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Abstract. With rapid increase of mobile computing and wireless network linkage, the information
exchange between connected systems and within groups increases heavily. Exchanging confidential in-
formation within groups via unsecured communication channels is a high security threat. In order to
prevent third parties from accessing this data, it is essential to encrypt it. For this purpose, the group
participants need a common group key to enable encrypted broadcast messages. But efficient key man-
agement of secured group communication is a challenging task, if participants rely on low performance
hardware and small bandwidth. For coordination and distribution, we present the modular group key
management procedure CAKE that is centrally organized and meets strict security requirements. The
lightweight G-IKEv2 protocol in combination with the key exchange concept of CAKE leads to an effi-
ciently integrated solution. The hybrid approach combines the advantages of the existing protocols with
the objective to reduce the computation and communication effort. It is shown that the procedure is more
suitable for changing MANET groups than the existing ones. Moreover, the exchanged group key can be
used for any services which provides a wide range of applications.
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1 Introduction

In today’s interconnected world, the wireless network
linkage is growing rapidly. More and more devices
are connected, especially in mobile and resource-
constrained networks. Coming from fixed line net-
works, unicast communication have been predominant
so far. During the last decade, we have witnessed
the rise of new low power network technologies, such
as ZigBee, IEET 802.15.4, Bluetooth, LoRa, SigFox,
4/5 G, just to name a few. Most of these have in com-
mon, that the bandwidth is limited and needs to be man-
aged wisely, while the amount of information explodes
with new scenarios in the context of IoT or Smart X.
In order to meet the requirements in constrained envi-
ronments, group communication is becoming more im-

portant for information exchange, as the benefits are re-
duced network overhead, computation power, and en-
ergy consumption. Efficiency is achieved by transmit-
ting data packets only once, simultaneously to all group
members. However, when it comes to security and pri-
vacy multicast lacks efficiency. Major challenges arise
from the necessary management of the multicast group
(in the following referred as communication group),
which needs to be secured as well as the actual com-
munication within the group.

In order to exchange confidential data within a
group in a secure manner there exist methods to manage
group keys, so called Group Key Management Proto-
cols (GKMP). These protocols enable the secure access
as well as the secure and efficient exchange of relevant
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information, such as group keys. Group keys are used
for the encrypted communication within a group. Typ-
ically, all Group Members (GM) posses a symmetric
key which is used to encrypt and decrypt the exchanged
data. After all, it does not matter which service is using
the GKMP infrastructure as underlying security tech-
nology.

Different areas of application do have distinct re-
quirements to be covered by a group key management
concept. Consequently, no existing concept could be
applied universally to all areas. Depending on the
dynamics of the group composition and changes, the
calculation of cryptographic keys for the group com-
munication, and the numbers of transmitted messages
it could be demanding for the GMs concerning com-
putation power, network bandwidth and energy con-
sumption. As a consequence, existing solutions for se-
cured group communication do not fulfill the require-
ments for mid-sized and large networks in resource-
constrained environments. Exemplary use cases as in
Figure 1, where an efficient and secure group communi-
cation is needed, are Internet of Things (IoT) networks,
saftey-critical system networks, Wireless Sensor Net-
works (WSN), and Mobile AdHoc Networks (MANET)
for public authority communication.

Figure 1: Secure and Efficient Group Communication in a Vehicular
AdHoc Network (VANET)

The paper at hand proposes a mechanism to opti-
mize the distribution and updating procedure of keys
and thus aims on improving the general security prop-
erties in group communication in constrained environ-
ments. The contribution of this paper is the combina-
tion of an efficient networking protocol for group key
management with a tree-based key update mechanism
and a cryptographic key distribution scheme. The cen-
tralized Group-IKEv2 (G-IKEv2 [12, 23]) protocol is
used for communication and initial key exchange with
a key server. Thereon, the mechanism called Central
Authorized Key Extension (CAKE [10]) is used to real-
ize encrypted group communication. It utilizes the idea
of Secure Lock [6] for compressing secured information
into a single cipher and enhances its performance by the

combination with a logical key hierarchy (LKH [19])
and new concepts for managing keys.

The remainder of this paper is structured as fol-
lows. In Section II a scenario illustrating the need
of this hybrid approach as well as the requirements is
given. Section 3 introduces related work on secure
group communication and evaluates security as well
as efficiency regarding the given scenario with a spe-
cial focus on the Logical Key Hierarchy (LKH). After-
wards, Section 4 describes the concept of our hybrid
system combining the light-weight G-IKEv2 protocol
and Central Authorized Key Extension, called CAKE.
Finally, Section 5 evaluates the findings and compares
with the well-established LKH, before Section 6 sum-
marizes and concludes this paper.

2 Scenario and Requirements

This work aims at concepting a highly efficient, but se-
cure group key management scheme to facilitate secure
group communication. The motivation is mainly found
by the manifold use of constrained devices in a wide
range of applications such as civil, industrial or mili-
tary use cases. A prominent example for a civil applica-
tion is car-to-car communication (see Figure 1), mainly
revealing highly dynamic group formations and wire-
less network limitations. In contrast, in home automa-
tion scenarios (think of smoke detectors on battery) or
military applications such as head-mounted units limi-
tations in terms of availability of power, main memoy
and storage, CPU and network datarates prevail.

Encrypted communication among a set of more than
two group members is common to all scenarios. Thus, it
seems desirable to share one cryptographic key among
the group members in order to encrypt message trans-
fers. Unfortunately, the management of such a key
becomes costly quickly due to the dynamics withing
a group (i. e. members joining or leaving the group
rather frequently). Changing the cryptographic material
upon every single group management action seems un-
avoidable, which motivates working towards other than
naive approaches. Analyzing diverse application areas
leads to a set of requirements that can be organized
into mostly two categories – security requirements and
scenario-driven non-functional requirements.

Security requirements

Forward Secrecy: Whenever a group member leaves
the group or is expelled, the member in question
must not be able to have access to a valid group
key.
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Backward Secrecy: Whenever a new group member
joins a group, the member in question must not be
able to have access to a formerly valid group key
before joining.

Key Independence: Having access to one key must
not yield the possibility to deduce another mem-
ber’s key.

Collision Free: Additionally, specific to group com-
munication, there must not be a subset of group
members that can deduce another member’s key(s)
by combining their knowledge.

Minimal Trust: A certain trust relationship will be
found mandatory, but it shall be subject to mini-
mize.

“CIA:” – Confidentiality, Integrity and Authenticity
must be granted any time, also implying the avoid-
ance of man-in-the-middle attacks or data injec-
tions.

Scenario-driven non-functional requirements

Low Datarates: The amount of transmitted data shall
be minimal in order to facilitate network limited
applications.

No 1-to-n Effect: Limited impact of a single mem-
bership change on all the other group members
is mandatory, meaning not suffering from the 1-
affects-n phenomenon, if a single membership
change in the group affects all the other group
members.

Minimal Delay: The delay imposed by the use of both
management actions and cryptographic operations
must be minimal.

Minimal amount of key changes and exchanges:
The amount of management actions such as
exchanging (new) keys shall be limited to a
necessary minimum (not implying anything about
the total amount of keys in general).

Low calculation complexity: Especially in scenarios
exposing CPU limitations, a low complexity of
cryptographic calculations is vital, while keeping
up the maximally possible security level at the
same time.

Compatibility: Clients not capable or not willing to
support fancy optimizations should not be ex-
cluded from the communication. This is why a
potential fall-back to simple (and standardized)
mechanism should be supported.

Scenario-driven functional requirements

Based on the scenario, this yield in the following re-
quirements for the group operations to be supported
while complying the security requirements:

Join: One or more participants accede to an existing
group. (Backward Secrecy)

Leave: One or more group members quit the group
membership. (Forward Secrecy)

Re-Keying: Updateing the group key using an efficient
procedure. (Prevent statistical analysis)

Merge: A common key can be efficiently provided to
several groups by re-keying. (Backward Secrecy)

Split: A group is divided into several subgroups. (For-
ward Secrecy)

3 Related Work

Secure group communication is an extensively stud-
ied area and resulted in a couple of standardization ac-
tivities (most recently a new standardization group for
group key distribution was formed within the IETF1).

Rafaeli et al. [18] survey a set of approaches for se-
cure group key distribution (GKD). According to their
analysis, there are three different types of GKDs: cen-
tralized, decentralized and distributed GKD protocols.
Most of the protocols considered are rather Crypto-
graphic Key Schemes (CKS) than networking protocols,
but some of them are included in Group Key Manage-
ment Protocols. The paper at hand offers the integra-
tion of an optimized Cryptographic Key Schemes into a
centralized management protocol. Thus, the following
section is divided in Group Key Management Protocols
for communication and Cryptographic Key Schemes to
manage the group key. To our knowledge, none of
the approaches provides an efficient and integrated so-
lution, especially with focus on low resource require-
ments. This is one of the reasons why the Internet
Engineering Task Force (IETF) started a standardiza-
tion process for group key distribution in February 2018
[21].

3.1 Group Key Management Protocols

A high-level definition of Group Key Management Pro-
tocols (GKMP) and their corresponding architecture is
given by the IETF standard body in RFC 2093 [9] and
RFC 2094 [8]. The development of actual GKMPs
builds on top of these specifications and usually goes

1https://datatracker.ietf.org/wg/mls - Started in
February 2018
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hand in hand with the development of a peer-to-peer key
exchange protocol and its corresponding architecture.
The Internet Security Association and Key Manage-
ment Protocol (ISAKMP, RFC 2408 [15]), and Group
Domain of Interpretation (GDOI, RFC 6407 [22]) have
been the first instantiations. The requirements and de-
sign of these protocols were derived from multicast ar-
chitectures of network vendors. Both, peer-to-peer key
exchange and Group Key Management were revised
for the sake of stronger security properties and bet-
ter performance, resulting in Internet Key Exchange v2
(IKEv2, RFC 7296 [12]) and the currently proposed G-
IKEv2 [23] for groups. As G-IKEv2 offers a reduced
networking overhead and includes a structure for dis-
tributing hierarchical keying information, we build the
design of our solution on top of G-IKEv2 and the latest
architecture from RFC 4046 [4].

3.2 Cryptographic Key Schemes

Centralized Cryptographic Key Schemes (CKS) com-
prise a central control authority to manage the group
key and to coordinate the cryptographic procedures, of-
ten based on a GKMP. In contrast, decentralized tech-
niques share the management of the keys between sev-
eral instances [5, 17]. Thereby, the generation and dis-
tribution of group keys is realized by cooperative in-
stances, which are typical hierarchically ordered. In ad-
dition, distributed key agreement procedures delegate
the key generation process to not only an individual
group member, but to a group of members.

One example is the Group-Diffie-Hellman Key Ex-
change [20], but others exist [18]. All members of a
group are organized in a virtual topology, typically into
a ring, hierarchies on basis of trees, or just unstructured.
In all these schemes, every member of a group shares a
common Transport-Encryption-Key (TEK).

Another approach is dividing groups into subgroup
with individual TEKs. A master within every subgroup
takes care of the communication and keys, which allows
avoiding 1-to-n effects while re-keying [5]. The down-
side is requiring repetitive conversions of encrypted
messages between the subgroups. Within the sub-
groups, these approaches use key management tech-
niques of the three shown categories why out of scope
of this work.

Despite their structured nature, centralized CKS can
further be categorized into one of the three subcate-
gories:

• Pairwise keys: Transmission of the group key by
the central instance via individual subscriber com-
munication

• Broadcast secret: Transmission of the group key
via broadcast instead of individual secured con-
nections

• Hierarchical structure: Coordination of partici-
pants in a tree structure with corresponding cryp-
tographic subkeys

The first and most widely recognized CKS ever is
defined in the GKMP, which belongs to the category of
the pairwise keys. The central server shares an individ-
ual secret key with each group member, which is called
the Key-Encryption-Key (KEK). For a common TEK
of a group, the server generates these. Subsequently,
the server sends the group key to each participant indi-
vidually encrypted using the KEK. Upon change of the
group constellation, the entire group is re-created, lead-
ing to high management and communication overheads.

An example for the broadcast secret is the Secure
Lock (SL) [6, 2] that enables the creation of a group or a
re-keying action using a single broadcast message. The
SL scheme is based on the Chinese Remainder Theo-
rem (CRT) [25, 24], which uses the properties of con-
gruence to encrypt. However, the reduction of commu-
nication overhead is obtained by more complex calcu-
lations compared to GKMP so that this approach only
renders feasible in special scenarios.

A compromise are schemes building on hierarchi-
cal structure. A well-known approach is Logical-Key-
Hierarchy (LKH) [19, 13], which is integrated into
GDOI and G-IKEv2. The KEK’s and the group par-
ticipants are maintained in a binary tree. Each node in
the tree represents a KEK that is known to the underly-
ing nodes. Maintaining the associated keys of the tree
structure increases the management effort, especially
the calculation and distribution of internal keys. This
approach offers a moderate advantage only in case of
repetitive leavings of group members. Since this oper-
ation does not take place in every secured group, this is
unnecessary effort.

Focusing on the motivation for this paper, a cen-
tralized scheme with common TEK renders mandatory,
especially in order to control and authorize individual
members of a group. In this paper, a combination of the
advantages of GKMP, SL and LKH as CAKE [11] with
an integration into G-IKEv2 is proposed, allowing for
efficient key management.

4 Concept

Targeting highly efficient and encrypted group com-
munication, this paper proposes the combination of
lightweight G-IKEv2 ([23]) for the key exchange and
Central Authorized Key Extension (CAKE) [10] for the
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group key management. CAKE’s key management is
centrally organized and requires a trustworthy Group
Controller (GC). The GC is responsible for the gener-
ation, administration and distribution of the keys and
thus requires more computational power than any other
(lightweight) group member.

The remainder of this section is organized into sub-
sections inspired by group management operations and
patterns:

(A) Client-Server communication based on G-IKEv2

(B) Member Registration on the GC

(C) Group and Group Key Creation

(D) Re-Key of the group

(E) Join of member(s) to a secured group

(F) Leave / Exclude of member(s) from a secured
group

(G) Tree Management and Key Addressing

(H) Merging and splitting groups

4.1 Client-Server communication based on G-
IKEv2

G-IKEv2 [23] is used to secure the transmission of
cryptographic material for CAKE as it has already
proven suitable for constrained devices [7]. G-IKEv2
already supports the establishment of a confidential
and authenticated 1-to-1 channel between a client and
the GC. It also offers the distribution of Group Trans-
mission Encryption Keys (GTEK) and Group Key En-
cryption Keys (GKEK) and thus only requires addi-
tional support for CAKE. To communicate securely in
a group, every group member has to possess a GTEK
used for the communication in the group and a GKEK
used to distribute the GTEKs securely. Figure 2 gives
an overview about G-IKEv2:

1. Key Exchange: A G-IKEv2 key exchange can be
divided into two phases:

(a) Establishing an Initial Security Associa-
tion (IKE SA INIT): The first two messages
from the client to the GC and back estab-
lish a Security Association (SA) and thus a
secure channel between the client and the
server (Phase À: Initialization).

(b) Exchanging keys (GSA AUTH): Given the
secured communication path, the client iden-
tifies and authenticates itself and in turn

receives transport and key encryption keys
(GTEK and GKEK) from the server. The
Group Security Association (GSA) Policy in-
cludes the security parameters (algorithms,
lifetime, etc.), while the actual keys are trans-
ported within the Key Download (KD) Pay-
load (Phase Á: Group Lifetime).

2. Re-Keying (GSA REKEY): Whenever a GTEK
or GKEK loses validity (e. g. being out-
dated), a re-keying action is triggered by the
server (GSA REKEY), which is close to equal to
the GSA AUTH phase (Phase Â: Group Key Re-
fresh).

4.2 Member Registration on the GC

Each participant Pi registers with CAKE by negotiat-
ing an individual key pair (Keyi) with the GC dur-
ing an IKE SA INIT exchange (À). The initial ex-
change is done with a Diffie-Hellman key exchange,
which by design lacks authenticity. A second message
GSA AUTH (Á) is used to authenticate both, the client
and the GC. Note, that the GSA AUTH can be used to
directly join a group as part of the registration process
(see Section 4.5).

4.3 Group and Group Key Creation

On request, the GC randomly generates a GTEK and
GKEK. According to G-IKEv2, the GC manages cryp-
tographic material and algorithms for every group.
They are stored in the TEK SA and KEK SA databases
(see Figure 2).

The GC may decide to create a new group with the
new group key and members already registered and au-
thenticated by building a GSA REKEY payload as fol-
lows:

1. The GC constructs a CRT congruency in analogy
to the SL scheme, so-called Lock MX. Therefore,
it uses the individual mi and Keyi from all par-
ticipants of the specified group to calculate the
Lock MX to encrypt the GKEK (see CRT calcu-
lation [25, 24]).

2. The GTEK is encrypted with the GKEK. For
the sake of efficiency and security [14], XOR-
operations are used for bitwise encryption of the
new key tuple with a hashed GKEK. However, any
encryption method specified by G-IKEv2 is sup-
ported.

3. The keys are embedded into a CAKE PRIME
GSA Policy (including the new
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Client GC

 *TEK_SA

 *KEK_SA

 *CAKE_SA

IKE_SA_INIT{SA_i1,KE_i,N_i}

IKE_SA_INIT{SA_r1,KE_r,N_r}

GSA_AUTH{SK{ID_i,Auth,ID_g}}

GSA_AUTH{SK{ID_r,Auth,GSA{[...],CAKE_PRIME},KD{[...],CAKE_PRIME}}}

GSA_REKEY{SKEK{ID_r,Auth,GSA{[...],CAKE_PRIME},KD{[...],CAKE_PRIME}}}

GSA_REKEY{SKEK{ID_r,Auth,GSA{[...],CAKE_PRIME},KD{[...],CAKE_PRIME}}}

*TEK_SA

 KEK_SA

 CAKE_SA

=

=

=

=

=

SA_i1, SA_r1

KE_i, KE_r

N_i, N_r

SK{ }

ID_i, ID_r, ID_g

Offered and chosen algorithm and DH Group

Diffie-Hellman Values

Nonces

Payload is encrypted and integrity protected

Identity (Initiator, Responder, Group)

1

2

3

=

=

=

=

Auth

KD

GSA

SKEK{ }

Authentication:PSK + IDs or Digital Certificate

Key Download

Group Security Association

Payload is encrypted and integrity 

protected with KEK

Figure 2: G-IKEv2 exchange with CAKE features

KEK MANAGEMENT ALGORITHM called CAKE)
and a CAKE PRIME KD payload. They are
distributed using a single GSA REKEY broadcast
message.

A participant Pi can only “open” the Lock MX, if
she possesses a value mi that was included during the
creation of the lock. In consequence, only intended
recipients (i. e. group members) are able to read the
GKEK and GTEK by solving the CRT.

4.4 Re-Key of the group

In case the GT EK needs to be renewed, a re-keying
action is carried out. The GC generates the keys
GKEKnew and GT EKnew, which will be encrypted us-
ing the GKEKcurrent , embedded into the KD and broad-
casted with a GSA REKEY message. In order to grant
forward and backward secrecy, a re-keying action is
also carried out every time a member joins or leaves
the group.

4.5 Join of new member(s) to a secured group

If a new participant Pi+1 wishes to join the group, she
sends a GSA AUTH request including the group ID Idg
she wishes to join. The GC authenticates Pi+1 and gen-
erates an inhomogeneous prime number mi+1 for a CRT
congruency for Pi+1. Additionally, a new GSA policy
and KD payload called CAKE PRIME is added, holding
mi+1. The use of CAKE is communicated with a new
KEK MANAGEMENT ALGORITHM called CAKE within
the GSA Policy (see Section 4.5.1.1 in [23]). The GC
also generates GKEKnew and GT EKnew and embeds the

information and keys into an GSA AUTH sent to the
new group member via unicast.

Additionally, a re-key is triggered for any of
the former group members. The re-key includes
the KD (GKEKnew,GT EKnew) encrypted with the
GKEKCurrent . Switching from GT EKold to GT EKnew
enables the enlarged group (former group plus joined
members) to communicate securely. As long as the
GT EKold and GKEKold are still secure the GT EKnew
and GKEKnew should be generated by hashing the old
once. So the keys do not need to be distributed over the
network. Only a tiny information message is necessary.

A mass entry of more than one new participant is
equivalent to the process as described before, whereas
the GT EKnew is send to every new member individu-
ally. Alternatively, the new participants can be com-
bined together via a CRT to transmit the GKEKnew so
that only one message is necessary instead of multi-
ple individual ones. Unfortunately, the latter is only
possible if the joining clients are already authenticated.
In both cases, two GSA REKEY messages are broad-
casted, one holding the Lock MX for the new clients
and one with (GKEKnew,GT EKnew) encrypted with the
GKEKCurrent for the former group members. Thus, an
arbitrary number of new members joining a group re-
quires a constant number of messages and thus scales
efficiently with the amount of new members.

4.6 Leave / Exclude of a member from a secured
group

Withdrawal of a member from a group can be initi-
ated by the participant herself or be determined by the
GC as exclusion. In any case, the presently known

INFOCOMP, v. 18, no. 2, p. pp-pp, December, 2019.



Hillmann et al. CAKE: An Efficient Group Key Management for Dynamic Groups 7

GT EKCurrent and GKEKCurrent cannot be used, as the
expelled participant is in possession of them. To re-
duce the effort, CAKE uses a reduced CRT system and
a ternary tree structure, which is managed by the GC.

Figure 3 illustrates CAKE’s tree structure with
level A (the root) representing the GKEK and GTEK.
Every node represents a pair of keys (mt and keyt )
known by the underlying participants. The actual group
members with their personal secrets mi and keyi are
mapped to the leaf nodes of the tree. The designation
mX of a node defines a specific mi for the CRT system.

All pair of keys on the path from the root to the
participant must be known by the participant. The tree
structure enables efficiency, but its creation can be de-
ferred and only be initialized if necessary. This allows
the tree being set up and distributed during a period
of low network load. Considering the state of the art,
nearly any tree-based scheme ignores this issue and ex-
cludes the costs for the tree setup in the evaluation.

Due to their flat structure, trees with more than two
subnodes are better suited for larger groups than binary
trees. In most scenarios (rarely more than 60 partic-
ipants and hard to imagine more than 300 [16]), the
ternary tree structure is ideal with regard to the size of
the tree.

4.7 Tree Management and Key Addressing

In order to differentiate between different keys, an ef-
ficient addressing scheme is mandatory. This applies
to every key, not just the keys in the tree. The ID of
every key pair is defined as an 8x2 bits address. This
address space allows a maximum tree depth of 8 and
2,187 group members in a group with 3,280 key pairs
in the tree. The IDs are starting from 00 at the root key
pair on the top. Every parent has the children 01, 10
and 11. The unused bits are padded with 00. This al-
lows a unique identification of the position of every key
within the tree.

Temporary keys can be derived easily like the keys
for re-keying actions. These key pairs not yet included
in the tree structure obtain the ID starting with 11. Af-
ter a client is authenticated with the GC, it has its own
secret mi and keyi (see Section 4.5), distributed with an
address within or outside the tree. This support the re-
balancing if the tree if necessary by the GC.

In order to take full advantage, the CAKE pro-
tocol for the distribution of keys requires the imple-
mentation of the following messages: I.) Download-
ing key pairs on the path to the root from the GC
- CAKE Download Array II.) Re-Addressing of keys
- CAKE Update Array III.) Receiving updates of key

pairs - CAKE Readress Array IV.) Re-Keying upon re-
moval of group members - CAKE Leave Array

This is similar to the payloads already defined in
G-IKEv2 for LKH Download Type (see Section 4.8.3
in [23]). According to this, these four CAKE Download
Types and three substructures are defined as array ele-
ments. This support the compatibility. As shown above,
any message can be distributed securely as broadcast.
Furthermore, the information of all download types are
structured as an array to differentiate between the ele-
ments. Each elements of the arrays is indexed with the
identity of the key pair in the tree. Using the unique
tree IDs, the nodes can detect if they are affected by the
action or not by comparing address prefixes.

The CAKE Download Array can be embedded in
GSA AUTH or GSA REKEY message. It holds mul-
tiple keys, transported within a Key-Substructure (see
Figure 4). Therefor, a CRT for mi and keyi is built using
the key pairs of the child nodes in the tree. The sub-
structure includes the address of the key pair and the
CRTs themselves. For efficiency, the tree has to be dis-
tributed bottom up as other tree based group key man-
agement schemes. If a client is in possession of one key
pair, then he is able to solve the Lock MX to obtain the
information.

For the re-addressing of the keys, we use the
CAKE Update Array embedded in a GSA REKEY
message. Due to the message type, the receiver knows,
that there have been distributed keys before. Thus, these
keys need to be updated in the client’s CAKE SA.

To change the ID of a key pair, the
CAKE Readress Array is used. With this mes-
sage, a key pair obtains a new position in the tree.
Furthermore, it can be used to include nodes to the
tree or to re-arrange subtrees (e. g. when the tree is
re-balanced). The readdress information is holding in
tuples (Idold ,Idnew). If a key on his path to the root
receives re-addressing, it needs to update all keys on its
path further down the tree.

When a node leaves or has to be excluded, a new
root key pair has to be created. It is used to encrypt the
GTEK which is embedded in a KD Payload. This infor-
mation is communicated with the CAKE Leave Array
message. A leaving node is in possession of all key
pairs on the path to the root (see Figure 3: node mD32,
dark, binary address: 00-01-11-10). All these marked
key pairs can not be used for further security opera-
tions. Instead, all mX located next to a marked node
on the same level are used (see hatched nodes in Fig-
ure 3). This is done for the entire tree along the path
to all key pairs, the leaving client is in possession
of. The updated key pairs are embedded in a Keys-
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mA1

mB1 mB2 mB3

mC12mC11 mC13 mC22mC21 mC23 mC32mC31 mC33
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GSA, mi, keyi, 
(Group members)
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01 10 1101 111001 10

mXYZ

  m  à  Secret for CRT Lock 
  X   à  Tree Level of the secret
  Y   à  Index of the subgroup
  Z   à  Index within the subgroup
{--} à  Binary adressing of a secret

  (key pair)

--

Figure 3: Ternary tree structure to manage the keys and to reduce the calculation effort by withdrawal.

0 1 2 3
+--------+--------+--------+--------+
| CAKE Key Id | RESERVED |
+--------+--------+--------+--------+
| Size CRT key_id | Size m_id |
+--------+--------+--------+--------+
˜ CRT (key_id) ˜
+--------+--------+--------+--------+
˜ m_id (encr with key_id) ˜
+--------+--------+--------+--------+

Figure 4: Exemplary CAKE Keys Substructure

0 1 2 3
+--------+--------+--------+--------+
| # Keys | # Leaves |
+--------+--------+--------+--------+
˜ CAKE_Leaves_Substructure [] ˜
+--------+--------+--------+--------+
˜ CAKE_Keys_Substructure [] ˜
+--------+--------+--------+--------+

Figure 5: Exemplary CAKE Leave Array

Substructure (see Figure 4) which in turn is embedded
in the CAKE LEAVE ARRAY (see Figure 5). The op-
eration allows excluding multiple nodes with only one
message.

Please note that the GC may choose to distribute
only the root key pair with a short and tiny mes-
sage. The other keys on the path are updated
later with CAKE Update Array instead of one large
CAKE Leave Array.

4.8 Merging and splitting groups

To merge two or more existing groups, it requires a
renewal of several keys. The new common GT EKnew
will be spread based on the currently used individual
GKEKs of the merging groups. It is mandatory to send
one message per group to create a merged group.

A group split is done by re-addressing the sub-keys

within the key tree and building Lock MX in the amount
of divivded subgroups including the new keys. The
number of messages may be as small as one, but de-
pends heavily on the previous tree structure. As every
leave operation, it is coherent with a high effort and will
be analyzed in detail in further studies.

Please note that the usage of the Delete Payload
message as specified in [23] is not resistant to malicious
attacks of internal group members. In the cryptographic
community, this problem is referred to as Post Compro-
mise Security, which is an unresolved unresolved prob-
lem. So CAKE avoids the usage of this message and
the process has to be authorised through the group con-
troller.

5 Evaluation

Having a sound concept at hand, this section evalu-
ates CAKE under the following three aspects: Firstly,
a (theoretical) comparison of the computational com-
plexity as well as networking load of CAKE, LKH and
traditional GKMPs is carried out. Secondly, an im-
plementation of CAKE for RIOT OS proofs both its
lightweight nature and its applicability in constrained
scenarios. Given the result, the section will close by
evaluating CAKE against the requirements as stated in
Section 2.

5.1 Comparison with LKH and GKMP

Existing concepts for managing group keys are tradi-
tional GKMP systems (represented by G-IKEv2) and
LKH. Table 1 contains the comparison of CAKE with
these two concepts regarding the networking and com-
putation overhead. On the one side, it is indisputable
that as no client leaves the group the traditional GKMP
approach performs optimal. On the other side, LKH
and CAKE perform far better in terms of quantity of
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Table 1: Comparison of CAKE with LKH and traditional GKMP (represented by G-IKEv2), with special regards on cryptographic overhead.
The keys are defined for AES with 16 Byte keys.

Regis-
ter/Join Mass Join2 Key Download/Update2 Tree Operation Leave2

Networking KD Payload1: 12 (in Bytes)

GKMP
KEK: 16
TEK: 16
Key: 16

p Messages
with:
KEK: 16
TEK: 16

n Messages with:
KEK: 16
TEK: 16

undefined
n−1 Messages with:
KEK: 16
TEK: 16

LKH
KEK: 16
TEK: 16
Key: 16

p Messages
with:
KEK: 16
TEK: 16

1 Message with3:
Hdr: (4+(n−1)∗12)
Keys: (n−1)∗16

same as Key
Download

1 Message with3:
Hdr: 4+ log2(n)∗8+
∑

log2(n)−1
i=1 i∗8

Keys: ∑log2(n)−1
i=1 i∗16

CAKE

KEK: 16
TEK: 16
Prime: 17
Key: 16

1 Message
with:
Hdr: 16
TEK: 16
KEK5

:∣CRT(p)∣

1 Message with3:
Hdr: 4+n∗12
Keys5:
(log3(n)−1)∗ ∣CRT(3)∣
Primes:
(log3(n)−1)∗3∗17

1 Message with3

:
Hdr: (4+8)
Key5: ∣CRT(3)∣
Primes: 3∗17

1 Message with:
Hdr: 12+ log3(n2

)∗8
TEK: 16
KEK5: ∣CRT(log3(n2

))∣

Computation

GKMP4,7
GC:
OK(1)
Cl: OK(1)

GC: OK(p)
Cl: OK(1)

GC: OK(n)
Cl: OK(1)

undefined
GC: OK(n−1)
Cl: OK(1)

LKH4,7 see
GKMP

GC: OK(p)
Cl: OK(1)

GC: OK(2log2(n)+1
)

Cl: OK(log2(n)+1)
same as Key
Download

GC: OK((log2(n)+
log2(n−1)))
Cl: OK(log2(n))

CAKE6,7 see
GKMP

GC: OL(p)
GC: OK(1)
Cl: OL(p)
Cl: OK(1)

GC: OL(3∗ n−1
2 )

GC: OK(1)
Cl: OL(3∗ log3(n))
Cl: OK(1)

GC: OL(3)
GC: OK(1)
Cl: OL(3)
Cl: OK(1)

GC: OL(log3(n2
))

GC: OK(1)
Cl: OL(log3(n2

))

Cl: OK(1)

1 Required for every Key distributed with G-IKEv2 2 n being Group Members, p number of members joining
or leaving 3 KEK and TEK is carried as in GKMP 4 GC performs encrypt and Client performs decrypt
5
∣CRT(i)∣: size of CRT with i elements in Bytes 6 OL: Complexity of creating/solving Lock MX.

7 OK : Complexity of encryption/decryption of keys.

messages and computations when Forward Secrecy is
required at the moment clients leave. This is a major
benefit of these two concepts.

Although CAKE requires a pair of keys (mi and
keyi) to be sent when distributing the tree, it can out-
perform the LKH mechanism introduced in G-IKEv2.
The amount of key headers is equal in both systems.
Unfortunately, LKH tree entries need to be transported
multiple times decreasing its efficiency. Using a CRT
system, CAKE offers the distribution of keys using a
single message. Beside this, the message can be send
to a later point of time, when network load is low. Al-
though, the size of the resulting Lock MX increases lin-
early (see Table 2), it still decreases the necessary pro-

tocol information heavily.
CAKE also reduces the demand for computational

power on the client-side. Instead of carrying out multi-
ple decryption operations (as for example LKH would
do), the client has to perform one single modulo and one
decrypt operation only. Nonetheless, this comes at the
price of storing more cryptographic material (mi,keyi)

compared to LKH where only keyi has to be stored for
every node in the tree.

5.1.1 Network overhead of LKH

As LKH operates very similar as CAKE, the following
will comparing both overheads. LKH uses a binary tree
and its G-IKEv2 extension can currently handle a max-
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imum number of 65,536 participants. For comparison
we assume a tree with 11 levels resulting in a maximum
of 2,048 participants. Removing one client from the key
will therefore result in 10 keys having to be changed
and distributed in the network (for better insights to
LKH in G-IKEv2 we recommend Appendix A of [23]).
This would result in 10 LKH UPDATE ARRAYs car-
rying a total of ∑10

i=1 16∗ i+8∗ i+8 = 1,400 Bytes (16,
being the Key size, 8 being the LKH Keys header and
8 being the LKH UPDATE ARRAY header). Please
note that in the current version of the G-IKEv2 ex-
tension for LKH, many keys are transported multiple
times which heavily decreases efficiency. With some
optimizations, the LKH Key Download could be de-
creased to 464 Bytes and, thus, being slightly more effi-
cient than CAKE in terms of networking. However, this
slightly better efficiency comes with the cost of higher
computation overhead on the client, as in the worst case,
10 keys have to be decrypted individually. Addition-
ally, changing the tree can currently not benefit from
an address scheme as proposed in CAKE, making this
operation more expensive in terms of networking and
computation.

5.1.2 Unoptimized re-key networking overhead

Using the G-IKEv2 protocol without any optimizations
(such as CAKE or LKH) would result in number of
participants messages including 80 Bytes overhead for
KEK and TEK. Assuming the current maximum of
2,187 participants, this would result in 2,187 messages.
The IETF draft for G-IKEv2 [23] defines an additional
GSA INBAND REKEY message for such tasks. Even
without optimization, the new keys could be carried out
in a single broadcast message, encrypting the KEK with
every privately shared secret between client and server.
The GSA REKEY message would carry one KEK Key
Download Types (40 Bytes) for every participant and
one TEK Key Download Type (40 Bytes). For 2,187
participants, this would result in a 2,187 ∗ 40 + 40 =
87,520 Bytes overhead.

5.2 Performance on constrained hardware

RIOT OS [3] is an open source operating system that
supports various hardware. Its minimal requirement of
1.5 KB main memory illustrates its lightweight nature
and is one of the reasons we implemented CAKE on
RIOT. Further, necessary cryptographic libraries with
importance for embedded systems are available. The
generation of an evaluation environment with realis-
tic conditions is achieved by using IOT-LAB [1]. It
provides a huge amount of wireless nodes with mini-

Table 2: Required time for Lock MX operations with i elements. For
comparison, the time to encrypt and decrypt the key hierarchy of LKH
with tree depth i is shown. The number of clients is 3i for CAKE and
2i for LKH.

i
Create

Lock MX
( µs)

Solve
Lock
MX

( µs)

Size
Lock
MX

( Byte)

LKH
Enc

( µs)

LKH
Dec

( µs)

1 280,082 88 41 125 201
2 572,785 189 84 188 302
3 822,851 275 124 250 404
4 1,130,065 374 165 312 505
5 1,377,708 484 206 374 607
6 1,539,600 604 247 437 708
7 1,909,062 750 288 499 809
8 2,231,764 904 328 562 911
9 2,544,507 1,072 369 624 1,013

10 2,751,188 1,243 410 686 1,114
11 3,134,233 1,433 451 749 1,215
12 3,387,458 1,632 492 811 1,316
13 3,705,136 1,858 533 874 1,418
14 3,974,770 2,081 573 935 1,520

mal capabilities regarding CPU and memory. The IOT-
LAB M3 board comes with a 72 MHz CPU and 64 KB
SRAM and is used for the GC and all clients. The eval-
uation focuses on the group management and the asso-
ciated key distribution processes.

5.2.1 Memory requirements

For the evaluation we created a homogenous setup with
a GC and a group of 14 clients on IOT-LAB M3 nodes.
Regarding the memory requirements, the design princi-
ples of RIOT OS need to be considered, as all memory
is statically reserved, including the network buffer. The
required memory on the GC is defined through the num-
ber of all necessary keys within the ternary tree includ-
ing the nodes. For each participant, the GC requires a
total of 2,900 Bytes of data being stored, consisting of
keys, IP addresses, and memory for CRT calculations
and tree operations. Subsequently, the required memory
for the GC is 40,600 Bytes in total, which is covered by
the available memory of 64 KB in our evaluation setup.
The memory requirements for participants of the group
are lower. Each client requires only 2,900 Byte per con-
nection to a GC.

5.2.2 Computational Costs for CRT

As the evaluation focuses on constrained hardware,
we concentrate on time measurements for the crypto-
graphic calculations. The most expensive operation is
the IKE SA INIT message, which is caused by the
necessary computation of the DH key exchange. The
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measurements in our evaluation setup show computa-
tion times on the IOT-LAB M3 nodes that are com-
parable with the times on Arduino Due in [7]. Fur-
thermore, most actions in CAKE require only one sin-
gle GSA REKEY message carrying G-IKEv2 payloads
(see [23]), which is beneficial in terms of computation
time.

The most interesting new feature of CAKE is the
Lock MX creation and solving on the GC and the clients
in terms of computational cost. Table 2 shows the mea-
surement results for the creation of the Lock MX with
different tree depths as well as the time to resolve it on
client side. These results are especially notable regard-
ing a mass entry (see Section 4.5), where i represents
the number of clients joining simultaneously. Along
with the number of elements in the CRT, the compu-
tation time of new keys increases. Evidently, this is
mainly caused by the higher size of the Lock MX. On
the other side, the clients significantly benefit from the
new method to receive keys. One simple modulo oper-
ation is needed on client side resulting in low computa-
tion time for solving the Lock MX even at its maximum
size of 14 elements.

For comparison, the costs for encrypting and de-
crypting keys within an LKH tree are shown in Table 2.
It can be seen that even though the AES implementa-
tion is highly optimized, solving the Lock MX scales
similar to decrypting the keys within the LKH tree.
However, lowering network load with CAKE comes
at the price of computational overhead for creating the
Lock MX, which scales worse than LKH. Optimizing
the Lock MX implementations will be part of further
studies.

5.3 Fulfillment of requirements

Resource-constrained environments necessitate func-
tional and non-functional requirements. The design of
CAKE particularly focuses to meet these. Firstly, the
ternary tree enables a reduced number of keys needed
to be stored and sent. Additionally, through CAKE
a re-keying is possible with one single message and
the per-packet overhead is reduced. Thus, the require-
ments Low Datarates and No 1-to-n Effect are ful-
filled. When group changes happen, the evaluation
shows that CAKE requires only a minimum of mes-
sages to be sent. For group leave actions the CRT is
utilized and the calculation complexity is reduced to
only one modulo operation on client side. So, Minimal
Delay and Low calculation complexity are achieved.
The required Minimal amount of key changes and
exchanges is realized by combining the ternary tree
and the addressing scheme. This allows the minimiza-

tion of required actions in case of restructuring the tree.
Moreover, the Compatibility requirement is achieved
by using the G-IKEv2 protocol, which is currently be-
ing standardized. Any client that is not capable of the
newly introduced features may participate in the group
by utilizing standard re-keying mechanism, while the
CAKE-capable clients can still use the optimized fea-
ture set. Additionally, through the use of G-IKEv2, the
Security Properties are met, as they are included in
the standardization and therefore well studied. From
this point of view, CAKE is an optimization of key cal-
culation and transport, leaving the security parameters
as they are. Lastly, the Minimal Trust requirement
can be accomplished on a per-scenario-basis through-
out the various supported authentication mechanisms of
G-IKEv2.

Besides the practical applicability and its pros and
cons in comparison to especially LKH, reviewing the
initial design goals and requirements shows complete-
ness. A detailed design explanation and security assess-
ment can be found in [10].

6 Conclusion

In this paper, we presented the concept of an efficient
group-key-management protocol that meets the require-
ments of resource-efficient procedures in many applica-
tion scenarios like MANET. It is based on the combina-
tion of the lightweight G-IKEv2 [12] communication
protocol in combination with CAKE [10] for the key
exchange and key management. CAKE offers the pos-
sibility to exchange keys within a group and to react ef-
ficiently to dynamic changes of the group with low cal-
culation effort and a low load on the network. Neverthe-
less, it enables confidential key distribution and compli-
ance with backward and forward security requirements
for mobile computing. The main objective to reduce the
network load to a minimum is achieved at the cost of
additional storage space for supplement cryptographic
key material. The CRT-based key hierarchy together
with a ternary keys tree structure reduce the data to
be transferred especially during group leave operations.
The design of CAKE delegates computational demand-
ing cryptographic operations to the group controller, re-
lieving to potentially less powerful group members. In
today’s interconnected world, this middleware technol-
ogy shows advantageous in the area of secure group
communication among highly constrained group mem-
bers.

In the current state of research, the inefficient ad-
dressing scheme will be optimized in the next step.
Apart from that, the networking overhead of the LKH
extension in G-IKEv2 can be also further improved.
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Thus, the optimization of both in concerning scenar-
ios is subject of future work, which will allow for a
more comprehensive and technical comparison of LKH
and CAKE. Beside further improvements of the CAKE
prototype, the basic concept and the implementation
is evaluated for building and solving the CRT System
worth investigating. Finally, a more detailed analysis
of the solution to post-compromise security is of great
interest in the case of merging and division of groups.
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