unlike extractive method, abstractive text 

summarization methods, especially with multiple documents 

and generates the final summary by understanding intend of 

each document or content and rewrites the output as the 

most relevant one. Since the beginning, numerous efforts 

have been made towards abstractive text summarization, 

such as sentence compression [30] and sentence fusion [9]. 

Recently, authors recommending combination of both 

sentence compression as well as extractive system to 

enhance summary output [31, 32]. Similarly, efforts were 

made by employing sentence fragment identification and 

fusion to enable important text based summarization [9, 3, 

33-36]. However, it was an extractive summarization 

method having less efficiency as compared to the abstractive 

summarization approach in real- world.  

 Undeniably, abstractive text summarization is a tedious 

task that becomes even more severe in case of multiple 

documents. The inclusion of the sophisticated techniques 

such as meaning representation, content mining and 

organization, sentence compression, content or sentence 

(fragment) fusion, paraphrasing etc makes abstractive text 

summarization more challenging task [37-39]. Recently, 

authors recommended applying compressive summarization 

approach that in function compresses the original sentence 

without making any significant alteration except word-

deletion.  Authors [40] proposed sentence compression 

comprising multiple sentences, often called Multi-Sentence 

Compression (MSC); however it primarily depended on the 

syntactic parsing to constitute a dependency tree for every 

associated sentence in a cluster. It eventually enabled 

grammatical compression to perform summarization [40]. 

Though, a few researches intended to use syntactic parsing 

for text summarization, its unavailability for all languages 

limited its application. To alleviate such issues, authors [39] 

proposed graph based method as alternative that employed 

merely a POS tagger and list of stop words to perform 

summarization. In graph based methods, a directed graph 

was constituted where each node signifies the words and 

edge states the adjacency between the words in the complete 

sentence. In this manner, summarized sentences are 

generated by finding the k-shortest path in the graph. 

Though, this approach was a better efforts, its limitations 

were resolved by [41], who focused on enhancing 

summarization by re-ranking the fusion candidate paths as 

per the important phrases to generate more informative 

summary.  

 In the last few years, the exponentially rise in deep 

learning techniques and its robustness for NLP has 

broadened the horizon for academia-industries to exploit its 

efficacy for text summarization. Additionally, the concept of 

encoder-decoder neural network for end-to-end training has 

gained wide-spread attention across academia-industries to 

perform abstractive text summarization. Recently, authors 

[12, 46] proposed attention based encoder-decoder neural 

network which was primarily inherited from the field of 

machine translation to perform text summarization. In 

addition, neural sequence-to-sequence (S2S) learning 

concept too has gained widespread attention for the headline 

generation from single document [14]. However, its efficacy 

could not be assessed for multiple document 

summarizations. Since the initial efforts made by [14] 

achieved single sentence summarization, was later 

considered as text summarization by numerous authors [47-

51]. However, generating a single sentence can’t be 

universal goal of text summarization, especially with 

multiple text documents with large corpse size. The above 

stated encoder-decoder neural network models could achieve 

single sentence generation comprising maximum of 75 

characters. It confines its applicability in major application 

environment. Exploring in depth, it can be found that the 

above stated methods generated summarized sentence by 

comprising grammaticality of the original sentence. 

Recently, authors [52] applied CNN/DailyMail corpus  as a 

supervised training data to generate multi-sentence summary 

from a single document [53-57]. However, majority of these 

approaches generate compressed summary by deleting the 

words form a single source document and doesn’t employ 

any paraphrasing concept. These approaches could not 

generate the new sentence form the source document words 

except certain morphological changes. In the last few years, 

authors [58, 59] identified neural network method as viable 

solution for the text summarization in multiple-document 

setting. However, [58] could perform extractive 

summarization only.  

On contrary, authors [59] could perform compressive 

summary generation by means of using an ILP approach and 

hence could not address the issue of redundancy in the 

summary generated. In addition, it could not be assessed for 

large scale multiple-document setting text summarization. 

Considering the robustness of deep learning methods for 
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NLP purposes, [60] reframed it as a data-driven approach to 

perform abstractive summarization. Recently, authors [14] 

applied convolutional technique to encode the source and 

context-sensitive attention feed-forward neural network to 

produce the summary. As optimization of [14] work, [48] 

and [47] applied convolutional model as encoder, but 

substituted the decoder by means of RNN, which was found 

more efficient for summary generation. A similar effort was 

made by [61] who employed above stated RNN encoder 

decoder model for text summarization in Chinese short 

documents. However, this approach was found limited with 

English corpora. Furthermore, authors [62] applied RNN 

based encoder-decoder; however for extractive 

summarization purpose. Recently, authors found that in 

addition to the conventional RNN encoder-decoder based 

approaches, the inclusion of sequence to sequence paradigm 

can be vital for more cohesive and concise summarization 

[33][14][52]. Researchers have revealed that the strategic 

inclusion of attention layer based RNN with enhanced 

encoding and decoding and S2S paradigm can be more 

effective solution towards abstractive text summarization. 

Additionally, the inclusion of semantic features too can be 

helpful towards multiple text document summarizations with 

above stated attention based RNN encoding-decoding 

concept. Considering it as motivation, in this research paper 

the focus is made on augmenting conventional attention 

model to be used in conjunction with RCNN based efficient 

encoding-decoding for abstractive summarization in 

multiple-document settings. 

3. RESEARCH QUESTIONS 

 Considering overall research intends and allied 

implementation scope, we have defined a few key research 

questions, which intends to assess whether the proposed 

model or approach can achieve targeted goals. The research 

questions identified are given as follows: 

RQ1: Can the use of Improved Attention Layer assisted 

Recurrent Conventional Neural Network (IA-RCNN) 

be efficient for optimal encoding-decoding for further 

multiple-text summarization?  

RQ2: Can the use of semantic and syntactic information be 

effective to support IA-RCNN encoder-decoder for 

more cohesive and concise Abstractive Multiple-text 

Summarization? 

RQ3: Can the use of Word2Vec semantic feature extraction 

followed by IA-RCNN encoding decoding be a 

potential solution for S2S multiple-text abstractive 

summarization? 

RQ4: Can the strategic implementation of Attention Based 

Summarization (ABS) and TAMR with improved 

Tree-LSTM encoding be effective for Abstractive 

Multiple-text Summarization?   

4. OUR CONTRIBUTION 

This section primarily discusses the proposed multiple-

document abstractive summarization model. As contribution 

in this research a novel and enhanced attention layer based 

RCNN model is developed, which has been implemented to 

generate text from multiple distinct input documents. Being 

an abstractive text summarization model, it intends to 

generate a new sentence without inheriting or making 

morphological changes in the text inputs. To achieve it, we 

have applied attention based model. Unlike conventional 

attention based strategy , in this research we have made 

enhancement so as to achieve computationally efficient and 

semantic also called Latent-Attention (LA) model to perform 

abstractive text summarization in multiple-document setup. 

Before discussing our proposed attention based 

summarization (ABS), a snippet of the attention model and 

its implementation is given as follows:    

 

A. Attention based Deep Learning: Selecting the best 

Configuration   
 

1. Global Vs Local Attention 

 In case of Global attention based neural network, 

all-encoder hidden states are used to characterize the 

attention enabled context vector to be used for each decoder, 

distinctly. Since, this process can be computationally 

complex and cost consuming; we have employed Local-

Attention (LoCA) model which employs or considers merely 

a few hidden states which can fit into relatively smaller 

window. Noticeably, the window is often centered near the 

n-th encoder hidden state, where there can be M hidden 

states. In this LA configuration, the length of the window 

equivalent to the total number of hidden states and  hence it 

would be . Such alignments can be divided into two 

broad types, monotonic and predictive, where in monotonic 

alignment the encoder hidden state  is maintained similar 

as the decoder position. For example, the fourth output 

would be n=4. In case M=2, then the attention would be 

merely on 3, 4, 5, 6 and 7 hidden states. On the other hand, 

the predictive alignment assures maintaining  as the 

function of the decoder state where the associated 

parameters such as weights, etc are learnt jointly by the 

model. Considering the efficacy of the LoCA model with 

have consider it with predictive alignment scheme.       

 

2. Hard Attention Vs Soft Attention 

Typically, in Soft-Attention (SA) model, the context vector 

is estimated as a weight sum of the encoder hidden state.  On 

contrary, in case of Hard-Attention (HA) instead of the 

weight sum and weight average the attention scores ar  e 

considered to select a single hidden state. In fact selection of 

single hidden state is a complex task as in general the 

function named  is applied to select the hidden 

state; however it functions by selecting an index pertaining 

to the maximum score. In such case, pushing the weight to 

move the score near the maximum value would not make 

any significant changes in index selection. In this paper we 

have applied hard-attention model, where the attention score 

is applied as the likelihood of the -th location or text getting 
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selected. Here, we applied a sophisticated  function 

to make the text selection. Mathematically, the hot-attention 

based word selection employs the following conditions (1). 

 

 

 

(1) 

In above equation states the encoder or the input hidden 

state, while the parameter  states the attention score. Here, 

the variable would be on-hot variable with , when the 

i-th location is to be selected. In our paper, we have applied 

HA model to perform abstractive text summarization, and 

hence in this setup the feature vectors generated by the 

RCNN are the “Encoder-Hidden States”.    

3. Latent-Attention (LA) 

As indicated in the previous sections, we intend to exploit 

efficacy of the latent information or the semantic features to 

make text summarization decision, the selection of latent-

attention model can be of utmost significance. In our 

proposed model, we have at fist obtained the “Latent-

Attention Vector (LAV)”, where each dimension of the 

vector signifies a word and the softmax function provides a 

sense of relative significance across the words in the vector 

(obtained from the text input data). Noticeably, in this 

approach, each words of the input document is presented in 

terms of d-dimensional embedding vector and therefore for 

the total of -words we retrieve  matrix, which is 

further used for training and allied processing. The use of 

Latent Attention (LA) model enables our approach to 

consider semantic features for sentence re-generation for the 

abstractive text summarization. Thus, observing above stated 

discussion and refined structural discussion, in our proposed 

Attention based Abstractive Text Summarization (ABAS) 

model we inherit the attention model with Local-Attention 

(LoCA), Hard-Attention (HA) and Latent Attention (LA). In 

this manner the attention model being employed can be 

defined as the function (2). 

 

(2) 

 In ABAS model, it predicts the word sequence 

(summary) on the basis of the NN concept in conjunction 

with an input sentence encoder. The detailed discussion of 

the ABAS model employed is given in the sub-sequent 

sections.  Let,  be a text term or vocabulary, while  

signifies the -th indicator vector pertaining to the -th word 

in the input document (say, input sentence). Consider that 

there are  words in a single input sentence of the document 

. Similarly,  be the input sentence, which is signified as a 

sequence of indicator vectors of the length . 

Mathematically,  

, and  

.  

(3) 

Now, consider  be a sequence of indicator vectors 

, whose length is , provided  Thus, 

the list of vectors comprising the sub-sequence in Y from 

 to  be the term . In our proposed model, we 

hypothesize a one-hot vector for an specific start symbol, for 

example “⟨S⟩”, when . In this case, with the above 

stated attention model or ABAS model, the summary output 

 for an input sentence  can be defined as (4).  

 

(4) 

 

(5) 

 

(6) 

In above equation (6), the component  states a 

feed-forward NN model [63], while the second component 

of (6)  represents the input sentence encoder 

with attention mechanism. In our proposed model, we 

employ  states the sizes (or, the dimensions) of vectors for 

word embedding, while  signifies the hidden layer states. 

Now, Let  signifies the embedding matrix of the 

output words and consider that the parameter  

and  be the weight matrices of hidden and 

output layers, correspondingly. With above derived model, 

 of (6) can be obtained as (7).  

,        
(7) 

 

In (7), the parameter  states a concatenation of output 

embedding vectors from  to  . In other words, 

, where it signifies a  

dimensional vector. Subsequently, let  be 

embedding matrix of the input while the same for output 

sentence be . Additionally,  be the 

weight matrix for the output layer of CNN and the weight 

matrix to perform mapping of the embedding of output 

onto the input words be . Similarly, be the 

matrix constructed form of a list of input embeddings, 

mathematically defined as   where 

. Then, the encoding function (3)  can 

be reframed as (8). 

 

(8) 

 

(9) 

In above equations, parameter  stats a concatenation of 

output embedding vectors from to  , which is 

equivalent to the . In other words,  

 

(10) 

Additionally, the parameter signifies a matrix depicting 

the list of mean input word embeddings within the 

predefined window size . Mathematically,  

 

(11) 
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In (11), the parameter   

 

In ABAS model, equation (9) is often stated as “Attention 

Model (AM)” that in function encodes the relationship in 

between the input words and the descendent or previous 

output word For illustration, in case the previous output 

(i.e.,  words are hypothesized to align towards , then the 

neighboring allied  words  would have high 

weight as per (8). The encoding efficiency and suitability 

towards latent relationship based encoding enables AM to be 

used for Abstractive Text Summarization. With this motive, 

in this research we have applied the augmented AM, named 

ABAS (2) to perform abstractive text summarization in 

multiple document setting. Noticeably, since in this research 

we have applied Improved Attention Model (IA) based CNN 

model to be used for Abstractive Text Summarization, here 

onwards we pronounce it as IA-RCNN. To be noted, as NN 

solution, in our proposed model we have applied Recurrent 

Convolutional Neural Network, which is well known for its 

computational efficiency and accuracy for learning and 

eventual new text generation. The detailed discussion of the 

proposed IA-RCNN model for Abstractive Text 

Summarization is presented in the sub-sequent section. 

 

B. ABAS Implementation  

As already stated in previous section, in this research to 

perform abstractive text summarization we hypothesize that 

the well defined and strategic implementation of the 

syntactic and semantic characteristics of the text input or 

sentence can assist generating the new sentence, called 

summary. For instance, the key significance, subject matter, 

allied meanings, predicates, and objects of the generated 

sentence must coincide to the original (input) sentence(s). 

Considering this fact, in this research we have applied both 

semantic as well as syntactic features to generate new text, 

where the use of Latent Attention (LA) model has played 

decisive role to achieve concise and relevant sentence. 

Though, attention based approaches have been extensively 

applied for Abstract Meaning Representation; however its 

use of multiple inputs text summarization has not yet 

investigated. In majority of the classical researches, authors 

have directly applied input sentence for encoding. On 

contrary, to retain above stated syntactic as well as semantic 

features for text summarization (in multiple input document 

set up), we have at first obtained Abstract Meaning 

Representation, which has been fed as input to the RCNN 

model. The detailed discussion of the proposed Abstract 

Meaning Representation scheme applied in this paper is 

given as follows: 

 

1. Phase-1 Abstract Meaning Representation  

Typically, the concept of Abstract Meaning Representation 

signifies a directed and acyclic graph model which performs 

encoding of the signifier or the sentence meaning. In other 

words, this concept encodes the meaning of a sentence. 

Noticeably, in functional structure each node in abstract 

meaning representation scheme signifies the term called 

‘concepts’, while the directed edges refer the association or 

the relationship in between the nodes. Here, concepts 

comprise English words (as we have considered input 

sentences in English language), while the property 

represents the predicates. Following the concepts proposed 

by [64], for edges, there used to be nearly 100 relations 

comprising the semantic roles on the basis of above stated 

property (i.e., predicators) annotations. Here, in our 

proposed model we applied Word2Vec concept to achieve 

Latent information and relationships between the words. In 

our proposed model, to obtain precise Abstract meaning 

representation of each sentences (as, we have applied 

multiple inputs), we have applied sequence-to-sequence 

(S2S) paradigm assisted Transition-based Abstract Meaning 

Representation (TAMR) parser. The detailed discussion of 

the TAMR model can be found in [65]. Now, once obtaining 

the TAMR values for each text inputs, the obtained values 

are projected to the Attention based Encoder. The detailed 

discussion of the proposed attention based TAMR encoding 

is given as follows: 

 

2. Phase-2 Attention Assisted TAMR Encoding  

Once obtaining the semantic and syntactic information of 

features from TAMR model, it was fed as input to a layered 

optimized Child-Sum Tree-LSTM based RNN model. 

Undeniably, majority of the classical RNN methods are time 

efficient and accurate; however their robustness with 

multiple input processing requires an optimal balance in 

between the computation and encoding accuracy. 

Considering it as motive, in this research we augmented 

classical RNN with lower layer selection and hidden state 

information parsing. In our proposed Tree based LSTM 

leaning model, the obtained semantic and syntactic features 

are encoded which are converted into a predefined Feature 

Embedding Vectors (FEV). To achieve computationally 

efficient learning and embedding, in our proposed model, we 

converted a Directed Acyclic Graph (DAG) model of the 

TAMR parser output into an equivalent Tree-structure. To 

achieve it, we applied the concept of Head-Nodes (also 

called Parent node) separation, which usually comes into 

existence to represent co- referential concepts, to associated 

or respective out-edges to the head nodes. In our proposed 

model, the Tree-LSTM has been further augmented to 

encode edge labels as TAMR facilitates both node as well as 

edge labels, on contrary the classical Tree-LSTM method 

merely encodes node labels. This enhancement enables our 

proposed method to achieve or retain more significant 

information which eventually attains more concise and 

cohesive summarization.  

 

Consider, the variable  and  be the  and  dimensional 

embeddings for the different labels. Let these labels are 

assigned to the -th node of the RNN model. Similarly, out-

edge are directed to associated root node, also called parent 

node. Now, to perform embedding we use different weight 
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parameters such as  ,  . Noticeably, 

these weight matrices are employed to perform node 

embeddings for . Now, consider that the weights used for 

edge-embedding  be the  ,  . 

Similarly, the weight matrices employed for output vectors 

connected to the child-node be the  ,  

 and let the total nodes or the set of nodes 

available in all documents be . Noticeably,  are 

those nodes which possess a direct edge to the -th node in 

the TMAR structure. In this case, the embedding output at 

node  in TAMR structure is obtained by processing our 

proposed Tree-LSTM model. Mathematically, it is derived 

as follows:  

 

 

(12) 

 

(13) 

 

(14) 

 

(15) 

 

(16) 

 

(17) 

 

(18) 

 

Consider,  be the total nodes available in TAMR structure 

retrieved from the multiple documents or the provided input 

sentences. Then, here we have defined a matrix  

signifying the list of the hidden states  for all comprising 

nodes . In other words let the matrix be 

and consider the weight matrix of the 

output layer be the . Similarly,  

signifies the weight matrix to map the context embedding of 

 output words onto embeddings retrieved from the nodes. 

In such case in our proposed model we have derived or 

designed an Attention assisted TAMR 

encoder . Mathematically, our proposed 

encoder model is defined as (19). 

 

 

(19) 

 

(20) 

 

Once deriving the attention model (19), we have 

amalgamated it to the native model (6). Thus, the newly 

derived attention model for ABAS based text summarization 

is derived as (21).  

 

 

(21) 

Thus, using (21), we have performed new sentence 

generation. Considering computational efficacy 

requirements, though RNN deep learning concept has 

always been the dominant solution, however dealing with 

multiple data and processing above stated mechanisms might 

force it to undergo computationally overburdened. To 

address such possible issue, unlike classical deep learning 

methods, we modified Tree-LSTM RCNN by changing layer 

structure as well as learning method. Here, we applied 

ADAM (Adaptive Moment Learning), an adaptive moment 

estimator model which assigns learning weights dynamically 

to perform learning or training. Unlike classical Stochastic 

Gradient Descent (SGD) based learning methods, which is 

applied in most of the deep learning method, our approach 

might yield more computationally efficient performance.   

Initially, we assigned initial learning rate as 0.0001. The 

implemented deep learning structure embodied two 

convolutional layers (CONV), Max-pooling and two Fully 

Connected (FC) layers, where sigmoid function was used as 

activation function. In addition, we applied dropout rate of 

0.5 (i.e., 50% dropout), which can enhance overall 

computational efficiency even with large input datasets.  

 

3. Phase-3 ABAS for Multi-Document Setup 

 Noticeably, in our proposed model, to perform 

abstractive text summarization in multiple input sentence 

setup (or multiple document setup), before feeding the inputs 

to the Tree-LSTM encoder we have processed for Sentence 

clustering [66], which was further processed for TAMR 

structure generation and RNN learning or training. In our 

proposed sentence clustering model we applied syntactic or 

Hierarchical Agglomerative Clustering (HAC) concept 

proposed in [67] with linking criteria. This method exploited 

both S2S concept as well as incremental mechanism 

originating with each sentence (called a cluster), and was 

merged the pair of each cluster iteratively after each step. To 

achieve it, we applied Bottom-Up concept. In our proposed 

model, the above stated Linking Criteria estimated the 

metrics used for merging. In other words it obtained the 

maximum distance in between a cluster (i.e., sentence) to the 

other. Here, we applied cosine-similarity amongst the 

embedding vectors obtained by Word2Vec (sentence 

embedding vector outputs). Assigning a threshold of 0.5, we 

obtained the single sentence which was processed further 

with TAMR and sub-sequent Tree-LSTM learning to 

generate the new sentence. Noticeably, though, in our 

proposed model the new cluster or new sentence obtained 

was small, however it was highly coherent as all 

participating sentences that a cluster contained was very 

similar to each other (in same cluster) and hence applying 

TAMR followed by Tree-LSTM RNN encoding resulted 

better performance. To be noted, since our proposed model 

at first performed TAMR, whose output was processed for 

encoding, even the concept of “sentence merging” [68] can 

also be considered to perform abstractive text summarization 

under multiple-documents settings. 
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5. RESULTS AND DISCUSSION 
This section primarily discusses the results and discussion 

for the at hand research.  

­ Data Preparation: 

 To assess the performance of the proposed Abstractive 

Text Summarization model, we have considered multiple 

documents with similar aspects. Being a multiple document 

text summarization model, we have ensured that the input 

data retains or possess similar aspect. For which we have 

applied two different set of input data, one from Amazon 

review, while another as benchmark dataset DUC 2004. In 

our proposed model, before processing for text 

summarization, at first we have processed for pre-processing 

where the punctuations, special characters or stopping words 

such as “,”, “.”, “!”, etc are removed. To achieve it we 

applied Porter’s Stemmer (Porter, 1999) method. In addition, 

the small words such as “is”, “was”, “have”, “had” etc were 

removed. Furthermore, we performed contraction mapping 

and tokenization as supplementary pre-processing that 

alleviated any presence non-uniformity and achieves better 

computing environment for “Dynamic Programming 

Problem”. To achieve document co-reference resolution, we 

applied Stanford CoreNLP.  Executing for pre-processing, 

the sentences from each input (documents) were converted 

into sentence sequences. In case of Amazon review data, we 

considered 200 rows signifying each sentence as review. On 

contrary, the other dataset was applied in its native form, 

each with different sentences having similar aspects. 

Additionally as pro-processing we converted each sentence 

or allied words as lower case.  

 

­ Experiment  

 As stated in above section, we considered two distinct 

datasets (Amazon Review and DUC, 2004) to assess 

efficiency of the proposed abstractive text summarization 

model under multiple document settings, Specifically, in 

proposed system the set of key attributes presents in the 

summary containing content coverage of summaries and 

linguistic quality as well as cohesive factuality of the 

generated summary sentences have been examined. We 

applied ROGUE-1 (Lin., 2004) to examine the content 

coverage. Noticeably, ROGUE refers the ratio of the total 

number of words in the predicted summary to the total 

number of words in the target summary. Additionally, we 

have performed human evaluation and assessment for 

linguistic quality of the newly generated sentence. In our 

experiment we considered DUC 2004, which embodies 

numerous corpora, each consisting of multiple documents. 

Here, for sake of simplicity for DUC 2004, we considered 2 

input samples to generate the new one. Furthermore, we 

tuned the development parameters, especially TAMR and 

Tree-LSTM as per DUC 2004 with 2 distinct inputs 

(sentences). Similarly, for Amazon data we modified 

processing parameters such as number of latent information 

as 300, while embedding size was considered as 100. In our 

proposed model, Tree-LSTM parameters were tuned to 

achieve more efficient content coverage where pruned trees 

were obtained to fill the allotted summary spaces without 

involving any additional combination to refine final new 

sentence (as generated output). We measured content 

coverage as ROGUE score with reference to the summaries 

obtained for distinct inputs or datasets. In this paper, we 

assess statistical performance for our proposed system in 

terms of ROGUE-Recall and ROGUE F-Measure.  

 
Table-1 ROGUE-1 Scores of the proposed abstractive summarization model 
Dataset R-1 F-1 

DUC 2004 0.46 0.59 

Amazon-Review 0.62 0.70 

 

 To examine relative efficiency of our proposed model 

with respect to the state-of-art existing method, such as [68] 

we have compared the performance in terms of ROGUE 

Recall (R-1) and F-Measure (F-1) (Table 2). To make 

comparative assessment, we have averaged the scores 

obtained for the two different datasets.  

 
 Table-2 Relative Performance assessment (ROGUE-1) 
Dataset R-1 F-1 

[18] 0.385 - 

[20] 0.39 0.38 

[68] 0.38 0.38 

[69] 0.39 - 

Proposed 0.40 0.53 

 

 Considering above stated performance, it can easily be 

found that the proposed text summarization model achieves 

higher performance as compared to existing state-of-art 

abstractive (multi-document) summarization models. 

Considering a recent work [68], where author have applied 

Partial Tree-Extraction, Recombination and Linearization 

concept to perform abstractive text summarization in 

multiple document setting. In their approach, though the use 

of Tree-LSTM was more refined and tuned, our proposed 

model outperforms it [68] in terms of higher recall and F-

Measure performance. In addition to the statistical outcome 

and allied assessment, we have examined the performance 

qualitatively by understanding original inputs as well as 

summary outputs. Results reveal that the proposed model 

achieves relevance and coverage, without imposing any 

redundant information in resulting output. The overall 

research inferences and future scopes are discussed in the 

sub-sequent section. 

 

­ Discussion:   

Considering the overall results and allied inferences, it can 

be found that though a few efforts have been made by 

employing attention model to perform summarization, they 

lacked tuning their model as per input requirements. 

Inputting the texts document as direct input to the encoder 

could not exploit the semantic and syntactic features that as 

a result could have achieved better solution. On contrary, in 

our proposed model at one hand the RNN model was tuned 

and enhanced to support multiple input processing, on the 

other hand before performing word embedding we 

performed TAMR parsing that provided both semantic as 
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well as syntactic information to the encoder. This can be the 

prime contributing factor which strengthened our model to 

exhibit better performance. In addition, unlike classical 

attention model, in this research a refined attention model 

with Hard-Attention, Local Attention and Latent Attention 

feature was applied. This as a result enhanced attention 

concept to yield improved performance for abstractive text 

summarization in multiple document setting. It affirms 

acceptability of the research question RQ1. As already stated 

the inclusion of TAMR enabled inheriting or 

accommodating both semantic as well as syntactic 

information (on contrary in major existing works, authors 

have applied graph concept or tree concept, as syntactic 

feature) has enhanced abstractive summarization. This as a 

result has achieved better (cohesive, concise and redundant 

free) summarization. Our proposed model generated a new 

sentence with low word count; however it was highly 

relevant, concise and of course coherent that signify its 

efficacy to perform under multiple large scale input-settings. 

It affirms acceptability of the research question RQ2.  In our 

proposed model, we applied word2vec as tool to obtain the 

semantic features to be further encoded.  Noticeably, TAMR 

too generated embedding output equivalent to the word2vec 

in multiple dimensions. The resulting output was later 

processes by Tree-LSTM RCNN model for summary 

generation. In this manner, we achieved better performance. 

Thus, the question RQ3 too is justified affirmatively.  

Considering overall functional components such as TAMR, 

ABAS, IA-RCNN or Tree-LSTM model, the conclusive 

results and allied inferences confirms that the proposed 

model achieves optimal performance to meet intended goal. 

Thus, it confirms acceptability of the RQ4, affirming that the 

strategic implementation of ABAS, TAMR with improved 

Tree-LSTM encoding can be effective for Abstractive text 

Summarization under multiple document setting. 

6. CONCLUSIONS  

In this paper, a highly robust and efficient multiple-

document abstractive text summarization model is 

developed. Unlike classical abstractive text summarization 

schemes,  the proposed method intended to exploit efficacy 

of the different enhanced NLP techniques including 

sequence to sequence paradigm, Improved Attention Layer 

assisted Recurrent Convolutional Neural Network (IA-

RCNN) model for efficient encoding-decoding. Noticeably, 

the inclusion of AMR approach with IA-RCNN strengthened 

overall proposed summarization model to achieve concise 

and cohesive summarization without losing grammaticality 

of the original documents. Here, we considered semantic 

feature extraction, dependency parsing, semantic role 

labeling, semantic information etc which eventually enabled 

provision for the structural, syntactic, and semantic 

information of the input original datasets to generate the 

summary. Similarly, the use of Tree-LSTM augmented 

overall encoding process which retained aspect information 

and intend of overall input text. The strategic 

implementation of Sentence Merging and clustering, 

Transition based AMR (TAMR), whose output was fed as 

input for tree-LSTM RCNN made multiple text document 

summarizations more efficient. The proposed model was 

simulated with different set of input data, where manual 

quality assessment as well as statistical performance 

investigation revealed affirmative performance by the 

proposed system.  
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